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Abstract

Background: Viruses are important drivers of ecosystem functions, yet little is known about the vast majority of
viruses. Viral shotgun metagenomics enables the investigation of broad ecological questions in phage communities.
One ecological characteristic is species richness, which is the number of different species in a community. Viruses
do not have a phylogenetic marker analogous to the bacterial 16S rRNA gene with which to estimate richness, and
so contig spectra are employed to measure the number of virus taxa in a given community. A contig spectrum is
generated from a viral shotgun metagenome by assembling the random sequence reads into groups of sequences
that overlap (contigs) and counting the number of sequences that group within each contig. Current tools
available to analyze contig spectra to estimate phage richness are limited by relying on rank-abundance data.

Results: We present statistical estimates of virus richness from contig spectra. The program CatchAll (http://www.
northeastern.edu/catchall/) was used to analyze contig spectra in terms of frequency count data rather than rank-
abundance, thus enabling formal statistical analyses. Also, the influence of potentially spurious low-frequency
counts on richness estimates was minimized by two methods, empirical and statistical. The results show greater
estimates of viral richness than previous calculations in nearly all environments analyzed, including swine feces and
reclaimed fresh water.

Conclusions: CatchAll yielded consistent estimates of richness across viral metagenomes from the same or similar
environments. Additionally, analysis of pooled viral metagenomes from different environments via mixed contig
spectra resulted in greater richness estimates than those of the component metagenomes. Using CatchAll to
analyze contig spectra will improve estimations of richness from viral shotgun metagenomes, particularly from large
datasets, by providing statistical measures of richness.
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Background
Viruses are the most abundant biological entities on
earth, with an estimated 1031 virus-like particles in the
biosphere [1]. Their ubiquity coupled with their func-
tions of predation and gene transfer make them import-
ant drivers of ecosystem dynamics, as illustrated during
cholera outbreaks. When a cholera outbreak strikes, the
abundance of the causative bacterium,Vibrio cholerae, is
high. Bacteriophages (phages) that prey on the V. cho-
lerae then proliferate, and the outbreak subsides as the
abundance of V. cholerae declines due to phage preda-
tion [2,3].
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These dynamics are constantly played out in the envir-
onment with non-pathogenic bacteria and their phages.
However, even though plaque and culture assays remain
the gold standard for studying the phages of a cultivable
bacterium, the vast majority of environmental bacteria
have yet to be cultured [4]. Therefore, viral shotgun
metagenomics, which is the study of the collective gen-
ome of an assemblage of viruses, is the principal way to
study the vast majority of phages. Next-generation se-
quencing technologies are essential to study phage meta-
genomes and phage ecology.
A first step toward understanding the complex interac-

tions that occur in an environment is estimating the
richness of species in that environment. Richness is the
total number of distinct members in a community and,
with the abundance of each member, contributes to the
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total diversity. The distinct members are often measured
in terms of species, but because viruses lack a species
definition we will refer to distinct groups of viruses as
taxa. Viruses do not have a universal phylogenetic mar-
ker analogous to the bacterial 16S rRNA gene with
which to measure richness, and so contig spectra serve
as a proxy to estimate the number of phage taxa in a
given community. A contig spectrum is generated from
a viral metagenome, or virome, by assembling the random
sequence reads into contigs (contiguous groups of
sequences that align) and counting the number of
sequences that fall into each contig [5,6]. The rationale is
that in any given sampling of an environment, abundant
viruses will yield many sequences in one contig, whereas
rare viruses will be captured as single sequences. Counting
the sequences in terms of their assembly proficiency,
therefore, reflects the richness of the community.
The program PHACCS (Phage Communities from

Contig Spectrum) was developed to estimate the rich-
ness and evenness of phage taxa based on their contig
spectra [1]. However, the richness computation relies on
rank-abundance curves instead of frequency count data.
There is a subtle but crucial distinction between the
rank abundance curve and the frequency count curve.
Both begin with a sample (of organisms, sequences or
some kind of signature) that is binned into groups (such
as bacterial species or phage taxa), and the sizes of the
groups are recorded. For the rank-abundance curve, the
observed species are then sorted from most to least
numerous, and the resulting data are graphed. The
most-sampled species is plotted leftmost, the next most-
sampled species next, and so on, leading to a large num-
ber of singletons trailing off to the right (Figure 1A).
This is a qualitative, not a quantitative, representation of
species abundance. For example, every rank-abundance
curve will be monotonically decreasing (from left to
right), even though the actual occurrences of the species
in the sample are random, and the most common
Figure 1 Rank abundance versus frequency count data plots. The con
was graphed by rank abundance (A) or frequency count (B) methods to ill
species in the sample may not be the most common in
the population.
In the frequency-count approach, by contrast, a fixed

x-axis is established and the number of species observed
x times is plotted as the y-value for each x (Figure 1B).
This apparently simple distinction has major conse-
quences. In the rank-abundance curve, both the x and
the y-axes are indeterminate, because the ordering of
the species in terms of their true abundance in the
population can be very different from the observed
ordering. A fixed x-axis yields a dataset that is amenable
to formal statistical analysis, which is important because
the value of y at x = 0 (the number of unobserved spe-
cies) is the target of estimation.
Here we apply the analysis of frequency count data to

previously published phage metagenomes. We present
statistical estimates of richness from phage metagenomic
data using the program CatchAll version 3.0 (http://www.
northeastern.edu/catchall/index.html) [8]. Additionally, we
explore the effect of statistically and empirically dis-
counted low-frequency datapoints on the richness esti-
mates. Even the most conservative richness estimates
show more phage taxa than previous calculations, in most
environments analyzed.

Methods
Generating contig spectra
Both mixed and non-mixed contig spectra of seven non-
medicated swine fecal viromes [7] and four reclaimed
fresh water viromes [9] were calculated using Circon-
spect (http://sourceforge.net/projects/circonspect/) [6].
Artificial replicates were removed from the viromes
prior to the analysis [10]. Other viromes (salt water
[6,11,12], human infant fecal [11], and human adult fecal
[12]) were analyzed based on their published contig
spectra. All contig spectra used in this study are
reported (Additional file 1). Circonspect generates contig
spectra based on the assembly of the user’s viral
tig spectrum of a swine phage metagenome (RL1.NonmedDay0, [7])
ustrate the difference in representation of the same data.
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metagenome(s). The default assembler (Minimo; http://
sourceforge.net/apps/mediawiki/amos/index.php?title=-
Minimo) was employed [13,14]. Settings that can be
adjusted by the user include the maximum sequence
length at which to trim the input sequences (trim), the
shortest sequence length to allow in the assembly (dis-
card), the number of sequences to sample (sample size),
and the depth of coverage to target. The input settings
were optimized to maximize the assembled data used in
calculating the contig spectra and to minimize the error:
trim length, 600 (that is, greater than the average read
length of the sequences in the sample); discard length,
100; sample size, 10,000 sequences per metagenome;
coverage, 2x (that is, enough times to query each read
twice). Settings not listed were not changed from default.
These settings are comparable to what have been used
previously [15] and fit within the current computation
limits of Circonspect.

Estimating richness from contig spectra
All contig spectra were then analyzed in CatchAll and
PHACCS [1], the latter of which was implemented via
CAMERA’s alpha diversity pipeline (http://camera.calit2.
net/) [16]. Data were loaded in comma-delimited files
into CatchAll version 3.0 [8], which estimates the rich-
ness using parametric and nonparametric models.
CatchAll postulates a flexible family of stochastic abun-
dance models, and fits or estimates these by maximum
likelihood (via sophisticated numerical search algo-
rithms; see [8,17] for a discussion of the different models
calculated by CatchAll). This procedure is known to be
optimal when the postulated abundance model is indeed
the true model. Unfortunately, it is not possible to know
what the true model is, although the issue can be
addressed via modern goodness-of-fit analysis as per-
formed by CatchAll. This uncertainty is addressed by
the flexibility of the models used by CatchAll, leading
the statistical analyses to be moderately robust. To ad-
dress further departures from the postulated parametric
models, or certain other violations of assumptions,
CatchAll also implements nonparametric estimation
methods. These attempts to make minimal assumptions
about the underlying population structure broaden the
model base, but in turn exact a price in terms of statis-
tical efficiency, that is, the variance of the final estimate
per unit of sample size. (These issues have been well
explored in the theoretical statistics literature.) In short,
CatchAll fits a suite of flexible parametric models, along
with a suite of nonparametric analyses, compares these
and returns the best results according to statistical and
heuristic criteria. Additionally, CatchAll performs statis-
tical discounting of low-frequency observations and op-
tionally provides the discounted richness estimate, as
reported previously [8,18].
Empirical discounting of contig spectra
MG-RAST (http://metagenomics.anl.gov/) [19] was used
to assign the singleton sequence reads of three swine vir-
omes to a taxonomic origin (bacteria, viral, eukaryote,
archaeon, unassigned or no hits). Previous results showed
that these viromes contained almost entirely phage DNA
[7]. Because of the inability to annotate the vast majority
of phage genes, the real phage sequences might have no
hits or would be assigned to viruses, while sequences in
the other categories would be spurious. Assigning the sin-
gletons and tallying the number of spurious assignments
lacks precision because even specialized phages are known
to carry bacterial genes [20], but it is nonetheless a reason-
able point of reference to help gauge the discounted rich-
ness estimates. Under these assumptions, the ratio of real
to spurious reads was calculated, ranging from 1:1 to 1:2.
The numbers of singletons were, therefore, halved within
each contig spectrum to manually dispose of the sup-
posedly spurious reads, and the resulting spectra were
analyzed in CatchAll as above.

Results and discussion
Richness estimates of published phage metagenomes
We applied current statistical procedures [8,17,18]
to calculate richness from individual viral metagen-
omes. The results show high estimates of viral richness
under the best parametric model in CatchAll (Table 1;
Chao-type nonparametric estimates, such as ACE (not
shown here) are roughly comparable to the best para-
metric results; note that the PHACCS estimates do not
provide standard errors). The CatchAll richness esti-
mates ranged from one to three orders of magnitude
higher than the PHACCS estimates, suggesting that
previous reports have underestimated viral richness
in all environments analyzed (Table 1). Additionally,
CatchAll richness estimates tended to be more consist-
ent across viral metagenomes of the same or similar
environments. The salt water viromes appear to deviate
from this trend, but the inputs for the metagenomes
were different: British Columbia and Gulf of Mexico
viromes actually represent numerous samples over
time, whereas the Sargasso Sea virome originated from
a single sample.
In some cases the sample is so small that it becomes

impossible to estimate richness. For example, the con-
tig spectrum of some phage metagenomes, such as the
Arctic Ocean salt water virome [6], lacked sufficient
data for the richness to be calculated by CatchAll
(Table 1). As the cost of sequencing continues to de-
cline, large virome datasets amenable to the present
analysis should become more plentiful. This also should
encourage the sequencing of biological replicates to
enable statistical comparisons between metagenomic
datasets.
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Table 1 Comparison of richness estimates for published viral metagenomes

Virome CatchAll richness estimate PHACCS
richness
estimate

Virome

Best parametric model ± SEa

All singletons Empirically
discounted

Statistically
discounted

Power law
model

Reference

Mammalian gut environments

Nonmedicated swine feces, 21 db 90,576 ± 7,717 20,781 ± 1,054 2,381 ± 203 360 [7]

Nonmedicated swine feces, 35 d 124,284 ± 11,985 17,581 ± 762 9,693 ± 935 405 [7]

Nonmedicated swine feces, 38 d 84,524 ± 23,415 14,663 ± 592 4,686 ± 1,298 246 [7]

Nonmedicated swine feces, 63 d 105,310 ± 48,167 16,267 ± 2,190 5,362 ± 2,452 164 [7]

Nonmedicated swine feces, 77 d 130,773 ± 44,679 22,879 ± 3,381 5,071 ± 1,733 357 [7]

Nonmedicated swine feces, 85 d 113,335 ± 7,958 27,650 ± 1,478 1,307 ± 92 787 [7]

Nonmedicated swine feces, 91 d 154,869 ± 59,005 24,202 ± 1,139 5,386 ± 2,052 703 [7]

Human infant fecesc 1,087 ± 348 344 ± 74 94 ± 30 8 [11]

Human adult fecesc 9,576 ± 1,810 2,733 ± 517 NAd 1,930 [12]

Aquatic environments

Reclaimed fresh water, potable 59,741 ± 5,150 14,259 ± 803 2,388 ± 206 184 [9]

Reclaimed fresh water, effluent 128,778 ± 10,752 29,882 ± 1,833 1,617 ± 135 764 [9]

Reclaimed fresh water, nursery 204,571 ± 75,474 37,260 ± 7,320 4,477 ± 1,652 1,754 [9]

Reclaimed fresh water, park 185,739 ± 15,756 42,854 ± 2,899 1,043 ± 88 98,603 [9]

Salt water, Gulf of Mexicoc 246,019 ± 90,045 59,696 ± 21,341 103 ± 37 15,400 [6]

Salt water, British Columbiac 320,708 ± 73,575 81,644 ± 18,730 NA 129,000 [6]

Salt water, Sargasso Seac 108,264 ± 14,870 28,701 ± 3,942 NA 5,140 [6]

Salt water, Arctic Oceanc NA NA NA 532 [6]

Pooled viromes

The seven swine fecal viromes 155,469 ± 16,052 34,512 ± 2,360 1,990 ± 206 NDe [7]

The four reclaimed fresh water viromes 183,920 ± 18,009 41,751 ± 3,284 1,428 ± 140 ND [9]

Nonmedicated swine feces, 85 d, mixed with
reclaimed fresh water, effluent

196,069 ± 23,490 43,205 ± 3,865 1,958 ± 235 ND [7,9]

The four saltwater viromesc 668,901 ± 269,866 151,974 ± 54,948 1,272 ± 513 57, 600 [16] [6]
aSE, standard error.
bd, days old.
cThe contig spectra published in the corresponding reference were run in CatchAll.
dNA, not available because the contig spectra did not contain enough data to perform the calculation.
eND, not determined.
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Estimated richness after statistical discounting
Although the CatchAll-based richness estimates were
roughly on the same order of magnitude per environ-
ment, we reasoned that 100,000 viral taxa per sample
could be an overestimate of the true richness. This is be-
cause contig spectra from viral metagenomes might con-
tain a large number of spurious singletons, due to both
biological and technical phenomena. An example of a
biological phenomenon is that certain viruses of bacteria
(bacteriophages or phages) called generalized transdu-
cing phages are known to package random pieces of
bacterial chromosomal DNA, which would never assem-
ble in a contig spectrum and thereby inflate the number
of singletons. Another biological phenomenon that could
inflate the richness estimates is the mosaicism of phage
genomes [21], which could decrease the assembly of
related phages and cause them to be counted as discrete
taxa. From a technical standpoint, pyrosequencing is
error prone: errors introduced by pyrosequencing tech-
nology inflate 16S rRNA-based estimates of diversity
[22], and data derived from bulk DNA sequencing need
to be screened for false duplicates that arise from the
emulsion PCR step [10].
Ideally, any suspected inflated diversity would be fixed

at an appropriate technical step in the sequencing pipe-
line. In the absence of a technical solution, we theoretic-
ally discussed several statistical discounting procedures
[18] and modified CatchAll to optionally implement a
statistical procedure that discounts the low-frequency
observations, such as singletons [8]. The results of statis-
tically discounting the present contig spectra yielded
phage richness estimates in the thousands per sample,
which may be overly strict but yields a more biologically
intuitive result than hundreds of thousands of phage
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taxa per sample (Table 1). This is the first broad applica-
tion of this technique to multiple datasets.

Estimated richness after empirical discounting
Our statistical discounting procedure deletes a proportion
of the low-frequency observations at the data analysis
stage rather than data production stage, yielding what may
be an overly conservative richness estimate. When juxta-
posed with the high-richness estimates based on the ori-
ginal data, there is an expansive difference between the
original unadjusted estimate and discounted richness esti-
mates for a virome (Table 1). How, then, do we reconcile
these estimates with the biology? An ideal proof-of-principle
for the discounting procedure would be to compare the
richness estimates to a scenario in which we actually know
how many low-frequency counts are spurious. To address
this, we developed an empirical discounting method for
three swine phage metagenomes using the taxonomic as-
signment of the reads to infer a ratio of real to spurious
reads. This ratio suggested that half of the reads could be
spurious, and so the number of singletons in the contig
spectra were halved prior to estimating the richness in
CatchAll. The new estimated phage diversities were approxi-
mately 20% of the estimates based on the original contig
spectra, but still 5 to 35 times greater than the statistically
discounted estimates (Table 1). We, therefore, conclude
that the statistical discounting method is indeed more
conservative than inferring a discount based on the taxo-
nomic information in the singletons. These empirical
results also suggest that analyses of contig spectra that in-
clude potentially spurious reads at least double the rich-
ness estimate. The mathematically discounted model is a
statistically sound tool to estimate the minimum richness
of large viral metagenomic datasets.

Comparing phage richness between environments
When comparing phage metagenomes from different
environments via mixed contig spectra from pooled vir-
omes, CatchAll nearly recovers the expected reality that
the summed richness is greater than that of the member
environments. A mixed contig spectrum is achieved by
mixing the sequences from two or more environments
prior to generating a contig spectrum [6]. We analyzed a
published mixed contig spectrum from four salt water
viromes [6] in CatchAll, resulting in a combined phage
richness that was nearly equivalent to the sum of the
richness of three component environments (Table 1).
This result contrasted with the combined phage richness
estimated by PHACCS, which showed fewer phage taxa
in the mixed environments than in one of the compo-
nent environments, indicating that the majority of phage
taxa could be shared among environments [6].
We further explored this phenomenon by generating a

mixed contig spectrum for seven non-medicated swine
viromes, and again for four reclaimed water viromes.
The mixed swine viromes showed an estimated richness
just greater than the most rich component virome
(155,468 ± 16,052; Table 1). The individual swine vir-
omes were generated from the same six pigs over time,
and so it is likely that a large part of the community
would be shared among the viromes. This is reflected
in the pooled-virome richness estimate being one-fifth
of the sum of the richness of the component environ-
ments, and in the substantially decreased standard
error of the richness estimate resulting from the
increased sample size. The reclaimed water viromes are
similarly related in that they all originated from the
same wastewater treatment facility, and the mixed spec-
tra richness estimate showed a similar trend (Table 1).
Note that this trend does not hold when examining the
statistically discounted richness estimates. This is be-
cause the high-diversity component is larger in the
pooled sample, and so its removal after statistical esti-
mation has a larger impact on the richness estimate
than either its inclusion (no discounting) or prior re-
moval during empirical discounting.
To test the effect of pooling two very different envir-

onments, we mixed one swine virome (Day 85) with one
reclaimed water virome (effluent). The estimated rich-
ness (196,069) was about 40% greater than the richness
of either component environment. Importantly, the
standard error (±23,489) was also greater, suggesting
that unlike in the mixed analyses of similar environ-
ments, the depth of coverage was not improved by pool-
ing unlike samples. Our results suggest that the majority
of inter-environmental phage taxa are not shared. This
is aligned with current dogma for microbial biogeog-
raphy indicating that both viral taxa and bacterial species
are heterogeneously distributed based on habitat and
spatial structure [23,24].
It is tempting to compare the differences between the

estimated numbers of phage taxa per environment in
Table 1, such as noting that the discounted richness esti-
mates for swine fecal viromes are roughly double the
discounted richness estimates of reclaimed fresh water.
However, it is impossible to draw conclusions because of
the lack of depth and repetition of any given data set.
Expanding the breadth and depth of phage metagenomic
studies will improve inter-environmental comparisons
and thus advance biological conclusions.

Conclusions
The statistical diversity estimation procedures imple-
mented in CatchAll improve upon comparable previous
implementations. The accuracy of any estimates of viral
richness is unknown because the sampling of nature is
so very, very sparse. Tests of accuracy in given commu-
nities with known diversity, or in simulated ones, can
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provide some perspective, but such results are not
generalizable beyond the specific cases studied, and hence
are limited. Instead, statisticians turn to general theoretical
optimality principles, which underlie the numerous proce-
dures employed by CatchAll to perform both parametric
and nonparametric analyses. An additional improvement
is that CatchAll provides confidence intervals that bound
the uncertainty within the limits of the available data.
In addition to a sound statistical foundation, we employed

discounting approaches to investigate the effect of poten-
tially spurious low-frequency counts on richness estimates.
The theory behind the statistically discounted approach was
presented elsewhere [18], but this is its first application to
multiple datasets. The empirically discounted estimates are
new to the present manuscript. Discounting provides an
option for estimating richness from samples that are sus-
pected to contain spurious low-frequency observations.
Further studies are needed to elucidate the effect of bio-
logical features, such as genetic mosaicism, on estimates of
phage richness.
The non-discounted richness estimates reveal more viral

species per environment than previous metagenomic-
based estimates, and also greater consistency in the esti-
mates between like environments. Additionally, analysis of
pooled viromes from disparate environments showed the
expected result: mixing increased both the richness esti-
mate and the error associated with that richness. Increased
depth of sequencing coverage will improve the accuracy of
richness estimates, and technologies are quickly advancing
to enable deep metagenomic sequencing. Improved rich-
ness estimates should dramatically improve the inferences
possible in phage ecological studies.

Additional file

Additional file 1: Contig spectra used in this study.
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