
Lan et al. Microbiome 2013, 1:2
http://www.microbiomejournal.com/content/1/1/2

Selecting age-related functional characteristics in
the human gut microbiome
Lan et al.



Lan et al. Microbiome 2013, 1:2
http://www.microbiomejournal.com/content/1/1/2
RESEARCH Open Access
Selecting age-related functional characteristics in
the human gut microbiome
Yemin Lan1, Andres Kriete1 and Gail L Rosen2*
Abstract

Background: Human gut microbial functions are often associated with various diseases and host physiologies.
Aging, a less explored factor, is also suspected to affect or be affected by microbiome alterations. By combining
functional feature selection with supervised classification, we aim to facilitate identification of age-related functional
characteristics in metagenomes from several human gut microbiome studies (MetaHIT, MicroAge, MicroObes,
Kurokawa et al.’s and Gill et al.’s dataset).

Results: We apply two feature selection methods, term frequency-inverse document frequency (TF-iDF) and
minimum-redundancy maximum-relevancy (mRMR), to identify functional signatures that differentiate
metagenomes by age. After features are reduced, we use a support vector machine (SVM) to predict host age of
new metagenomes. Functional features are from protein families (Pfams), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, KEGG ontologies and the Gene Ontology (GO) database. Initial investigations
demonstrate that ordination of the functional principal components shows great overlap between different age
groups. However, when feature selection is applied, mRMR tightens the ordination cluster for each age group, and
TF-iDF offers better linear separation. Both TF-iDF and mRMR were used in conjunction with a SVM classifier and
achieved areas under receiver operating characteristic curves (AUCs) 10 to 15% above chance to classify individuals
above/below mid-ages (about 38 to 43 years old) using Pfams. Better performance around mid-ages is also
observed when using other functional categories and age-balanced dataset. We also identified some age-related
Pfams that improved age discrimination at age 65 with another feature selection method called LEfSe, on an
age-balanced dataset. The selected functional characteristics identify a broad range of age-relevant metabolisms,
such as reduced vitamin B12 synthesis, reduced activity of reductases, increased DNA damage, occurrences of stress
responses and immune system compromise, and upregulated glycosyltransferases in the aging population.

Conclusions: Feature selection can yield biologically meaningful results when used in conjunction with
classification, and makes age classification of new human gut metagenomes feasible. While we demonstrate the
promise of this approach, the data-dependent prediction performance could be further improved. We hypothesize
that while the Qin et al. dataset is the most comprehensive to date, even deeper sampling is needed to better
characterize and predict the microbiomes’ functional content.
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Background
The microbial world is vast and diverse. Inside the
human body alone, microbes comprise 10 times the total
number of human cells and 100 times the total size of
human genome [1]. Most of these microbes participate
in metabolic activities that interact with the habitat they
are growing in with processes such as biodegradation,
nitrogen fixation, oxygenic photosynthesis, nutrient pro-
duction and activation of host immune systems [2]. As a
result, microbial structure and function are often asso-
ciated with a variety of environmental characteristics and
host physiologies, such as inflammatory bowel disease
(IBD) [3-6], obesity [7,8], nationality [9,10] and diet [11].
There is also interest in studying the association between
gut microbiome and human age, even though age is a
fuzzy variable compared with more precise quantifications
such as disease diagnosis or diet types, since people age at
different rates [12]. While the differences of microbiomes
between one- to three-year-old children and adults [10,13]
and adults and the elderly [14,15] have been studied, the
effect of aging on the microbiome has been recognized
as a difficult problem [4,10,16,17]. In this paper, we
demonstrate that age-related functional characteristics can
be identified for metagenomic samples by using feature
selection in conjunction with supervised classification.
In the past few years, the correlation between micro-

bial composition and their hosts’ physiology has arisen
as a major concern of comparative metagenomics [18].
Ley and Turnbaugh’s study [7] was one of the first to
establish the correlation between adiposity and gut micro-
bial ecology, using the relative abundances of two pre-
dominant bacterial phyla in human gut. Various dominant
microbial species groups in different gastrointestinal tract
regions were reported thereafter [19]. Kurokawa et al. [13]
and Biagi et al. [14] have separately shown that human
gut microbiomes were capable of discriminating hosts
with extreme age ranges. In addition, Qin et al. [3] dif-
ferentiated IBD patients and healthy people with the
abundances of their gut bacterial species. More recently,
diet was identified as a driving force that shaped gut
microbiomes across mammalian phylogeny and among
human beings [20].
Functional metagenomic analysis has added a new

method to comparing microbiomes. Significantly enriched
metabolisms were first reported in two American gut
metagenomes, using the KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathways and the COGs (Clusters
of Orthologous Groups of proteins) [21]. Kurokawa et al.
[13] studied assignment of additional human metagen-
omes combined with several environmental metagenomes,
and successfully identified metagenomes from children,
adults, infants and environments. Both viral genomes and
bacterial genomes showed that metabolic pathway profiles
could strongly discriminate different natural environments
[22]. And similar clustering patterns between the mam-
malian gut bacterial lineages and gene content further
showed that microbiome function correlated to host
diets [20]. More recently, Greenblum et al. [23] identified
both gene-level and enzyme-network-level differences
associated with obesity and IBD in the Qin et al. human
gut microbiome dataset.
Despite an increase in associations between human gut

microbial functions and host physiologies, little is known
about the age-related microbial activities involved in the
development and progression of the human microbiota
[16,21,24]. While more and more microbial species are
linked to particular characteristics [25], few studies show
prediction of novel metagenomic samples using the gene
content [22,26], even though there are a variety of ways to
identify open reading frames and genes [27,28]. Since the
consortia of microbiota is under conjoint influences of
various forces, it is difficult to extract the effect caused by
aging or to predict the host age based on microbial gene
content [29,30].

Methods
The age classification of unknown metagenomic samples
was completed by combining feature selection methods
(term frequency-inverse document frequency (TF-iDF)
and minimum-redundancy maximum-relevancy (mRMR),
described in detail below) to identify functional signatures
that best differentiate the samples and a support vector
machine (SVM) as the classifier. The functional features
were assigned to protein sequences using different data-
bases: the Pfam database (a large collection of protein
families), the KEGG database (including KEGG pathways
and KEGG ontologies), and the Gene Ontology database
(a controlled vocabulary of terms describing gene product
characteristics). Two different datasets (the Qin et al.
dataset and an age-balanced dataset) were used here to
examine the classification. The implementation of the
following procedures was developed in MATLAB [31]
and R [32].

The Qin et al. dataset
We acquired the human gut microbiome data estab-
lished by Qin et al. [3], which is one of the most com-
prehensive human microbiome datasets to date. The
dataset contains metagenomic samples from 124 indivi-
duals in Spain and Denmark with various physical condi-
tions. Non-redundant protein sequences for each gut
metagenomic sample were acquired from the dataset as
well as the annotations for KEGG pathway and KEGG
Ontology. Of the 124 individuals, there are 25 IBD
patients and 42 obese individuals (where obesity is
defined as a Body Mass Index greater than 30, and
three of the obese individuals also have IBD). A major-
ity of the subjects are between 40 and 60 years old: six
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individuals are younger than 30, eight individuals are
in their 30s, 39 individuals are in their 40s, 43 indivi-
duals are in their 50s and the rest, 28 individuals, are
in their 60s.

Age-balanced dataset
In the Qin et al. dataset, over 85% of the samples are from
individuals over 40. To examine whether our observation
was consistent with population that has a more uniform
distribution across age, we constructed an ‘age-balanced’
dataset by combining 52 human gut microbiome samples
from multiple studies, including seven Japanese samples
[13], two American samples [21], three French samples
and six Italian samples [4], as well as 20 samples from
Spain and 14 samples from Denmark in the Qin et al.
dataset. The ages of these samples range from 22 to
87 years old, with six people in their 20s, ten people in
their 30s, 40s, 50s and 60s respectively, and three people
in their 70s and 80s separately. Additional file 1: Table S1
shows the detailed breakdown of the demographics of the
age-balanced dataset.

Functional annotation
The assignment of Pfam [33] to protein sequences was
implemented in the HMMER 3.0 package [34]. A se-
quence may have no or multiple matches in the Pfam
database, above the default Pfam gathering threshold
(GA) cutoff value. The number of non-redundant pro-
tein sequences assigned to each Pfam was recorded for
each metagenomic sample. It should be noted that the
number of matching sequences to a Pfam does not imply
the abundance or expression level of the corresponding
genes; instead, for non-redundant proteins in a metagen-
ome, it implies the diversity of different proteins/genes
within one protein family.
For the age-balanced dataset, the non-redundant pro-

tein sequences in each metagenome were also aligned
using the Basic Local Alignment Search Tool (BLAST)
[35] against the Universal Protein Resource (UniProt)
databases [36], and the Gene Ontology (GO) [37] terms
assigned to each protein sequence were then transferred
from its best match (e-value > 10e-5). This is similar to
how the MEtaGenome ANalyzer (MEGAN) matches
DNA sequences to KEGG ontologies and thus KEGG
pathways [38]. The abundances of KEGG pathways and
KEGG Ontology identifiers in this paper were acquired
directly from the Qin et al. dataset.

Feature selection
The alignment against functional databases gave rise to
thousands of unique functional features, hence, it is neces-
sary to extract only features that best describe the differ-
ences between metagenomes (in our case the differences
occurred along age). We used two feature selection
methods to extract the most representative functional
signatures for age discrimination, and examined their
ability to characterize new samples using a support vector
machine (SVM). We also benchmarked a recently pro-
posed feature selection method for age detection.
TF-iDF (term frequency-inverse document frequency)

is a probability-based weighting method often used in
determining the importance of features in information
retrieval and text mining [39]. It ranks the influence of
features by measuring its occurrence in individual samples
as well as in the entire dataset, and tends to select samples
while rarely occur in others. The general equation is:

TF � iDFi;j ¼ ni;jX
k
nk;j

log
Dj j

j : ti∈dj
� ��� �� ð1Þ

Where ni,j is the occurrence of the i-th feature, ti, in
sample dj, j : ti∈dj

� ��� ��is the total number of samples that
contain feature ti, and |D| is the total number of samples
in the dataset.
mRMR (minimum-redundancy maximum-relevancy)

is a mutual information-based feature selection method
that selects a subset of features that correlates strongest
to the classification categories with the least redundancy
[40]. The criteria to be met for maximum relevance and
minimum redundancy respectively are:

maxD S; cð Þ;D ¼ 1
Sj j
X

xi∈S
I xi; cð Þ ð2Þ

minR Sð Þ;R ¼ 1

Sj j2
X

xixj∈S
I xi; xj
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Where I (x;y) is the mutual information between set x
and y, S is the selected subset of features, xi and xj are dif-
ferent features in the subset and c is the sample state in
question. Implementation of this method was downloaded
from the Peng Lab website (http://penglab.janelia.org/proj/
mRMR/), with the default discretization threshold 1.
LEfSe (linear discriminant analysis effect size) is a

recently published algorithm for high-dimensional bio-
marker discovery that identifies genomic features (genes,
pathways, taxa) characterizing the differences between
two or more biological conditions [41]. We benchmarked
this feature selection method to see how well it predicted
the age groups for new metagenomes using the same
training and testing framework.
Both the TF-iDF and mRMR methods rank features in

order of a probabilistic score, and select the top N fea-
tures, where N is free variable determined by a predefined
need for a certain number of features [42]. To examine
the most probabilistically relevant features, we arbitrarily
chose the top 10 differentiable features selected by TF-iDF
and mRMR for the following analysis and show their
discriminative power along age.

http://penglab.janelia.org/proj/mRMR/
http://penglab.janelia.org/proj/mRMR/
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Support vector machine (SVM)
We used a linear-kernel support vector machine to classify
newly observed metagenomic samples to a particular
group of samples. Since the abundances of functional
signatures in metagenomic sample are often sparse (that
is, certain functions seem to be sample-specific rather
than universal) and therefore cannot be modeled by a par-
ticular distribution [40], SVM is robust and appropriate as
a non-probabilistic binary linear classifier for the data.
To examine the classification for novel metagenomic

samples, a subset was randomly drawn from the dataset,
and a leave-one-out cross-validation was conducted to
predict age. In each leave-one-out iteration, signature
features were selected based on the abundances of
functional features of the training, and supervised clas-
sification using SVM was performed on the left-out sam-
ple. The prediction accuracy and the area under receiver
operating characteristic (ROC) curve (AUC) were mea-
sured. This process is repeated multiple times on different
sub-datasets to show the mean and confidence interval of
these measurements.

Grubb’s test and support vector machine
One characteristic of TF-iDF is that it tends to pick fea-
tures with less frequent occurrences. To determine if
solely choosing low-occurrence features yields good clas-
sification performance, Grubb's test for detecting out-
liers is used for feature selection on the Qin et al.
dataset. Similar to TF-iDF, Grubb’s test does not take
into account the class information of samples. Since the
features chosen by Grubb’s test do not improve classifier
performance (as we show in the Results section), we
therefore validate that TF-iDF is successfully distinguish-
ing features that are significantly identifying particular
classes of metagenomes, as opposed to solely choosing
outliers. Similar to previous experiments, the functional
signatures selected were Pfams that best classified the
outlying metagenomes using SVM in a leave-one-out
fashion. For each Pfam set in training that marked a
sample as an outlier, SVM was performed to test the
metagenome based on these Pfams, and the Pfams were
assigned weight 1 if the classification was accurate. The
total weight was computed and Pfams with the top 10
highest weights were then used for testing the left-out
sample, and both accuracy and AUC were recorded.

Transformation-based principal component analysis
(tbPCA)
Transformation-based PCA, described by Legendre and
Gallagher, was performed to show the ordination of the
samples in different age groups [43]. To construct the
plots in Figure 1, the abundances of all and feature-
selected Pfams were used, and the samples were colored
by the corresponding age groups.
Results
Functional annotation
The proportion of the non-redundant sequences being
assigned to different functional reservoirs as well as the
phylogenetic assignment estimated by Qin et al. in [3] is
shown in Table 1. We can see that compared to phylo-
genetic assignment, fewer sequences were annotated
through the functional databases, but six times more
feature categories were assigned, demonstrating that the
resolving power of phylotypes is limited. One exception
was the KEGG pathway, which was only able to annotate
18.7% of the sequences and yield 238 different features
(that is, pathways). Loss of information due to the num-
ber of sequences that cannot be functionally annotated
and large number of various functional descriptions have
made it very difficult to identify the functions that are
driving the differentiation between samples.
Fewer sequences can be annotated with functional fea-

tures compared to phylogenetic taxon, but with more
categories

Developing cutoffs for age classification
Both TF-iDF and mRMR have been recently shown to
boost performance of taxonomic read classification [44].
We used linear-kernel SVM for classification, based on
the selected Pfams picked by these two methods, in order
to examine their ability of predicting the age (young vs.
old) for new metagenomic samples. Unlike some physiolo-
gies that can be easily identified as a finite set of states,
such as IBD diagnosis, BMI or diet-type, age is sampled
yearly across a lifespan and the definition of young vs. old
is ambiguous. We develop a series of cutoffs to separate
the metagenomes as ‘young’ (defined as below or equal to
the arbitrary cutoff) or ‘old’ (defined as above the arbitrary
cutoff), sampled at the finest interval for the given dataset
(with an interval of one year for the mid-ages that show to
be more differentiable than young adults or seniors) to
show how the prediction performance gradually changes
in the process of host aging.

Ordination of samples in different age groups
By applying tbPCA from the Methods section, we gener-
ated the ordination of samples of different age groups in
the age-balanced dataset (Figure 1). Each color marks
one age decade, except for the red which corresponds to
samples 70 to 90 years old. Interestingly, without feature
selection (Figure 1a-c), the oldest samples (six samples
marked in red) are more tightly clustered compared to
other age groups. This is most likely because these sam-
ples are all from Italy while the other age groups are
mixtures of multiple countries, showing nationality as a
source of variation between gut metagenomes [9].
However, aging trends can still be observed. With

our ‘feature selection + SVM classifier’ framework, we



Figure 1 Transformation-based PCA of age groups using Pfams. Transformation-based PCA of age groups using the abundance of Pfams in
the age-balanced dataset. Each color marks one age decade, except for red which corresponds to samples 70 to 90 years old. The first row used
all Pfams present in each samples, the second and third rows used only top selected Pfams at age cutoff 40 by TF-iDF and mRMR separately. The
columns are PC1 vs. PC2, PC1 vs. PC3 and PC2 vs. PC3 respectively. There is great overlap between most age groups, which explains why
classification may be difficult. Besides the differences induced by source country of the metagenomes, mRMR reduces the variation within groups
while TF-iDF facilitates linear classification. mRMR, minimum-redundancy maximum-relevancy; PCA, principal component analysis; Pfam, protein
family; TF-iDF, term frequency-inverse document frequency.

Lan et al. Microbiome 2013, 1:2 Page 5 of 11
http://www.microbiomejournal.com/content/1/1/2
optimized feature selection to discriminate between
two age groups. For this example, we ran the selection
to optimize under-40 and over-40 discrimination.
Table 1 Sequences being annotated by various functional res

Samples % of sequences annotated

Qin et al. dataset 50.2%

18.7%

47.0%

77.1%

Age-balanced dataset 52.0%

47.5%
Figure 1d-f demonstrate the effect of TF-iDF-selected
features on the ordination. Compared with using all
Pfams, using TF-iDF-selected functional signatures
ervoirs

Functional feature type Number of unique features

Pfam 6343

KEGG pathway 238

KEGG Ontology 6015

Phylotype ~1150 species

Pfam 5809

Gene Ontology 7079
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helps to widen the differences between age groups in
proper order, and to make younger and older groups more
linearly separable in the hyperspace regardless of the
variation in each age decade, especially samples in their
20s (three from Spain, two from Japan and one from
American) compared with samples in their 60s (three
from Spain, three from France and four from Denmark).
In the TF-iDF-selected ordination, a gradual shift from the
right to left occurs as the host age increases. Similarly,
Biagi et al. have shown how centenarians are differentiable
from younger adults (25 to 40 years old) while the elderly
(63 to 76 years old) overlapped with both young and
centenarians, when using 16 rRNA data in their redun-
dancy analysis [14]. This is similar to what we observed
here when samples were better separated around mid-
ages (Figure 1d-f). On the contrary, we can also see that
the mRMR-selected signatures (Figure 1g-i) have made
the age groups cluster more tightly and it is almost impos-
sible to draw a straight line to distinguish between the
young and old samples.

Age classification using Qin et al. dataset
In our framework, TF-iDF and mRMR are used in com-
bination with SVM, and leave-one-out cross-validation is
performed on the Qin et al. dataset in 20 runs with 110
random samples in each subset.
As is shown in Figure 2a, the classification perform-

ance gradually increases from age 30 to 43 and decreases
after 43. This is true for both TF-iDF and mRMR, while
a) 

b) 

Figure 2 Age detection on Qin et al. dataset using Pfam, KEGG pathw
pathway and (c) KEGG Ontology on Qin et al. dataset show that classificati
be a more accurate and consistent feature selection method for age detec
Genomes; mRMR, minimum-redundancy maximum-relevancy; Pfam, protein
the former outperforms the latter with higher average
AUCs and smaller error bars (which shows the 95% con-
fidence interval based on 20 independent runs). The
highest AUCs occur within the range of 38 to 43 years
old, where TF-iDF yields average AUCs of around 65%
(the highest AUC 67.04 ± 2.35% occurs at age 43) and
mRMR yields average AUCs >60% (with 67.78 ± 2.17 at
age 43), indicating the ability of both feature selection
methods to predict younger populations from older
populations.
We also examined the age prediction using the KEGG

Pathway and KEGG Ontology abundances (Figure 2b
and c). For the KEGG pathways, although mRMR hovers
around the 50% AUC chance line with wider error bars
than TF-iDF, and the prediction gradually increases be-
tween age 38 to 42 with average AUCs generally over
55% (the highest AUC 62.22 ± 2.07 occurs at age 42),
and decreasing thereafter. For the KEGG ontologies, we
see that mRMR only has overall prediction performances
over 50% AUC (the lower end of the error bar) around
age 34 to 43, while TF-iDF yields AUCs around 60%
from age 25 to 45 and decreasing thereafter with the
error bars more narrow around the mid-ages. For the
mid-ages, there is approximately 60% AUC even when
taking into account the confidence interval, indicating
that the occurrences of the few selected KEGG pathways
have similarly good age prediction potential as the few
selected Pfams described above. Both Pfam and KEGG
signatures show that the best differentiation performance
c) 

ay and KEGG Ontology. Age detection using (a) Pfam (b) KEGG
on performance increases towards mid-age cutoffs. TF-iDF appears to
tion compared to mRMR. KEGG, Kyoto Encyclopedia of Genes and
family; TF-iDF, term frequency-inverse document frequency.
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takes place at around the mid-ages of 38 to 43, suggesting
that these alternations of human gut microbial functions
may begin at an early age.

Verification for TF-iDF findings using Qin et al. dataset
In most cases, we find that TF-iDF outperforms mRMR
in age prediction. Different from mRMR, which looks
for the least redundant subset of functional signatures to
make the age prediction, TF-iDF is a feature selection
method that does not take group information into con-
sideration but chooses signatures that best characterize
each sample against the rest. Concerned by this prefer-
ence towards ‘rare’ features, we decided to use a method
that would only choose outliers, Grubb’s test, to deter-
mine if solely choosing rare features would yield per-
formance as good as TF-iDF. We assessed the AUCs
with TF-iDF using Pfams at age 43 (where TF-iDF gener-
ates AUCs of 67.04 ± 2.35%), and the ‘Grubb’s test +
SVM classification’ experiment generates AUCs of 50.48
± 2.07% in 20 runs. Thus, the feature selection pattern
may not be the only reason why TF-iDF works better. In
fact, while TF-iDF aims to select signatures that have
high frequency of occurrence in few metagenomes but
low frequency of existence across all the metagenomes,
there is a trade-off between such criterion and the
random-subset experiment we designed, since signatures
with too low of a frequency may not appear in many
subsets, and thus cannot be consistently picked. Thus,
TF-iDF-selected functional signatures in our age classifi-
cation framework are those that appear in only a few indi-
viduals among the entire population at large frequencies.
We hypothesize that the differences observed over age
may appear to be induced by ‘accessory genes’ (genes that
do not occur in all metagenomes but do occur in a subset
of them [45]).

Age classification using an age-balanced dataset
Due to the bias of Qin et al. dataset towards the 40- to
60-year-old age range, we created a more uniformly dis-
tributed dataset along age (see Methods) to test our
a) b

Figure 3 Age detection on the age-balanced dataset using Pfam and
(a) Pfam and (b) Gene Ontology shows that classification performance increa
feature selection framework. We conducted similar leave-
one-out cross-validation in 20 runs with 40 random
samples in each subset. In Figure 3a, we show the age
detection using Pfam signatures selected from the age-
balanced dataset, where the AUCs again get slightly
higher measurements round the mid-ages of 36 to 43 years
old (>60% on average) for TF-iDF, yet the error bars are
wide than when using the other dataset. This is most likely
because we are using datasets over multiple geographical
regions, and that the ‘accessory Pfams’ selected by TF-iDF
may not be as consistent in a heterogeneous population.
Still, mRMR performs generally 10% lower in AUCs than
TF-iDF until 55-year-old divisions. We also tried Gene
Ontology (GO) terms in our feature selection process. In
Figure 3b, again both methods show a gradual increase
from younger cutoffs to the mid-age cutoffs, with consid-
erably good performance around 45 years old (60.20 ±
3.34% for TF-iDF and 64.74 ± 4.32 for mRMR).
To verify that ‘feature selection + SVM classifier’ improved

performance for age group separation, we compared
TF-iDF and mRMR against a recently published feature
identification algorithm used for metagenomes, linear
discriminant analysis effect size (LEfSe). Figure 4 shows
the results for age detection using LEfSe-selected Pfams
combined with SVM classifier on the age-balanced
dataset, in which leave-one-out cross-validation was
performed with the same setting we used for TF-iDF
and mRMR. We can see that the prediction perform-
ance reveals similar patterns to that of TF-iDF and
mRMR around the mid-ages showing approximately 5%
higher AUCs than younger cutoffs. However, LEfSe
yields approximately 65% AUC for the 65-year-old case.

Discussion
Supervised classification for age
Through a simple ordination of protein families present
in each metagenome’s unique gene set, we demonstrate
that metagenomes across different age groups are largely
variable and greatly overlapped, since individuals age at
different rates. Nonetheless, through an optimization
) 

Gene Ontology. Age detection on the age-balanced dataset using
ses from younger age cutoffs towards mid-ages. Pfam, protein family.



Figure 4 Age detection using Pfam selected by LEfSe. Age
detection using Pfam selected by LEfSe on the age-balanced dataset
shows that LEfSe identified features that predict age best at age 65,
while marginally discriminating those above and below the mid-age
range. Pfam, protein family; LEfSe, linear discriminant analysis effect
size.
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example of feature selection for classifying individuals
under and over 40 years old, we show that mRMR
tightly clusters the samples while TF-iDF enables better
linear separation of the age groups. This is likely why
TF-iDF performs better with the linear-kernel SVM clas-
sification we implemented.
By training and testing the SVM classifier on Pfams

selected via TF-iDF and mRMR, we show that we can
better classify the age (young vs. old) of novel metage-
nomic samples as the age cutoffs move gradually from
younger to mid-ages (around 38 to 43) with AUCs 10 to
15% higher than chance and with stable confidence
intervals, on both Qin et al. dataset and age-balanced
dataset. Similar improvement of AUCs around mid-ages
was observed when running our method on KEGG path-
ways, KEGG ontologies and Gene Ontologies. Specific-
ally, classification was based on only a few features
selected by TF-iDF and mRMR, indicating that even
abundances of very limited number of identified func-
tional signatures are representative of host physiology
variations. We observe that TF-iDF works better than
mRMR for most cases, most likely due to the fact that
TF-iDF selects features that best classify the metagen-
omes with a linear classifier while mRMR identifies a
subset of signatures that tightly clusters the samples but
makes it harder to classify. Experimenting on random
subsets and leave-one-out cross-validation also prevent
TF-iDF from simply choosing the most rare features by
chance, as revealed by comparing to the Grubb’s test.
We also conduct an experiment using the same frame-

work on the age-balanced dataset using a recently pub-
lished method LEfSe for feature selection, which identified
some age-related Pfams that yielded better prediction at
age 65.
We wish to remark on the variation of the classifica-

tion performance. We note that 15% of the Pfams
annotated were unique to only one metagenome. Either
these are truly ‘accessory’ Pfams or the microbiome gene
content is under-sampled even though the Qin et al.
dataset is the most comprehensive gut microbiome data-
set to date. While we are able to see trends in the age
differentiation using functional signatures, we are still
far from understanding which protein families or path-
ways play a major role in aging. Also, the problem is
compounded by the fact that a functional feature can be
dependent on multiple host physiologies. In fact, we see
a large area of future research to be focused on decoup-
ling multiple factors that affect metagenomes, in order
to gain insight into a single physiology.

Biological interpretation
By comparing results from Table 1 and Figure 2, we no-
tice that the overall prediction performance positively
correlates with the number of sequences that can be
annotated. Therefore, the characterization of new meta-
genomes based on gene content should be reliant on
more sequences being functionally interpretable.
While the age-balanced dataset turns out to be more

complicated for mRMR, it shows the effectiveness of fea-
ture selection on age-differentiable signatures similar to
that of TF-iDF on Qin et al. dataset. One Pfam that is
consistently selected by mRMR when using the Qin
et al. dataset (Additional file 1: Table S2) is CbiN
(PF02553), which is involved in the biosynthesis of vita-
min B12. Analysis on Qin et al. dataset shows that this
Pfam has the largest difference in presence among all
the Pfams we are studying, existing in 55% of the young
(using age cutoff of 43) and only 11% of the old, which
is consistent with the observation that vitamin B12 defi-
ciency is often reported in the elderly [46]. It is also not-
able that some of the top Pfams selected by mRMR
yielding good prediction involve domains of unknown
functions, indicating that finer interpretation of sequence
functions is required to gain more insights into what roles
they may serve in the process of aging.
As mentioned in the above discussion, TF-iDF tends

to pick the functional signatures that are ‘accessory’. Yet
the term ‘accessory’ here has a different meaning from
features that only appear in one or two individuals, but
features that may be present in a small group of indivi-
duals as opposed to the entire population. We also no-
tice that our age detection method does not work as
well on the age-balanced dataset as on the Qin et al.
dataset, which is probably due to the inherent complex-
ity within the dataset: the age-balanced dataset drew
samples from six different countries, thus contained
more variation within each age group. Yet still, we find
that TF-iDF assigns highest credits to some similar
Pfams when experimenting on both datasets, indicating
a consistent differentiating power of these Pfams in
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characterizing metagenome age over different datasets.
Additional file 1: Tables S2 and Table S3 list the selected
Pfams for Qin et al. and the age-balanced dataset at age
43, which presents better prediction (in regards of average
AUC and confidence interval) for both datasets. One top
Pfam selected by TF-iDF in both datasets, for example, is
the hemolysin-type calcium-binding repeat (PF00353),
which plays a role in the lytic activity of exotoxins such as
hemolysin, cyclolysin and leukotoxin [47]. In Qin et al.
dataset, it is recognized more in the older samples (47%)
than in the younger samples (30%), implying a higher
possibility of microbial toxin secretion in the old.
Additional file 1: Table S4 shows the Pfams selected by

LEfSe at age cutoff 65, which outperforms other age cut-
offs for this feature selection method. The most signifi-
cant Pfams are involved in DNA damage (PF00533) [48],
bacterial DNA replication (PF00521) [49] and ribosomal
proteins (PF00542). LEfSe also identified glycosyl trans-
ferase family 2 (PF00521) which transfers sugar from UDP-
glucose, UDP-N-acetylgalactosamine, GDP-mannose or
CDP-abequose to a range of substrates including cellulose,
dolichol phosphate and teichoic acids, consistent with the
finding that glycosyltransferase (COG0438) correlates with
age [4].
KEGG-based classification indicates multiple metabolic

and biosynthesis pathways altered with age (Additional file 1:
Table S5). Arachidonic acid metabolism is an age-
related human pathway involved in lipid peroxidation
[50]. We also discovered reduced biosynthesis function
related to cell adhesion and cell surface carbohydrates,
such as mucin-type O-glycans, which are known to be
decreased in some prostate and colorectal cancer types
[51]. We also identified additional KEGG pathways that
are associated with altered proteins in various cancer
types, such as prostate and bladder cancer. Further-
more, while the data suggests that bacterial degradation
systems related to the ubiquitin-mediated proteolysis
pathway is impaired, which is ATP-dependent, autophagy
is gained. In summary, these changes reflecting a switch
from anabolism to catabolism contribute to age-related
mechanisms described in prokaryotes [52], which may be
conserved in human pathways.
Additionally, we found that GO terms classify samples

better for age cutoffs over 45, for both TF-iDF and
mRMR. Additional file 1: Table S6 shows the list of GO
terms selected at this age cutoff. While mRMR does not
select functional signatures as consistently as TF-iDF,
they both highlight some of the age-relevant GO terms.
Downregulated activity of some reductases in the old,
for example, is identified by TF-iDF, including glycine
reductase (GO0030699) and dimethyl sulfoxide reduc-
tase (GO0009389). Stress responses and immune system
compromise are also observed in the old, such as cel-
lular response to sulfate starvation (GO0009970),
blood vessel remodeling (GO0001974), phagocytosis
(GO0006909) and evasion by virus of host immune
response (GO0030683). The activity of dextransucrase
(GO0047849), an enzyme belongs to the family of gly-
cosyltransferases, decreased in the old, which is con-
sistent with what LEfSe identified.

Conclusions
Age has been studied as a potential characteristic influ-
encing the constitution and activity of gut microbiomes.
Here we aim to identify various functional signatures
that differentiate metagenomes over a broad range of
age, in extension of previous studies on age-related
phylogenetic differences in metagenomes and altered
functional compositions at extreme ages. We show that
by optimizing feature selection for supervised classifica-
tion, age-relevant functional signatures can be discov-
ered, including DNA damage, vitamin synthesis and
various metabolic functions. While ‘age classification’
based on the metagenome is far from being realized due
to undersampling in the population and known func-
tional annotations, our approach indicates that metage-
nomic samples can be differentiated by age and
identifies potential healthy or unhealthy age-relevant
metabolic attributes in the human microbiome.

Additional file

Additional file 1: Table S1. Details of the demographics of age-
balanced dataset (sorted by age). Table S2. Top selected Pfams on Qin
et al. dataset (age cutoff is 43). **Selection rate is the number of times
one Pfam is picked over the total number of permutations trained on
different random subsets. *Top Pfams that are selected by both the Qin
et al. and the age-balanced dataset. Table S3. Top selected Pfams on an
age-balanced dataset (age cutoff is 43). *Top Pfams that are selected by
both the Qin et al. and the age-balanced dataset. Table S4. Top selected
Pfams by LEfSe on an age-balanced dataset (age cutoff is 65). Table S5.
Top selected KEGG pathways on Qin et al. dataset (age cutoff is 42).
Table S6. Top selected GO terms on an age-balanced dataset (age cutoff
is 45).
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