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Abstract

Background: Grazing mammals rely on their ruminal microbial symbionts to convert plant structural biomass into
metabolites they can assimilate. To explore how this complex metabolic system adapts to the host animal’s diet,
we inferred a microbiome-level metabolic network from shotgun metagenomic data.

Results: Using comparative genomics, we then linked this microbial network to that of the host animal using a set of
interface metabolites likely to be transferred to the host. When the host sheep were fed a grain-based diet, the
induced microbial metabolic network showed several critical differences from those seen on the evolved forage-based
diet. Grain-based (e.g., concentrate) diets tend to be dominated by a smaller set of reactions that employ metabolites
that are nearer in network space to the host’s metabolism. In addition, these reactions are more central in the network
and employ substrates with shorter carbon backbones. Despite this apparent lower complexity, the concentrate-
associated metabolic networks are actually more dissimilar from each other than are those of forage-fed animals.
Because both groups of animals were initially fed on a forage diet, we propose that the diet switch drove the
appearance of a number of different microbial networks, including a degenerate network characterized by an
inefficient use of dietary nutrients. We used network simulations to show that such disparate networks are not an
unexpected result of a diet shift.

Conclusion: We argue that network approaches, particularly those that link the microbial network with that of the
host, illuminate aspects of the structure of the microbiome not seen from a strictly taxonomic perspective. In particular,
different diets induce predictable and significant differences in the enzymes used by the microbiome. Nonetheless,
there are clearly a number of microbiomes of differing structure that show similar functional properties. Changes such
as a diet shift uncover more of this type of diversity.
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Background
Ruminant mammals are remarkable for their ability to
subsist off of plant structural compounds such as cellu-
lose that are at once hugely abundant on the landscape
and yet metabolically inaccessible to most animals [1–4].
Aside from its obvious economic implications in animal

husbandry [5, 6] and links to improving human and ani-
mal health [7–9], this metabolic capacity is potentially of
great importance for applications in biotechnology, from
that of using plant matter to generate low-carbon foot-
print fuels [10–12] to less expected ones, such as
environmental remediation [13].
At the same time, the ruminal microbial ecosystem is

a useful model of how ecosystems develop and operate
[3] because it is contained and yet susceptible to experi-
mental manipulation, for instance by shifting the diet of
the host organism or by antibiotic treatment [14]. The
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first step in studying such an ecosystem is to catalog its
players, namely to explore the species present and their
taxonomic relationships. There is a long tradition of
such work in ruminal microbiology, starting with
culture-based studies [1, 15, 16], and continuing to gel
[5] and sequencing-based approaches [17–21]. These
taxonomic studies have reinforced just how unusual the
ruminal microbial ecosystem is: it forms an outlier not
merely to the microbiomes of other animals but even to
other more general terrestrial and marine microbial
ecosystems [22].
Nonetheless, while powerful, a taxonomic approach to

microbial ecology has certain limitations. For instance,
microbial ecosystems can show taxonomic differences
that mask similarities at the metabolic or functional level
[7, 23–28]. Perhaps more seriously, the observations
generated by taxonomic studies are generally correlative
or based on other types of statistical association (such as
principal component analysis; PCA). In particular, gener-
ating hypotheses about the global structure of the mi-
crobiome is currently challenging. For example, it is
intuitive to expect that a diet that consists of compounds
similar to those used by the host’s metabolic network
would induce a metagenomic metabolic network more
related to that of the host than would a more complex
diet with difficult-to-digest compounds. But this idea
would be quite difficult to test using only taxonomic
identifiers, even in the unlikely event that the metabolic
capacities of those organisms was completely known.
One solution to these difficulties is to extend the ana-
lysis of the microbiome to include an analysis of its full
gene complement [10, 11, 29, 30].
The power of such gene-centric analyses can be con-

siderably enhanced with tools from network and systems
biology that can provide linkages between the different
genes [31–34]. We have previously applied a metabolic
network approach [32, 33] to the ruminal microbiome of
cattle [26]. In this approach, genes are annotated to bio-
chemical reactions using a database such as MetaCyc
[35]: these reactions are then connected to each other
via shared metabolites (Fig. 1). In addition to further
illustrating the potential dangers of relying only on taxo-
nomic signals to understand the structure of these mi-
crobial communities [7, 23, 24, 36], our analyses
suggested that the metabolic interface between these
microbes and the vertebrate host provides structure to
this community metabolic network [26, 32].
Here we explore how a shift in host diet alters the

metabolic capacity of the sheep rumen microbiome. We
previously showed that there was a significant shift in
taxonomic composition that resulted from such a diet
change [18]. However, given our observations in cattle
[26], it remains possible that these taxonomic differences
were not fully reflected in the metabolic network.

Indeed, we hypothesized that we would see conservation
in the parts of the metabolic network that interact
directly with host metabolism, with larger changes in
other regions of the network.
Instead, we found that a change to a carbohydrate diet

resulted in a shifting of the microbial network closer to
that of the host, coupled to a reduction in complexity of
that microbial network. These shifts varied considerably
between animals, and, in our simulations of metabolic
network changes, we found that a diet change can
indeed induce this type of inter-animal variation.

Methods
Animal Use and Rumen Sample Collection
Rumen fluid was sampled from 16 wethers of
Rambouillet, Hampshire, and Suffolk breeds. After
24 days on a shared diet of primarily hay supplemented
by maize, eight animals were randomly assigned to a
pelleted, concentrate-based diet (CONC: main compo-
nent maize), while the remaining animals were fed a
pelleted, forage-based diet (FORG: main component al-
falfa). Animals were acclimated to the new diets over
25 days, after which a 49 day feed trial was completed
on the new diets. Rumen fluid samples were collected
via oral lavage and frozen at -80 ° C. Full details of the
feeding experiment are given in [18].

DNA Extraction & Library Preparation
Thawed 1 ml rumen samples plus sterilized zirconia
(0.3 g of 0.1 mm) and silicon (0.1 g of 0.5 mm) beads
and 1 ml of lysis buffer were homogenized with a
Mini-Beadbeater-8 (three minutes), incubated at 70 °C
(15 minutes + mixing every 5 minutes), and centri-
fuged at 4 °C (16,000 g for 5 minutes). The resulting
supernatant was transferred to new tubes and fresh
lysis buffer was added. This process was repeated a
second time, and supernatants pooled. The QIAamp
DNA Stool Mini Kit (Qiagen, Santa Clarita, CA,
USA) was then used to precipitate nucleic acids and
to remove RNA and proteins.
Genomic libraries were constructed from these 16

DNA samples using Illumina’s Illumina TruSeq DNA
PCR-free Library Prep kit according to the manufac-
turer’s recommended protocol [18]. Genomic DNA was
sheared into fragments using Diagenode BioRuptor. The
resulting 3′ and 5′ overhangs were removed, adenosine
nucleotide added to 3′ ends, and Illumina adapters
ligated. Fragments of 420 base pairs (bp) were size
selected as described in the Illumina protocol. Qubit
assays were used to quantify each library, and frag-
ment size confirmed by the Agilent BioAnalyzer High
Sensitivity DNA assay.
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Illumina Sequencing
Each sample was sequenced on an Illumina HiSeq
2000 at four samples per flowcell lane, resulting in
100 base-pair, paired end sequences, with mean insert
size of 309 bp. Raw sequence reads are available from
NCBI’s short read archive (Project SRP028527). We
truncated each read after the first run of three bases
with phred quality score less than 15 [37]. If either
read had an average quality score less than 25 or was

shorter than 85 bases, that read pair was omitted.
After filtering, 96 gigabases of sequence remained
(Table 1).

OTU Analysis
As described [18], the reads were compared to the
Ribosomal Database Project [38] using Bowtie [39] to
identify fragments of 16S rDNA genes. We retained hits
that matched sequences in the database at ≥97%. OTUs

Fig. 1 Merged host/microbe metabolic network. a Each node (circle) is a reaction in the host genome (left) or microbial metagenomes (right).
Host nodes are colored purple if derived from an orthology association between sheep and humans, tan if from an ovine/bovine relationship or
blue for the case of the added buyrate-employing pseudo-reaction (Materials and Methods). Edges are shared metabolites (network N50). In the
center are nodes employing 23 potentially shared compounds between the host and microbes (set VFA + AA; Materials and Methods): the 10
most frequent metabolites (by microbe read count to their respective reactions) are individually colored. All nodes are organized by their distance
from the other subnetwork: hence nodes employing an interface metabolite are at the center with a distance of 0. Microbial nodes are colored
based on the normalized log2-fold difference in read count between the two diets (green: overabundant in the FORG diet; red: overabundant in
CONC). Nodes whose normalized read counts did not differ significantly between the diets are shown in black (Materials and Methods). b The
right half of part a, recolored based on the normalized animal-to-animal variance in read count for the FORG animals (see scale bar). c Same as
for b but for the CONC animals. d Histogram giving the cumulative proportion of the total mapped reads for the two diets (green: FORG; red:
CONC) at each level of the network. Note that the FORG animals have proportionally more reads mapped to more distant layers of the network
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were defined by single-linkage clustering [40] in the ori-
ginal database: read pairs that mapped to exactly one
such OTU were considered instances of that OTU. The
result was the identification of a total of 349 OTUs [18].

Metabolic network inference from MetaCyc
MetaCyc includes more than 2000 microbial metabolic
networks [35], with enzyme sequences annotated to re-
actions and each reaction annotated with substrates and
products. Using these reactions and their respective me-
tabolites, we inferred a global metabolic network for all
bacteria and archaea in MetaCyc, merging reactions with
identical metabolites, to yield a total of 6140 reactions/
nodes [26]. We then linked that network to that of the
host animal by using comparative genomics to infer a
sheep metabolic network. For both networks, nodes
were defined as metabolic reactions (catalyzed by en-
zymes): edges connect nodes that have a metabolite in
common (lines and circles, respectively, in Fig. 1). Iso-
lated reactions were omitted.
As there is no ovine network in MetaCyc, we merged

the human metabolic network with the bovine reactions
not found in humans and used enzyme orthology to
infer whether each enzyme in this merged network was
found in the sheep genome. As described in several
previous contributions [41–44], we started with Ensembl
release 75 [45] of the human, ovine and bovine genomes
and used our synteny-based orthology inference package

to infer in human-ovine and ovine-bovine orthologs. We
found 15562 human-ovine and 15479 bovine-ovine
ortholog pairs. To allow for the known ability of the host
to incorporate microbially-produced butyrate, we added,
to the ovine orthologs of 1834 human reactions and 154
bovine reactions, a host-based pseudo-reaction convert-
ing butyrate to butyryl-CoA, giving a total of 1989 nodes
in the inferred ovine metabolic network.
For both the microbial and host networks, there are

metabolites, known as “currency metabolites,” that occur
in so many reactions that they give rise to spurious link-
ages between unrelated parts of the metabolic network.
For instance, the presence of water or a proton in the list
of reactants for two reactions should not be taken to
indicate that the two reactions are associated. Because
there is no universal definition of a currency metabolite
[44], we ran all analyses three times using currency
cutoffs of 25, 50 and 100: in other words, we did not
create edges for metabolites occurring in 25 or more, 50
or more or 100 or more reactions [46]. We refer to these
networks as N25, N50 and N100 (261, 206 and 174
currency metabolites removed, respectively).

Mapping translated reads to the microbial metabolic
network
To identify MetaCyc reactions present in the shotgun
sequences, we first translated our paired reads (having
untrimmed lengths of 200 base pairs in total) in all six

Table 1 Read Statistics by Animal

ID Diet Total readsa Reads with valid
paired ORFsb

# (%) reads that
hit to nodesc

# of reads hitting
multiple nodes

# (%) reads hit to
sheep genomed

#OTU founde

1003 FORG 16,779,099 14,521,805 271,571 (1.87%) 220,794 58,830 (0.35%) 109

1009 FORG 35,930,923 30,282,660 761,728 (2.52%) 548,931 1,855,867 (5.17%) 161

1127 FORG 41,120,479 35,920,407 570,177 (1.59%) 459,714 63,121 (0.15%) 137

1208 FORG 44,823,544 39,038,632 1,012,146 (2.59%) 790,442 18,155 (0.04%) 140

1248 FORG 22,698,997 19,869,280 673,066 (3.39%) 441,001 2,804 (0.01%) 127

1366 FORG 18,124,115 14,952,153 396,240 (2.65%) 275,291 42,582 (0.23%) 119

1397 FORG 32,221,706 28,176,562 657,645 (2.33%) 486,817 62,527 (0.19%) 137

7505 FORG 47,234,706 38,189,761 651,061 (1.70%) 478,999 1,175,563 (2.49%) 177

1026 CONC 29,835,213 24,169,312 642,601 (2.66%) 780,456 7,564 (0.03%) 108

1101 CONC 54,927,600 47,578,081 1,008,933 (2.12%) 1,059,980 44,188 (0.08%) 142

1111 CONC 26,710,771 23,016,865 362,506 (1.57%) 486,293 167,325 (0.63%) 137

1220 CONC 7,800,938 6,274,376 109,479 (1.74%) 126,946 1,226 (0.02%) 75

1239 CONC 42,216,924 36,551,070 751,236 (2.06%) 775,268 24,083 (0.06%) 138

1348 CONC 13,577,697 11,843,596 245,424 (2.07%) 246,823 12,233 (0.09%) 102

1396 CONC 18,274,753 15,860,653 278,963 (1.76%) 339,002 7,330 (0.04%) 124

7429 CONC 30,236,139 26,315,246 553,079 (2.10%) 537,174 65,498 (0.22%) 135
aTotal paired reads sequenced prior to quality filtering
bTotal number of paired reads passing read quality filtering and having a sufficiently long ORF in both members (Materials and Methods)
cNumber and percent of valid reads (previous column) that were mapped to nodes according to our criteria (Materials and Methods)
dNumber and percent of total reads that mapped to the sheep genome at 80% percent identity
eNumber of distinct OTUs identified previously in these sequences [18]
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open reading frames (ORFs). The resulting paired amino
acid sequences were discarded unless both had a trans-
lated ORF longer than 29 residues. We note that ana-
lyses by Carr and Borenstein [47] have suggested that
the accuracy of using read mapping to infer function im-
proves considerably when using 200 base pair reads rela-
tive to using 100 base pair reads but increases much more
slowly thereafter. Using the SeqAn library [48], we
searched for translated reads that, after Smith-Waterman
local alignment [49], matched database sequences at a)
two identical seven residue “words,” b) >80% amino acid
identity and c) over 80% of the metagenomic ORF. Reads
mapping to multiple database sequences catalyzing the
same reactions, or to sequences catalyzing a subset of
those reactions, were assigned to their respective nodes.
Translated reads that mapped to multiple non-related
reactions or where the forward and reverse reads mapped
to differing enzymes were discarded.
To validate this mapping approach, we analyzed a

random set of 20,000 “pseudo-reads” created from the
original MetaCyc enzyme database. These simulated
reads were drawn in pairs from enzyme sequences and
each had a length of 30 amino acids, with a simulated
unsequenced insert of 70 amino acids. Using the same
mapping software, we aligned them to the database
(omitting the sequence the read pair was simulated
from) and computed the ratio of uniquely mapping to
multiplying mapping reads for these data (Additional
file 1: Figure S1A).
The choice of a threshold of 80% percent identity is sup-

ported by three observations. First, in our analyses of the
trends in total matched reads and in the percent of reads
matching to multiple reactions across a range of this
cutoff in percentage identity, we found that the proportion
of reads having valid hits to the enzyme database
began to plateau near this threshold, while the pro-
portion of reads mapping to multiple reactions was
still increasing (Additional file 1: Figure S1A). Second,
we found that at the very high cutoff of 95% amino
acid identity, substantially more reads mapped from
samples drawn from animals fed a forage diet than
matched with samples drawn from concentrate-fed
animals (0.45% and 0.17% of reads mapping, respectively).
This bias in mapping effectiveness yielded a higher mean
layer number for the concentrate animals (see Results) in
contrast to the lower mean layer number seen at cutoffs
of 90% or 80%, where the mapping efficiency was more
balanced between the two diets. Third and finally, in our
analysis of the simulated reads from MetaCyc, we found
that as the sequence identity threshold increased, there
was an increased fraction of reads that mapped to incor-
rect nodes. These mapping errors occurred due to ambi-
guity in the database regarding the reaction catalyzed by
the sequences in question: at high identity cutoffs, such

ambiguity is often missed (Additional file 1: Figure S1B).
Again, the choice of an 80% threshold represents a reason-
able compromise in this context.
In our previous work [26], we found that our mapping

approach resulted in a set of mapped enzymes that were
not obviously deficient in any major enzyme class from
MetaCyc. In this analysis, we found that 2767 of 6140
(45%) of all MetaCyc reactions from any known environ-
ment were identified at least once in the read data. A list
of the top 43 reactions in terms of reads mapped across
the 16 animals is presented as Additional file 1: Table
S3.

VFA Analysis
Volatile fatty acids (VFAs) concentrations were ascertained
from the rumen fluid samples by centrifuging 5 ml of sam-
ple for 10 minutes at 3000 g. The resulting supernatant was
then added to a 25% metaphosphoric acid solution contain-
ing 2-ethyl butyric acid (2.0 mg/mL). The final ratio of
rumen fluid to metaphosphoric acid solution was 5:1. We
then incubated the samples for 30 minutes on ice and cen-
trifuged for 30 minutes. The resulting supernatant samples
were then added to 1 mL vials for analysis by gas liquid
chromatography. VFA concentrations were determined
with an Agilent 6890 gas chromatograph following stand-
ard procedures. Animal 1127 was absent from our data for
technical reasons. The Spearman’s correlation of normal-
ized read counts (from 79, 12, and 7 nodes, for acetate, pro-
pionate and butyrate, respectively) and VFA concentrations
was computed in R [50].

Residual feed intake measures
The 16 animals sequenced were selected as they showed
extremes in the efficiency with which they converted
nutrients into body mass, e.g., their residual feed intake
[18]. Thus, RFI was calculated as the deviation of true
feed intake from expected feed intake. Expected feed
intake was determined by regressing actual feed intake
on daily gain and metabolic midweight [51].

Network Interface
In order to define the interface of the two networks,
we created three sets of compounds (hereafter “inter-
face metabolites”) potentially transferred from the
rumen microbes to the host. The first set (VFA) consists
of the three most abundant ruminal VFAs (>95%): acetate,
propionate, and butyrate [52]. The second interface set
adds the 20 universal amino acids to the VFAs (VFA +
AA). Finally, the third set consisted of VFA +AA plus a
set of metabolites known to be absorbed from the gut into
cells in the digestive tract of humans. This set, hereafter
“ALL,” includes a total of 204 compounds, the full list of
which is available as supplemental data from our previous
work [26]. Edges between the host and microbial
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metabolic network join one node in each network that
each use an interface metabolite (interface metabolites
were considered even if they met the definition of a cur-
rency metabolite). See Taxis et al., [26] for further details.

Layering of Metabolic Networks
We used the O(n2) algorithm due to Dijkstra [53] to
find the shortest path between all pairs of the n nodes
in the network. For a given microbial (or host) node,
the distance from that node to the host (or microbial)
network is the length of the shortest path between it
and the closest node in the other network. These dis-
tances partition the network into layers, where the cen-
tral layers consist of reactions using interface
metabolites (Fig. 1).

Node read density analysis
Each reaction (node) with at least one mapped read pair
was analyzed by using the two-sample Wilcoxon test to
test null hypothesis of no difference in normalized read
count for the two diets (FORG or CONC), to which we
applied a 5% false-discovery rate correction [54].
To assess whether the two diets differed in how

reads were distributed among nodes, we fit a three
state distribution to the normalized number of reads
mapped to each node. The distribution had one pro-
portion of nodes with no reads mapped, a second
with 1 read mapped and a third proportion where the
number of reads mapped followed a log-normal dis-
tribution. We first individually fit this distribution to
the read counts from each diet separately. We then
compared the sum of the log-likelihoods from this
approach to the log-likelihood of fitting the combined

read count data to a single distribution of the same
form.

Network structure analyses
We calculated the Pearson correlation between the mapped
read counts and network layer for all combinations of net-
works and interface metabolite sets. We also determined
the correlation for the proportion of differentially abundant
enzyme genes for each layer (Additional file 1: Table S1).
We next calculated the mean network layer for the

mapped reads for each of the two diets across the interface
metabolite sets and networks (e.g., N25, N50, and N100;
Table 2). To assess whether this mean was significantly
different for the two diets, we adopted a randomization ap-
proach. First, we pooled the mapped reads across the two
diets. Then, we selected at random from these pooled reads
the same number of reads as had originally been mapped
to the eight FORG animals. We then calculated the differ-
ence in mean layer number for the pseudo-concentrate and
pseudo-forage reads for each of 1000 randomizations.
We also analyzed the effect of diet on the metabolic

network structure using four statistics:

� “Carbon sum,” the total number of carbon atoms
appearing in the reaction associated with that node,

� Betweenness-centrality, namely the total number of
shortest paths between any pair of network nodes
that pass through the selected node [55],

� Node degree, or the node’s total edge count, and
� Clustering coefficient [56], which indicates the

degree to which nodes are clustered in the network.

For each node, we weighted each statistic’s value by that
node’s normalized read count and computed the difference
in the mean of this weighted value across all nodes between

Table 2 Diet and network position

Groupa Currency Cutoffb Mean layer: FORGc Mean layer: CONCc Real Diff.: mean layersd Max. Random differencee Pf

VFA N25 1.99 1.82 0.17 0.006 <0.001

N50 1.87 1.74 0.13 0.006 <0.001

N100 1.78 1.64 0.14 0.005 <0.001

VFA_AA N25 0.828 0.66 0.16 0.003 <0.001

N50 0.87 0.75 0.12 0.004 <0.001

N100 0.91 0.80 0.11 0.004 <0.001

ALL N25 0.51 0.45 0.06 0.002 <0.001

N50 0.46 0.41 0.04 0.002 <0.001

N100 0.50 0.47 0.04 0.001 <0.001
aInterface metabolite set (Materials and Methods)
bNetwork (e.g., currency cutoff; Materials and Methods)
cMean layer number for the reads mapped from FORG or CONC animals, respectively.
dDifference between the mean layer for FORG and CONC
eMaximum difference in the mean layer for the two diets seen when reads were randomized between the diets
fP-value for the test of the hypothesis that the two diets do not differ in mean layer. For this test, reads were randomly reassigned to diets and the mean layers
recomputed 1000 times (Materials and Methods). Values significant at P = 0.05 shown in bold.
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the two diets. We assessed the significance of the differ-
ences with the randomization approach above (Additional
file 1: Table S2).

Principal Components Analysis
Principal Component Analysis (PCA) was performed
with R [50] using the normalized read counts or the
OTU counts previously computed and reported in
Ellison et al., [18] as measurements and the 16 animals
as experiments.

Pairwise distances between samples in OTU and node
distribution
For each sampled animal, we defined an OTU distribution
vector and a node distribution vector v, the elements of
which are defined as:

vi ¼ ri
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

j¼0
rj
� �2

q ð1Þ

where ri is the number of reads mapped to node/OTU i
and the denominator scales the resulting vector to unit
length. We then computed standard Euclidian distances
between all pairs of vectors vi and vj from the animals i,j
for nodes and for OTUs.
We compared these differences to the results of

pooling all reads from each diet and randomly reas-
signing them proportionally to the animals. From
these resamplings, we also computed the Pearson’s
correlation between node and OTU distances. These
randomized correlation values are occasionally high,
mostly likely because differences in the number of
mapped reads between animals generates outliers. Or-
dinarily, a non-parametric Spearman correlation
would be a more conservative choice for data that are
not self-evidently normal. However, because we were
comparing the Pearson correlation observed from the
real data to those seen in the randomized data, our
approach should not suffer from violations of normal-
ity assumptions.

Simulation of a diet shift
The initial diet of the sixteen animals studied was similar
to the later FORG diet. We thus sought to assess if the
increased node-level variation seen in the concentrate-
fed animals (Fig. 3D) might be explicable in terms of this
shift. To do so, for each node ni, we defined the set of k
metabolites participating in that node’s reaction C(ni)
= {c1,c2.…ck}. The set of metabolites C found in the net-
work as a whole is then simply C =C(n1) ∪ C(n2) ∪ C(n3)
… ∪ C(nn). Here, C has 4878 compounds. We define the
ith element of this compound vector vc as follows:

vci ¼
X

j¼0

n
X

k¼1

8
rj;k

0

�

ci∈C nj
� �

otherwise
ð2Þ

where rj,k is the number of mapped reads for the jth node
for the 8 CONC animals. For comparative and computa-
tional purposes, we then rescale the vector as follows:

Vc
i ¼ 100; 000

vci
X

j
vcj

ð3Þ

We defined this scaled average compound vector VC as
the target. Then we used each FORG animal’s individual
compound vector Vc,i (again computed and scaled as in 2
and 3) as a starting point. Using simulated annealing [57],
we sought a distribution of nodes onto reads that resulted
in a compound vector as similar as possible to VC. Simu-
lated annealing works by taking a starting solution and
repeatedly moving to nearby points in the state space in
search of better solutions. We used two forms of perturb-
ation. In the first, swap1, we simply randomly moved
reads between nodes and evaluated whether the new
distribution was closer to VC. In the second, swap2, we
moved pairs of reads from nodes connected by edges. For
each of the eight forage animals, we ran ten simulated
annealing analyses for the shift to the concentrate diet and
ten for remaining on the forage diet. For each set, we
retained the simulation closest to VC.

Results
Metagenomic sequencing of rumen fluid from 16 sheep
We extracted microbial DNA from the rumen fluid
from sixteen sheep and then shotgun sequenced those
DNA on an Illumina GenomeAnalyzer II, yielding 100
base pair, paired end reads. These reads were not sig-
nificantly contaminated with host DNA (Table 1). In
our previous work, we collectively identified 349 op-
erational taxonomic units (OTUs) from known bac-
terial and archeal taxa in the rumens of these animals
[18]: here we explore the metabolic reactions encoded
by these metagenomic samples, using the MetaCyc
database [35] as a reference.

Metabolic network inference
Using MetaCyc, we defined a reaction-centric meta-
bolic network where enzyme-catalyzed reactions are
nodes, and any two nodes that share a metabolite are
connected by an edge (left side of Fig. 1). Currency
metabolites, such as water or ATP, were excluded from
the network construction at three stringencies, from
high to low: networks N25, N50 and N100, respectively
(Materials and Methods). We inferred a metabolic net-
work for the ovine host using the existing human and
bovine metabolic networks in MetaCyc via orthology
(Materials and Methods). Approximately 8.9 million

Wolff et al. Microbiome  (2017) 5:60 Page 7 of 15



translated metagenomic read pairs were then mapped
to the merged metabolic network (Fig. 1 and Table 1).

Animal VFA concentration and metabolic network
structure have some association
Volatile fatty acids (VFAs) make up approximately 70% of
dietary energy in sheep [4, 52]. We were curious if the pat-
terns of shotgun sequence data recapitulated the mea-
sured VFA concentrations, which might be expected
under the hypothesis that organisms encoding enzymes
that metabolize particular compounds would occur in the
ecosystem in proportion to the abundance of those com-
pounds. Encouragingly, if unsurprisingly, acetate, the most
common VFA in the rumen [3], was also a product or
reactant of reactions with more reads mapped than any
other VFA. A significant correlation between read count
and concentration was seen for propionate (Spearman’s ρ
= 0.518; P = 0.025; Fig. 2), but not for acetate or butyrate
(Spearman’s ρ = 0.332, P = 0.11; and Spearman’s ρ = 0.175,
P = 0.27; Fig. 2; respectively). The lack of association be-
tween read count and acetate may be because acetate is
also key metabolic intermediate and hence many reactions
internal to the microbial cells involve it. Butyrate, on the
other hand, is the rarest of the three metabolites both in
concentration and in mapped reads, making detecting as-
sociations difficult.

Metabolic network structure varies by diet
The two diets differed in the relative density of reads
mapped to each node. We fit log-normal distributions to
the number of reads mapped to each node (Materials and
Methods). There is a significant difference in the distribu-
tion mapped to the forage-fed (FORG) and concentrate-
fed (CONC) animals (P < 10-10, likelihood ratio test with 5
degrees of freedom): more reads are mapped to each node
in the CONC network than the FORG one (53.8 reads per
node per 106 reads mapped and 41.4 reads per node for
106 reads, respectively), with less overall spread in the
number of reads mapped per node in the CONC animals
(log-variance 2.7 and 2.9, respectively). Similarly, the per-
node variation in reads mapped within a diet group is less
than that between diets for almost all nodes, reinforcing
the point that the two diets differ in their network struc-
ture (Additional file 1: Figure S2).
Figure 1B and C illustrate that the FORG animals showed

less animal-to-animal variation in the normalized read
count for each node than did CONC animals (Mann-Whit-
ney-Wilcoxon test, P < 10-10). However, fewer total reads
were mapped in the CONC animals, so it is possible that
this difference in variation is due sample size. We thus ran-
domly drew 100,000 mapped reads for each animal and
recomputed the Mann-Whitney-Wilcoxon test on 1000 of
these resampled datasets. In all cases, the concentrate-fed
animals still showed significantly greater variance (P < 10-9).
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Wolff et al. Microbiome  (2017) 5:60 Page 8 of 15



To link the host and microbial metabolic networks, we
defined three sets of exchangeable interface metabolites
(VFA, VFA +AA, and ALL; Materials and Methods). The
VFA set contains the three volatile fatty acids that are rumi-
nants’ primary energy source, VFA +AA adds to these the
twenty amino acids; while ALL is a large set of metabolites
defined by human cellular metabolism (Materials and
Methods). Host and microbial network nodes were con-
nected by shared interface metabolites (Fig. 1). We then
sorted the merged metabolic network based on each node’s
distance to the other subnetwork, resulting in the layered
structure of Fig. 1. Intuitively, reactions that involve inter-
face metabolites are found in the innermost layer of each
subnetwork (distance 0 from the other subnetwork): they
exchange compounds with the other network.
For the two larger sets of interface metabolites (VFA +

AA and ALL) there was a general (though not invariable)
negative correlation between the number of reads mapped
to a reaction and that reaction’s distance from the host
subnetwork (Additional file 1: Table S1), similar to the
pattern previously seen [26]. There was no significant evi-
dence that the proportion of nodes that differ between the
diets varies by layer (Additional file 1: Table S1). However,
for the FORG animals, the average read falls into a more
distant layer than does the average read for CONC ani-
mals (P < 0.001; Table 2), meaning that the FORG reads
map more often to reactions distant from the host
network than do reads from the CONC samples. This dif-
ference in mean layer is more than 20 times as large as
any difference in mean layer seen among our 1000
randomizations of the reads into the two diets (Table 2).
The network structure induced by the two diets also dif-

fers (Additional file 1: Table S2). Reads from the CONC
diet mapped more often to nodes with higher degree (e.g.,
larger number of edges) and higher betweenness-centrality
(meaning that these nodes lie on “key paths” through the
network; Materials and Methods). CONC reads also
mapped to nodes with higher clustering coefficients. On
the other hand, the mean number of carbon atoms in-
volved in a node’s reaction was significantly larger for
the FORG reads (P < 0.001 by network randomization,
Additional file 1: Table S2). These results are in ac-
cord with the observation that CONC reads generally
map to layers closer to the host network than do
FORG reads, since these nearer reactions are also
more central in the network and hence involve
smaller metabolites.

Diet differences are not driven by reaction presence/
absence.
While the two groups of animals showed many differences
in the compositions of the microbial metabolic networks,
these differences are not primarily driven by the absence
of reactions/nodes in one diet group. Of the 2767 nodes

observed in either diet, 2254 were observed in both, while
only 292 were specific to FORG and 221 to CONC. More-
over, most of these apparent differences can be explained
by sampling effects: only 30/292 of the apparent differ-
ences for FORG and 47/221 of those for CONC were sta-
tistically significant (P < 0.01). Instead, most differentially
present nodes are simply rare: the mean number of reads
mapped to nodes exclusive to FORG and CONC animals
were 3.6 and 9.2, respectively, while the maximum num-
ber of reads mapped to a differentially present node was
318 (Additional file 1: Figure S3).

Principal components analysis identifies metabolic
variation in CONC animals
We used PCA to explore how diet interacts with the
animal-to-animal variation in microbial taxa (OTUs) and
reactions (nodes). Neither the OTU nor the node-based
PCA analyses suggested that the sheep breed was a strong
confound to our results (see also Additional file 1: Figure
S4), though we note that the small number of animals
from each breed in each treatment makes it difficult to
clearly observe the effect of this variable on the micro-
biome. For taxonomy, diet appears to be predominant
driver of animal-to-animal differences (PC1 and PC2;
Fig. 3A). However, with the metabolic network nodes,
most of the variation is accounted for by a PC that sepa-
rates not diets but three CONC animals from the
remaining 13 animals (Fig. 3B, PC1). These three animals
were inefficient in their growth relative to the food con-
sumed, e.g., had high residual feed intake or RFI [18], and
all three had similar node profiles, with a few nodes with
very large numbers of mapped reads and the others having
many fewer (Fig. 3B).
To assess if our PCA was overly confounded by assump-

tions of normality, we also computed principle compo-
nents using instead Spearman’s and Kendall’s correlation
statistics [58]: the results of which are shown in Additional
file 1: Figure S4. On the basis of these analyses, we con-
clude that some aspects of the standard PCA might have
been confounded by the non-normal nature of the data.
In particular, the role of diet in PC1 for the taxonomy data
is dependent on the association measure used. However,
in general, the observation that the forage animals are
more similar in their metabolic networks than were the
concentrate-fed animals was supported by all of these
analyses.

Concentrate-fed animals show large pairwise distances
between each other in both taxonomy and in the
metabolic network
Given that the principle component analyses were not
completely informative, we sought to more explicitly ex-
plore this apparent difference between the two diets in

Wolff et al. Microbiome  (2017) 5:60 Page 9 of 15



OTU pairwise distance

c

 0

 0.4

 0.8

 0.2  0.6  1  1.4

Simulation 
Frequency

Forage/Forage
Concen/Concen
Forage/Concen

 0.2  0.6
 0

 0.2

 0.4

 0.6
Forage/Forage

Concen/Concen
Forage/Concen

d

e

N
od

e 
pa

irw
is

e 
di

st
an

ce
T

ax
on

om
y 

P
C

#2
 

(2
3%

 o
f t

ot
al

 v
ar

ia
nc

e)

Taxonomy PC#1 
(68% of total variance)

a

M
et

. N
et

. P
C

#2
 

(6
%

 o
f t

ot
al

 v
ar

ia
nc

e)

Met. Net. PC#1 
(92% of total variance)

b

FORG to FORG
RFI:

Low/Low High/Low High/High

CONC to CONC
RFI:

Low/Low High/Low High/High

FORG to CONC

FORG
CONC

RFI
Low High

Pearson’s r=0.23, P=>0.5

Pearson’s r=0.41, P=>0.5

-0.2

 0

 0.2

 0.4

-0.28 -0.26 -0.24

Ra

RaRa

Ha

Su
Ha

Ha Su

Ra
Ra

Ra

Su

Ha
Su Ha

Ha

 0

 0.2

 0.4

-0.4 -0.3 -0.2 -0.1  0

Ra
Ra

Ra
Ha

Ha
Su

Su

Ha

Su

Ra

Ra

Ra
Ha

Ha
Ha

Su

Fig. 3 (See legend on next page.)

Wolff et al. Microbiome  (2017) 5:60 Page 10 of 15



variability with a pairwise distance analysis. For both the
number of reads mapped to nodes and to OTUs, the
FORG animals showed small and relatively uniform pair-
wise differences, although these differences were still
larger than can be explained by sampling (P < 0.001). For
the CONC animals, there was a much wider spread of
distances both for the OTUs and for the nodes (P < 0.001;
Fig. 3D), although the three CONC animals with high RFI
discussed above were quite close to each other. On the
other hand, some of the pairwise differences between low
RFI (high efficiency) CONC animals were as large as for
pairs of animals fed differing diets (Fig. 3D).

Simulation of a diet shift
To explore the effect of diet shift on the metabolic net-
work, we sought to assess whether there might be mul-
tiple different metabolic networks (e.g., sets of enzymes)
that nonetheless have a very similar distribution of the
metabolites used by those enzymes. To do so, we defined
a target metabolite vector, which was defined as the
average number of reads, for one of the diets, that
mapped to any enzyme that employs that metabolite.
Using this average vector as a target and each of the
eight forage animals as a starting point, we used simu-
lated annealing to search for distributions of reads onto
nodes (e.g., enzymes) that produced a mapping of reads
onto metabolites that was as near in vector space as pos-
sible to the original target metabolite vector. In this
framework, if the target vector was from the concentrate
diet, we could simulate a diet shift, while if the target
were from the forage-fed animals, we would simulate
the maintenance of the same diet. For each animal and
simulated diet shift, we retained the simulated annealing
run (out of ten) nearest to the average compound vector.
In Fig. 4, we show the (8 × 7)/2 pairwise comparisons of
these simulations both for compound and node distance.

We ran the simulations under two types of “move rules.”
In the first, we simply moved reads between nodes at
random and retained moves according to the simulated
annealing selection function [59]. These simulations
found node distributions very close to the target com-
pound vector (triangles in Fig. 4). However, real enzymes
are linked in the microbiome by genomic co-occurrence
and hence cannot change this arbitrarily. While we do
not know the genomes from which our nodes derive, we
can to some degree simulate this effect by not moving
single reads but rather by selecting pairs of connected
nodes, and then moving one read from each node to an-
other pair of connected nodes. This second set of simu-
lations (filled circles, Fig. 4) shows differences that are
considerably more similar to those of the real animals.
What both sets of simulations show, however, is that
there exists a range of potential metabolic networks that,
despite their compound similarity, are quite different in
the set of metabolic reactions that generate those com-
pound distributions.

Discussion
Not surprisingly, diet drives significant changes in the
microbial ecosystem of the rumen. As our previous work
suggested at the taxonomic level [18], these differences,
under these experimental conditions at least, are not
reflected in the loss and gain of metabolic reactions or
microbial species, but rather by shifts the relative abun-
dance of those components. Many of the metabolic
changes are also to some degree expected: the metabol-
ically simpler CONC diet uses enzymes that more
directly connect to host metabolism and to each other
(Table 2 and Additional file 1: Table S2) and that employ
shorter carbon chains. These observations increase our
confidence that this metabolic network-driven approach
reflects important underlying patterns in the

(See figure on previous page.)
Fig. 3 Animal-to-animal taxonomic and network differences. a Principal component analysis of the OTU distributions across the 16 animals. The
first two principal components (PCs) are shown, comprising 92% of the total variance. FORG animals are shown in green and CONC in red.
Visually, it seems clear that the diet difference explains most of the variation in OTU distributions. An animated 3-dimensional version of this plot
that includes PC#3 (3% of variance) is presented as Additional file 2. Each point is labeled with the breed of the animal in question: Su:
Suffolk, Ra: Rambouillet, Ha: Hampshire. b Principal component analysis of the distribution of reads mapped to metabolic network nodes. The first
two principal components (PCs) are shown, comprising 98% of the total variance. However, diet is no longer the main source of variation. Instead,
principal component 1 separates three CONC animals (numbers 1220, 1239 and 1348; high RFI) from the rest of the dataset. Inspection of the
node-level data suggests that these three animals are unusual in that they have higher than usual node-to-node variation in the number of
mapped reads (namely a few nodes with a large number of mapped reads) and are also highly correlated with each other, unlike some of the
other CONC animals with rather different profiles. An animated 3-dimensional version of this plot that includes PC#3 (1% of variance) is presented
as Additional file 3. c Minimum and maximum pairwise node distances seen when reads were randomly and proportionally reassigned to each
animal. On the y-axis is the same distance scale as y in panel D, on the x-axis is the proportion of simulations with a given minimum/maximum (Mate-
rials and Methods). The color scheme is as for (d) Dashed lines give the minimums and maximums seen in the real data of d. d Pairwise differences in dis-
tribution of reads mapped to OTUs (x-axis) and nodes (y-axis). FORG to FORG comparisons are shown in green, CONC to CONC in red, and FORG to CONC
in blue. For each animal, a vector representing all mapped reads was normalized to unit length and then standard Euclidian distances computed
between it and all other animals (Materials and Methods). For the FORG to FORG and CONC to CONC pairs, we computed the Pearson’s correlation of
OTU and node distance and compared that value to that seen from randomized datasets (Materials and Methods). e As for c, except with the OTU dis-
tances. The x-axis gives OTU distances and the y-axis simulation frequencies
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microbiome. As an aside, we note that reanalyzing the
combination of network N50 and interface set VFA + AA
with a sequence identity cutoff of 90% for read mapping
yields the same conclusion of smaller mean layer num-
ber and higher variance in the CONC samples (data not
shown), meaning that sequence identity is not likely a
major confounding factor in our analyses. Similarly,
while the correlations between metabolite levels and mi-
crobial read counts in the VFA analysis were relatively
weak, the fact that any association is evident in such a
small sample of animals may be encouraging. We also
further illustrated the dangers of assuming a close asso-
ciation between the metabolic and taxonomic patterns
in the microbiome [7, 23–28], finding that the pairwise
differences in taxonomy and in metabolism for our ani-
mals are not strongly associated (Fig. 3C). We do

however note that we cannot be certain that sampling
limitations may not account for some of this lack of as-
sociation. Finally, the fact that the taxonomic and meta-
bolic differences seen are differences in abundance and
not of presence or absence reinforces the importance of
using network modeling and large-scale analyses to
analyze these ecosystems. We believe that describing the
microbiome primarily at the level of individual pathways
can be misleading because such descriptions are neces-
sarily incomplete with respect to these networks.
The more striking observation from our study,

however, is that the shift to the CONC diet induced
large and variable changes in the microbial metabolic
networks of the animals that experienced it. Thus, even
though on average the CONC animals had networks that
were simpler and closer to the host network, these eight
animals were quite distinct from one another in their
node distributions (and, to a lesser extent, their taxo-
nomic distribution). This difference in the amount of
variation between the diets is evident in the principal
component distributions of Fig. 3B and from the pair-
wise distances in Fig. 3C. It is tempting to ascribe this
difference to the fact that the FORG diet is more similar
to the evolved diet of these animals. Thus, while foregut
fermentation has convergently evolved in herbivores
multiple times [60, 61], ruminants represent probably
the most complete and dramatic adaptation to allow effi-
cient digestion of fibrous plant diets, and they possess
very distinct microbiota [22]. Nonetheless, we believe
that an equally likely explanation lies in the structure of
our feeding experiment. The animals were all originally
on a forage-like diet, so it is possible that it was the
switch to the CONC diet that allowed this animal-to-
animal variation to arise. Indeed, our simulations (Fig. 4)
show that, under rather simple assumptions, it is pos-
sible to create divergent metabolic networks (e.g.,
enzyme abundances) that share very similar metabolite
profiles. In keeping with this model, we find that animal-
to-animal differences, both between and within diets are
driven by abundance differences, not enzyme or taxa
presence or absence (Additional file 1: Figure S3). Given
the experimental design and these simulations, we
propose as a null hypothesis to explain our observations
above the idea that diet shifts can alter the microbial
ecosystem in non-repeatable ways.
Another observation that supports this idea is that

there were three CONC animals that were actually quite
similar to each other in their node distributions. Import-
antly, these were also three of the four animals that ap-
peared to have adapted poorly to the new diet: e.g., they
consumed a surprising amount of feed for the amount of
weight they gained. With only 4 low and 4 high RFI ani-
mals per diet group, we do not wish to overstate the
strength of this result. But it seems plausible that one of
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the outcomes of a diet switch might be a collapse in
metabolic system diversity, which can occur in a parallel
fashion in different animals and results in an inefficient
use of ecosystem resources. This conclusion has a very
interesting link to data from humans, where micro-
biomes having low gene complexity (relatively few iden-
tified genes) are associated with several indicators of
poor health [29]. Indeed, the question of whether com-
plex and diverse ecosystems are more productive than
less diverse ones is an old and incompletely resolved one
in ecology: while theoretical and experimental analyses
have suggested that this is often the case [62, 63], the
mechanisms that would drive this effect; e.g., the pres-
ence of rare but beneficial taxa, cooperative interactions
between taxa or more efficient filling of ecosystem
niches [62, 64], remain unclear.
While many of the arguments on ecosystem functioning

are made from a taxonomic diversity perspective, the
underlying processes are likely to be due to the functional
characteristics of those taxa [62]: in particular their meta-
bolic capacities. The importance of this principle is illus-
trated by the fact that the metabolic behavior of an
ecosystem need not be strongly coupled to its taxonomic
structure [28]. As such, there is an enormous need for
ecosystem-scale metabolic models. A very promising
avenue for developing such models is to build off of the
success of existing genome-scale metabolic models [31,
65] by coupling them to metagenomic data using enzyme-
mapping tools such as those presented here. At the mo-
ment, unfortunately, such models do not scale to more
than a handful of species at once [65–68]. However, there
do not appear to be fundamental limitations to this ap-
proach [31, 34, 65], so that questions such as why degen-
erate ruminal ecosystems show poor performance may be
addressable predictively and quantitatively.
Another open question is whether ecosystems, in

addition to being robust to taxonomic variation [28],
also allow for the existence of different community
metabolic networks [26]. Here, our computational simu-
lations of a diet shift (Fig. 4) show similarities to our
observed data in that both have community metabolic
networks that are quite distinct from one another, sug-
gesting that a change in ecosystem parameters can open
the way for the formation of a number of different com-
munity metabolic networks. In fact, despite using a very
simple set of rules to govern these simulations, to a de-
gree we were able to replicate pairwise host animal dif-
ferences in both compound distribution and in node
read mapping distributions. To do so, all that was neces-
sary was to impose a rule that reads mapping to pairs of
related reactions could only move together. This rather
simple rule mimics the fact that reactions do not move
in the community metabolic network alone but as part
of (unknown) genomes. Our claim thus is not that our

simulations define the mechanism of the diet switch but
merely that, under some constraints, selection to move
the community network to a different compound distri-
bution can produce metagenomic data similar to that ac-
tually observed. Thus, the low RFI (efficient) CONC
animals all appear to have found different metabolic net-
works that nonetheless function well, linking again to
evolutionary studies that have shown that metabolism is
highly flexible and robust, with multiple solutions to
many metabolic problems [69, 70]. Thus, in contrast to
Tolstoy’s families, it may be that it is unhappy micro-
biomes that are alike, while each happy microbiome is
happy in its own way.

Conclusion
Metabolic network analyses of the ovine rumen micro-
biome illustrate how changes in diet alter not merely the
taxonomic composition of this environment, but also the
balance of metabolic reactions present. A diet richer in
simple carbohydrates (a concentrate diet) induces a meta-
bolic network closer in network space to the host’s reac-
tions, while a diet composed of complex plant matter (a
forage diet) induces a more complex network that is also
more distant from that of the host. The shift from a forage
to a concentrate diet also perturbs the metabolic network,
resulting in more animal-to-animal variation in individuals
fed the latter diet. This pattern of multiple ecosystem-
level metabolic networks with similar properties can be
partly replicated by network simulations of the process of
the diet shift, suggesting that such metabolic networks
maintain considerable flexibility.
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