Skip to main content
Fig. 6 | Microbiome

Fig. 6

From: Potential and active functions in the gut microbiota of a healthy human cohort

Fig. 6

Active carbohydrate metabolism pathways and related taxonomic assignments. a Schematic overview of gut microbiota metabolic pathways from carbohydrate uptake and degradation to the production of short-chain fatty acids (in bold). Numbers in bold correspond to the metabolic pathways listed in b. GH glycosyl hydrolase. b Combination of carbohydrate metabolism pathways/enzymes (rows) and specific gut microbiota phyla/genera (columns) found by MP analysis. Heatmap color scale is based on the logarithmized relative abundance (average of 15 subjects) of each function-taxon combination. For each pathway (rows), only enzymes detected in at least half of the subjects are reported, while the top row (in bold, corresponding to black-bordered squares) accounts for the total abundance of all enzymes (found in at least one subject) belonging to the pathway. For each phylum (columns), only genera expressing a function in at least two subjects are reported, and the phylum column (in bold, corresponding to black-bordered squares) accounts for the total abundance of all functions assigned to that given phylum. “Carbohydrate metabolism” and “microbiota” report the total of rows and columns, respectively. GH glycosyl hydrolase, ABC ATP-binding cassette, MsmK multiple sugar-binding transport ATP-binding protein MsmK, MsmX maltodextrin import ATP-binding protein MsmX, UgpC sn-glycerol-3-phosphate import ATP-binding protein UgpC, YcjV uncharacterized ABC transporter ATP-binding protein YcjV, YtfQ ABC transporter periplasmic-binding protein YtfQ, YurJ uncharacterized ABC transporter ATP-binding protein YurJ, DKI 4-deoxy-l-threo-5-hexosulose-uronate ketol, Ru5P ribose-5-phosphate, GAPDH glyceraldehyde 3-phosphate dehydrogenase, PEPCK phosphoenolpyruvate carboxykinase, OH hydroxy

Back to article page