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Competitive interaction with keystone taxa
induced negative priming under biochar
amendments
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Abstract

Background: Biochar amendments have been widely proposed as a conventional and efficient strategy to promote
soil organic carbon (SOC) sequestration via negative priming. Unfortunately, the extent and biological mechanisms
responsible for biochar-induced negative priming are still not fully understood. Despite traditional explanations
focused on the environmental filtering mechanisms of biochar amendments on microbial biomass and community
composition underlying the priming effect on SOC dynamics, whether and how a biochar-induced competitive
interaction with keystone taxa determines SOC mineralization in natural ecosystems has been minimally explored.

Results: Here, we paid particular attention to the relationships between the diversity and network structure of soil
bacterial and fungal communities and SOC mineralization. A 3-year field experiment was conducted comprising five
treatments: no fertilization, conventional fertilization, and conventional fertilization with three rates of biochar amendments.
Biochar amendments considerably increased soil moisture capacity and pH and subsequently shaped the composition and
co-occurrence networks of soil bacterial and fungal communities. Importantly, network analysis revealed that the biochar
amendments triggered the competitive interaction with putative keystone taxa in the bacterial and fungal
networks. Structural equation modeling suggested that the competitive interaction with keystone taxa promoted
bacterial and fungal diversity and consequently reduced carbohydrate catabolism and soil metabolic quotient. Stable
isotope probing incubations further provided consistent evidence of competition by keystone taxa with the increases
in bacterial and fungal diversity under the biochar amendments.

Conclusions: We found that biochar-induced competition with keystone taxa stimulated the bacterial and fungal
diversity and consequently decreased SOC mineralization. The comprehensive understanding of the unexplored
biological mechanisms underlying the biochar-induced negative priming may provide crucial implications for
enabling SOC sequestration.

Keywords: Biochar, Bacterial and fungal diversity, Competitive interaction, DNA-SIP microcosms, Keystone taxa,
Soil organic carbon mineralization

Background
Soil organic carbon (SOC) sequestration is of fundamental
importance in agricultural soils, because it mitigates
atmospheric carbon dioxide (CO2) emissions and en-
hances soil fertility [1]. In this context, biochar application
has been confirmed as an efficient way to mediate SOC

sequestration in agricultural soils [2]. Biochar has the
potential to regulate native SOC mineralization via
positive, neutral, or negative priming effects [3]. These un-
certainties in SOC mineralization induced by the biochar
amendments could be attributed to the remarkable shifts
in microbial abundance and composition [4–6]. Bulk of
traditional explanatory studies have demonstrated that soil
physicochemical conditions altered by the biochar amend-
ments, especially pH and hydrologic characteristics, play a
crucial role in controlling the biomass and composition of
soil microbial communities [2]. Biochar imprints the alter-
ations in the composition of soil microbial communities

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: yjjiang@issas.ac.cn; bsun@issas.ac.cn
†Lijun Chen and Yuji Jiang contributed equally to this work.
1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil
Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing
210008, China
Full list of author information is available at the end of the article

Chen et al. Microbiome            (2019) 7:77 
https://doi.org/10.1186/s40168-019-0693-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-019-0693-7&domain=pdf
http://orcid.org/0000-0001-8290-3518
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yjjiang@issas.ac.cn
mailto:bsun@issas.ac.cn


that emerge from the significantly increased ratios of fungi
to bacteria and Gram-positive bacteria to Gram-negative
bacteria [7, 8]. Soil microbial communities fuel SOC
storage directly through their catabolic decomposition
and anabolic synthesis and facilitate negative priming in
terrestrial ecosystems [9, 10]. Alternatively, negative pri-
ming may occur owing to the decreased turnover rate
of the existing SOC by suppressing microbial activity
[11]. Until now, the essential questions about the bio-
logical mechanisms of biochar-induced negative prim-
ing by microbial communities are still far from being
adequately addressed.
Network-based analytical approach is a powerful tool to

infer the microbial interactions and keystone taxa of the
complex networks in natural environments [12]. Microbial
keystone taxa are highly connected taxa that individually
or in a guild show great explanatory power of network
structure and functioning irrespective of their abundance
[13]. The taxa interactions and keystone taxa in the net-
works are often pertinent to the major shifts in the whole
community structure [14]. It is reasonable to suppose,
therefore, that biochar exerts important influences on the
microbial interactions and keystone taxa of the bacterial
and fungal co-occurrence networks [15]. Biochar has been
reported to substantially improve microbial diversity, sug-
gesting the enhanced growth of a few novel bacterial
groups with previously low relative abundance [16]. In
particular, the new emerging keystone taxa were highly
connected in the microbiome networks, which contribute
largely to modulating microbial diversity and community
structure and explain microbiome compositional turnover
better than whole individuals combined [14]. Accumulat-
ing theoretical and empirical evidence suggests the im-
portance of competition in stimulating taxa co-existence
and diversity through evolutionary processes [17, 18].
Hitherto, few reports have yet highlighted the mechanisms
of competitive interaction accompanied by keystone taxa
responsible for microbial diversity. Specifically, there is a
need for further experimental evidence to verify the com-
petitive interaction with keystone taxa in the microbial
networks.
To predict SOC dynamics, it is critical to understand

how the bacterial and fungal communities change in
terms of their richness and diversity under the biochar
amendments. So far, scarce attention has been paid to
the roles of microbial diversity in mediating SOC dy-
namics. Despite understanding that the impact of
microbial richness on community functioning depends
ultimately on the traits of keystone taxa in a microbiome
[19], there is a little prediction of how competitive inter-
action mediates the diversity-functioning relationships.
The direction and extent to which microbial interactions
affect diversity-functioning relationships are still a
matter of considerable controversy. Intense competitive

interactions with keystone taxa can attenuate or reverse
diversity-functioning relationships [20]. The omission of
microbial interactions from biochar-induced negative
priming posits a key uncertainty for projecting the magni-
tude of SOC sequestration.
Based on the literature cited above, we aimed to gain a

mechanistic understanding of how biochar-induced
competitive interaction with keystone taxa determined
SOC mineralization. Specifically, the present study was
structured to clarify three questions: (1) Do the biochar
amendments affect the biomass, composition, and co-
occurrence networks of soil bacterial and fungal com-
munities? (2) Does the competitive interaction with
keystone taxa exhibit a substantial impact on soil bacterial
and fungal diversity under the biochar amendments? If so,
then (3) what is the biological mechanism responsible
for biochar-mediating SOC mineralization via priming
effects? To achieve these goals, we conducted a 3-year
field experiment under three rates of biochar amend-
ments along with two non-biochar amendments. We
observed that the competitive interaction with keystone
taxa in the networks promoted bacterial and fungal
diversity and then decreased soil mineralization. Our
work describes new entry points for the undefined
biological mechanisms of biochar-induced negative
priming effect on SOC mineralization.

Results
Soil physicochemical properties and SOC mineralization
Biochar amendments significantly affected soil physico-
chemical conditions (F (4, 11) = 2.67–73.56, P < 0.05). Soil
pH, SOC, total nitrogen, total phosphorus, available po-
tassium, and available phosphorus were significantly ele-
vated by the medium and high biochar (MB and HB)
amendments relative to conventional fertilization (CF)
(Additional file 1: Table S1, P < 0.05). Similarly, total
potassium ranged from 20.74 to 23.55 g kg−1, with a sig-
nificant increase under the HB amendment (P < 0.05).
However, bulk density and available nitrogen under the
MB and HB amendments were significantly lower than
those under the CF treatment (Additional file 1: Table
S1, P < 0.05). In comparison, there were no significant
effects of biochar obtained for cation exchange capacity
(P = 0.982). Soil moisture capacity (SMC) under the
three biochar amendments increased sharply when soil
water suction was higher than 0.03 MPa (Additional
file 1: Figure S1, P < 0.05). The diameter–θ curves
showed that the biochar amendments increased the
size of soil effective pores to larger than 0.1 μm (Additional
file 1: Figure S1). The results of soil water characteristic
curve indicated that the water retention capacity gradually
increased with the increasing rates of biochar amendments.
SOC mineralization was estimated by both soil meta-
bolic quotient (qCO2) and microbial carbon metabolism
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represented by average well color development (AWCD).
On average, the values of AWCD and qCO2 significantly
decreased by 36.8% and 16.3% under the biochar amend-
ments compared to the CF treatment, respectively (Fig. 1,
P < 0.05), and the MB amendment was characterized by
the lowest value of AWCD and qCO2. Carbohydrate
utilization followed a similar trend to the AWCD value of
whole plate (Fig. 1, P < 0.05). However, no significant
differences were observed in the utilization of other five
carbon sources, including carboxylic acid, amino acids,
phenolic acid, amines, or polymers.

The biomass, diversity, and composition of soil bacterial
and fungal communities
Soil samples were subjected to phospholipid fatty acid
(PLFA) analysis for determining microbial biomass.
Microbial biomass measured as total PLFA was signi-
ficantly higher under the MB and HB amendments
than under the CF treatment (Additional file 1: Figure
S2, P < 0.05). Similar to total PLFA, the biomass of

microbial-specific groups significantly increased under
the MB and HB treatments in terms of bacteria
(21.3% and 34.2%), Gram-negative bacteria (29.1% and
47.5%), Gram-positive bacteria (9.1% and 15.1%), acti-
nomycetes (13.8% and 17.8%), and fungi (14.2% and
31.8%) (Additional file 1: Figure S2, P < 0.05).
The diversity and compositions of soil bacterial and

fungal communities were detected by Illumina sequen-
cing of 16S rRNA and ITS gene amplicons. After rare-
faction to equal sequencing depth, we obtained a total of
409,125 and 446,565 high-quality bacterial and fungal
sequences with an average of 1652 bacterial and 298
fungal OTUs across all samples. The MB and HB
amendments significantly increased bacterial and fungal
diversity estimated by the Shannon index and Chao1 rich-
ness compared with the no fertilizer (CK) and CF treat-
ments (Fig. 2). The bacterial communities consisted mainly
of Actinobacteria (31.2%), Alphaproteobacteria (20.4%),
Chloroflexi (8.73%), Acidobacteria (7.2%), Betaproteo-
bacteria (6.3%), Bacteroidetes (5.4%), Gammaproteobacteria

a

c

b

Fig. 1 Effects of biochar amendments on microbial carbon metabolic activities (a) and soil metabolic quotient (b; qCO2) in the flied experiment.
Carbon source utilization rates based on six specific carbon families are analyzed by the Biolog EcoPlates including carbohydrates, carboxylic
acids, amino acids, polymers, phenolic acid, and amines/amides (c). Microbial carbon metabolism is reflected by the average well color
development (AWCD). Bars with different lowercase letters indicate statistical significant differences (P < 0.05) as revealed by Bonferroni’s post hoc
tests. CK, no fertilizer; CF, conventional fertilization; LB, low biochar with 2400 kg ha−1 year−1; MB, medium biochar with 7200 kg ha−1 year−1; HB,
high biochar with 12,000 kg ha−1 year−1

Chen et al. Microbiome            (2019) 7:77 Page 3 of 18



(5.0%), Gemmatimonadetes (4.6%), and Firmicutes (3.5%)
(Additional file 1: Figure S3). The principal coordinate ana-
lysis of Bray-Curtis distances displayed that the bacterial
community compositions under the biochar amendments
were significantly (P < 0.01) clustered together on the basis
of their taxonomy (Additional file 1: Figure S4). When con-
sidering the relative bacterial abundances, Actinobacteria,
Gammaproteobacteria, and Gemmatimonadetes were
enriched under the biochar amendments, while Alphapro-
teobacteria and Acidobacteria were overrepresented under
the CK and CF treatments (P < 0.05). The fungal commu-
nity compositions were dominated by Ascomycota (89.3%)
belonging to the classes Sordariomycetes (60.8%), Eurotio-
mycetes (23.0%), and Dothideomycetes (3.2%), followed by
the rare phyla Basidiomycota (8.1%) and Zygomycota
(2.0%) (Additional file 1: Figure S3). Similar to the bac-
terial community, the comparison of the fungal com-
munity compositions by principal coordinates analysis
revealed a significant (P < 0.01) separation among the
biochar amendments and two compartments (CK and
CF) (Additional file 1: Figure S4). At the phylum/class
level, the taxonomical differences resulted primarily
from the higher abundance of Basidiomycota but the
lower abundance of Sordariomycetes (P < 0.05). Overall,
the similarities of soil bacterial and fungal community
composition within the biochar amendments were signifi-
cantly (P < 0.05) higher than those between the biochar
amendments and their counterparts including CK and CF
(Additional file 1: Figure S4).

Bacterial and fungal co-occurrence networks
To identify the co-occurrence patterns of soil bacterial
and fungal communities and niche partition in the
non-amended (CK and CF) and biochar-amended (LB,
MB, and HB) treatments, we next constructed the bac-
terial and fungal networks in which nodes and links

were calculated by the robustness of the co-occurrence
scores. Although there were more positive correlations
in the bacterial and fungal networks regardless of treat-
ments, the ratios of negative correlations to positive cor-
relations were increased under the biochar amendments
(Fig. 3, Additional file 1: Table S2). Multiple topological
properties of the bacterial and fungal co-occurrence
patterns pronouncedly varied in the biochar-amended
networks in terms of the numbers of nodes and edges,
average connectivity, and average clustering coefficient
(Additional file 1: Table S2).
The bacterial and fungal networks were clustered into

modules that could be examined to find significant
module-trait relationships. Our results indicated that
both bacterial and fungal networks could be decom-
posed into smaller coherent modules and that their
eigengenes were strongly correlated with SMC and pH
(Figs. 3, 4 and 5). The bacterial modules I and V and
fungal modules II and IV were positively correlated with
carbohydrate utilization and qCO2 in the non-amended
networks (Fig. 5). However, the bacterial modules I and
II and fungal module II showed negative correlations
with carbohydrate catabolism and qCO2 in the biochar-
amended networks. Noteworthy, the bacterial modules I
and II and fungal module II were positively associated
with bacterial and fungal diversity, respectively (Fig. 5).
Furthermore, the individual nodes displayed discrepant
roles in the microbial networks according to the within-
module connectivity Z and among-module connectivity
P. For the non-amended network, the bacterial genus
Sphingomonas (Alphaproteobacteria) and the fungal
genus Aspergillus (Eurotiomycetes) were detected as the
module hubs. Intriguingly, the statistically identified key-
stone taxa displayed positive relationships with connected
members in their own module, as well as with carbo-
hydrate catabolism and qCO2 (Figs. 3 and 4, Table 1). For

a b

Fig. 2 Biochar amendments alter the bacterial (a) and fungal (b) diversity in the field experiment. Calculation of the Shannon index and Chao1
richness is based on OTU tables rarified to the same sequencing depth. Bars with different lowercase letters are significantly different (P < 0.05) by
Bonferroni’s post hoc tests. CK, no fertilizer; CF, conventional fertilization; LB, low biochar with 2400 kg ha−1 year−1; MB, medium biochar with
7200 kg ha−1 year−1; HB, high biochar with 12,000 kg ha−1 year−1
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a b

c d

e f

Fig. 3 The bacterial co-occurrence networks under the non-amended (CK and CF) and biochar-amended (LB, MB, and HB) treatments based on
correlation analysis in the field experiment and stable isotope probing (SIP) microcosms. A connection stands for a strong (Spearman’s P > 0.8)
and significant (P value < 0.01) correlation for the non-amended and biochar-amended treatments. The non-amended (a, c) and biochar-amended
(b, d) networks in the field experiment are colored by the bacterial phyla/classes and modules, respectively. The bacterial modules I–VI in
the non-amended and biochar-amended networks were the six clusters of closely interconnected nodes. The bacterial keystone taxa (module hubs)
and their connected edges in the networks are in bold. The size of each node is proportional to the number of connections (degree),
and the thickness of each connection between two nodes (edge) is proportional to the value of Spearman’s correlation coefficients. The
blue edges indicate positive interactions between two bacterial nodes, while red edges indicate negative interactions. The non-amended (e) and
biochar-amended networks (f) in the SIP microcosms are colored by bacterial phyla/classes. The gray nodes and edges are not detected
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a b
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Fig. 4 The fungal co-occurrence networks under the non-amended (CK and CF) and biochar-amended (LB, MB, and HB) treatments based on
correlation analysis in the field experiment and stable isotope probing (SIP) microcosms. A connection stands for a strong (Spearman’s P > 0.8)
and significant (P value < 0.01) correlation for the non-amended and biochar-amended treatments. The non-amended (a, c) and biochar-amended (b, d)
networks in the field experiment are colored by the fungal phyla/classes and modules, respectively. The fungal modules I–VI in the non-amended and
biochar-amended networks were the six clusters of closely interconnected nodes. The fungal keystone taxa (module hubs) and their connected edges in
the networks are in bold. The size of each node is proportional to the number of connections (degree), and the thickness of each connection between
two nodes (edge) is proportional to the value of Spearman’s correlation coefficients. The blue edges indicate positive interactions between two fungal
nodes, while red edges indicate negative interactions. The non-amended (e) and biochar-amended networks (f) in the SIP microcosms are colored by
fungal phyla/classes. The gray nodes and edges are not detected
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the biochar-amended network, the bacterial genera
Arthrobacter (Actinobacteria) and Gemmatimonadaceae
(Gemmatimonadetes) and fungal genera Chaetomium
(Sordariomycetes) and Penicillium (Eurotiomycetes) were
analogously designated as module hubs. However, these
keystone taxa were of intensely negative relevance for the
linked nodes in the individual modules and for carbo-
hydrate catabolism and qCO2 (Figs. 3 and 4, Table 1).
Collectively, the results suggested that these particular
nodes were mandatory to summarize a module related to
carbohydrate catabolism and qCO2.

Soil properties and microbial community affected SOC
dynamics
The diversity and richness of soil bacterial and fungal
communities were positively correlated with SMC and
pH (r = 0.732~0.937, P < 0.01), but were negatively related
to carbohydrate utilization and qCO2 (r = − 0.927 to
− 0.720, P < 0.01) (Additional file 1: Table S3). However,
the bacterial and fungal biomasses showed no significant
correlations with carbohydrate catabolism and qCO2

(r = − 0.490 to − 0.271, P > 0.05). Random forest modeling
was used to evaluate the potential important predictors of

Fig. 5 Correlation coefficients between module eigengenes, soil properties and carbohydrate catabolism, and soil metabolic quotient (qCO2)
under non-amended and biochar-amended treatments. The numbers in parentheses indicate the nodes observed in each module. The bacterial
and fungal diversities are represented by the Shannon index based on the rarified same sequencing depth. The bacterial and fungal networks are
represented by the module eigengenes that are significantly related to diversity and carbohydrate metabolism. The bacterial and fungal modules
in the non-amended and biochar-amended networks are the clusters of closely interconnected nodes. The bacterial and fungal modules with
keystone taxa in the non-amended and biochar-amended networks are in bold. Bold values denote the significant relationships. SMC, soil moisture
capacity; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; TK, total potassium; AN, available nitrogen; AP, available phosphorus; AK,
available potassium; CEC, cation exchange capacity. ***P < 0.001; **P < 0.01; *P < 0.05
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carbohydrate catabolism and qCO2. Overall, we found that
SMC and pH were the two main determinants of soil
properties for carbohydrate utilization and qCO2 (Add-
itional file 1: Figure S5). The mean square error increased
13.6% and 15.7% for carbohydrate utilization and qCO2,
respectively, when removing the predictor of SMC, and
increased 10.9% and 13.3%, respectively, when removing
the predictor of soil pH. The bacterial and fungal diversity
(Shannon index) contributed more pronounced effects to
carbohydrate utilization and qCO2 than the networks
(module eigengenes) (Additional file 1: Figure S5).
Structural equation modeling (SEM) was further used
to evaluate the direct and indirect impacts of soil
properties and soil bacterial and fungal communities on
SOC mineralization under the non-amended and
biochar-amended treatments. Soil bacterial and fungal
networks (module eigengenes) were positively related
to carbohydrate catabolism under the non-amended
treatments (Fig. 6). We observed that SMC showed a
directly negative influence on carbohydrate catabol-
ism under the biochar-amended treatments. Import-
antly, the modules with keystone taxa may contribute
more to soil bacterial and fungal networks than those
without keystone taxa (Fig. 6). The bacterial and
fungal diversities (Shannon index) were positively
correlated with the networks (module eigengenes),
but were negatively associated with carbohydrate
catabolism under the biochar-amended treatments.
SEM suggested that bacterial diversity exhibited a
larger impact on carbohydrate catabolism than fungal
diversity (Fig. 6).

SIP incubations
We conducted SIP experiments to trace the bacterial
and fungal taxa capable of utilizing carbohydrates in the
non-amended and biochar-amended networks. The tar-
geted bacterial and fungal populations were successfully
labeled during incubations with 13C-glucose. The bac-
terial and fungal communities were less diverse in the
labeled libraries of 13C-incubated samples than in those
of 12C-controls (Additional file 1: Figure S6), suggesting
that only a portion of the bacterial and fungal groups
using glucose compared to the overall microbial com-
munity. In fact, approximately half of all detected bac-
terial (46.5%) and fungal (54.7%) genera were involved in
glucose utilization. Furthermore, the successful targeting
of carbohydrate catabolic populations presented sig-
nificantly higher diversity under the biochar-amended
treatments than under the non-amended treatments
(Additional file 1: Figure S6, P < 0.05). For the bacterial
community, the members of Actinobacteria (52.4%
and 19.6%), Alphaproteobacteria (16.2% and 32.5%),
Gammaproteobacteria (6.6% and 9.2%), and Betaproteobac-
teria (4.4% and 6.6%) were dominant in the labeled libraries
of 13C-incubated samples and 12C-controls, respectively
(Additional file 1: Figure S7). The fungal community con-
sisted of Ascomycota, predominated by Sordariomycetes
(70.0% and 52.3%), Eurotiomycetes (23.1% and 22.5%), and
Dothideomycetes (1.6% and 6.1%) in the labeled libraries of
13C-incubated samples and 12C-controls, respectively
(Additional file 1: Figure S7). On average, the abun-
dance of bacterial phylum Actinobacteria and fungal
phylum Sordariomycetes in the 13C-glucose-utilizing

a b

Fig. 6 The impacts of soil properties and bacterial and fungal community on carbohydrate metabolism and soil metabolic quotient (qCO2) as
estimated using the structural equation modeling under the non-amended (a) and biochar-amended (b) treatments. Blue lines indicate positive
relationships, while red lines indicate negative relationships. The bacterial and fungal diversities are represented by the Shannon indexes based
on the rarified same sequencing depth, and the bacterial and fungal networks are represented by the module eigengenes that are significantly
related to diversity and carbohydrate metabolism. The contributions of the module with or without keystone taxa in the bacterial (blue
rectangle) and fungal networks (red rectangle) were colored by dark or light, respectively. The width of arrows indicates the strength of
significant standardized path coefficients (P < 0.05). Paths with non-significant coefficients are presented as gray lines. SMC, soil moisture
capacity. ***P < 0.001; **P < 0.01; *P < 0.05
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populations increased 1.6 and 1.2 times in the biochar-
amended treatments compared to the non-amended treat-
ments, respectively. A vast majority of the total nodes
were identified as potential glucose-utilizing bacteria (80%
and 84%) and fungi (76% and 79%) in the biochar non-a-
mended and amended networks, respectively (Figs. 3
and 4, Additional file 1: Table S2). All bacterial and
fungal keystone taxa in the non-amended and
biochar-amended networks were detected among these
potential 13C-glucose-utilizing populations. The bacterial
and fungal module hubs in the non-amended networks
exhibited positive correlations with the connected nodes
in their individual modules, while those in the
biochar-amended networks were negatively associated
with their linked nodes (Figs. 3 and 4).

Discussion
Biochar amendments altered the bacterial and fungal
communities
Biochar amendments as a widely proposed strategy to
adjust SOC storage and improve soil fertility are a topic
of growing interest and strong concern. In the short-
term field experiment, we chose three rates of biochar
amendments to assess the biochar effects on soil charac-
teristics. Our results clearly revealed that biochar amend-
ments significantly reduced bulk density, but increased
soil pH, water holding capacity, and easily available sub-
strates. Biochar amendments are expected to immediately
increase the pH of adjacent soil due to the alkaline pH of
biochar, which relies heavily on the nature of feedstock
materials and pyrolysis temperature. Biochar made from
crop residues and formed at relatively high temperature
tends to have high ash contents and carbonates [21]. Bio-
char is found to simultaneously promote SMC and avail-
able water to microorganisms, which can be attributed
mainly to the reduced bulk density and increased propor-
tion of large voids and porosity [22]. In addition, biochar
characteristics of surface charge can facilitate the transfer
of water and nutrients from bulk soil into pore structure.
Due to the high internal surface area and porosity, biochar
enhances water holding capacity and effectively retains
moist pore spaces for continued hydration of microbial
populations as soils dry [23].
The increased pH and SMC under the MB and HB

amendments may enhance microbial spore germination,
colonization, and reproduction rates and consequently
increase bacterial and fungal biomass. Given that biochar
induced the changes in microbial biomass, it was ex-
tremely unlikely that such changes in abundance were
spread equally across different functional groups. Changes
in physicochemical properties and substrate utilization
under the biochar amendments would differentially tailor
the composition and network of soil bacterial and fungal
communities. The PCoA combined with network analysis

confirmed that the compositions and network structures
of the bacterial and fungal communities in the biochar-
amended soils were significantly different from those in
the non-amended soils (Figs. 3 and 4, Additional file 1:
Figure S4 and Table S2). Biochar amendments directly
triggered the changes in the bacterial and fungal commu-
nity structures by promoting the abundance of Gram-
positive bacteria and saprotrophic fungi. These results
suggested that differential responses of fungal and bac-
terial taxa to the preferred energy sources for their meta-
bolic needs caused some microbial groups to become
competitively dominant. Select Gram-positive bacteria
preferentially thrive on the surface of fresh biochar and
often excrete highly complex sets of lignin-degrading
oxidative enzymes necessary to depolymerize the highly
complex biochar-derived C [11, 24]. Additionally, sapro-
trophic fungi have exceptional enzymatic capabilities to
degrade biochar via the production of peroxidase, pheno-
loxidase, and laccase [25]. In contrast to Gram-positive
bacteria, saprotrophic fungi occupy a hyphal, invasive
growth habit, which gives them access to effectively
colonize the interior of biochar particles.
The major changes in topological and modular features

of the bacterial and fungal networks were mirrored by the
alterations in community composition. The coupling
linkages of the bacterial and fungal networks increased in
the negative direction under the biochar amendments,
suggesting antagonistic or competitive interactions for
substrate acquisition. The biochar-amended networks
with a higher average connectivity displayed the more
complex coupling among microbes. The module in the
network suggested that the microbial populations within
it had similar ecological niches and functional interdepen-
dences [26]. Soil pH and SMC have been interpreted as
the primary predictors of topological network properties
involving network complexity and modularity [15, 27].
The increased pH and SMC under the biochar treatments
directly reduced a physiological constraint on soil bacteria
and fungi and changed interactive relationships [28, 29].
Alternatively, soil pH is often significantly related to a
variety of soil properties (e.g., nutrient availability and
organic carbon characteristics) and indirectly regulates the
microbial network structure [30]. Biochar amendments
reshaped the distinct keystone taxa within the bacterial
and fungal networks. The bacterial and fungal communi-
ties with keystone taxa indicated the complex interactions
in the co-occurrence networks. The important keystone
taxa in the phyla Actinobacteria and Gemmatimonadetes
are capable of growing preferentially on carbon-rich
refractory materials to decompose the cellulose, ligno-
cellulose, and chitin in biochar-amended soils [31].
However, it should be noted that soil pH varied in a
narrow range under the non-amended (5.71–6.02) and
biochar-amended (6.14–6.57) treatments, respectively
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(Additional file 1: Table S1). SEM suggested that pH
had a significant effect on fungal diversity rather than
on bacterial diversity, when soil pH span a narrow
range at nearly neutral value (Fig. 6). Bacteria and
fungi exhibit fine differences in body size, metabolic
activity, and dispersal potential [32], which display
different responses to the narrow pH changes. The
“size-plasticity” hypothesis argues that smaller individuals
are less environment filtered than larger individuals,
because smaller individuals are more likely to have plasti-
city in metabolic abilities [33, 34]. Therefore, bacteria may
exist widely in such a narrow pH range, suggesting that
the selection pressure of pH was invisible on the bacterial
community.

Competition with keystone taxa stimulated the bacterial
and fungal diversity
To advance the explanatory and predictive understand-
ing of SOC sequestration, it is critical to investigate how
the underlying bacterial and fungal communities shift in
their diversity. Traditional dichotomy supports the diver-
gent natural selection generated by resource competition
as a vital driver of rapid diversification, especially when
microbial taxa share similar resource requirements or
niches in the soil microenvironment [35]. Functional
and phylogenetic diversity is commonly expected to be
promoted by intra- and inter-specific competitive inter-
action in the ecological communities [36]. We found
that the effects of biochar on the bacterial and fungal
diversity are potentially mediated by keystone taxa in the
networks (Fig. 6, Table 1). We postulated that high
microbial diversity was sustained via the recruitment of
particular keystone taxa from the indigenous taxa pool
in the biochar-amended soils. It is generally assumed
that the uneven distribution of interaction strengths is
prevalent in the networks [37]. For instance, special taxa
are likely to have close connections and thereby make
stronger contributions to network structure and diver-
sity relative to poorly connected taxa [38]. The highly
connected keystone taxa in the networks can indivi-
dually explain microbiome compositional turnover bet-
ter than all taxa combined, highlighting crucial roles for
maintaining the organization integrity and the function-
ing of the entire microbial community [39, 40]. With
network topological data, the members of the genera
Arthrobacter and Chaetomium categorized as keystone
taxa were exclusively observed in the bacterial and
fungal networks under the biochar amendments, respec-
tively. When the biochar-amended networks were com-
partmentalized into modules, the bacterial and fungal
keystone taxa probably displayed intense competition
with contacted members in the respective modules
(Figs. 3 and 4). These presumed keystone taxa, Arthrobacter
and Chaetomium, have competitive traits and advantages

for breaking down recalcitrant biochar-derived C and cap-
turing limiting resources more efficiently [41, 42]. Further-
more, the genus Penicillium could produce antifungal toxins
to kill, inhibit growth, and displace competing fungi, form-
ing antagonistic structures in the modules. Alternatively,
multiple taxa with different competitive strategies and
trait expression alter their morphology, trait expression,
and metabolism to persist against direct displacement or
overgrowth in diverse communities [18]. Network-based
scores complemented with DNA-SIP microcosms pro-
vided consistent evidence of inter-specific competition by
keystone taxa with continual increases in the bacterial and
fungal diversity. Collectively, these results suggested that
functional keystone taxa with mutually exclusive ability
may increase bacterial and fungal diversity under the
biochar amendments.

Higher bacterial and fungal diversity decreased SOC
mineralization
The increases in bacterial and fungal diversity could be of
ecological significance, as greatly reduced microbial carbo-
hydrate catabolism and qCO2 were observed under the
MB and HB amendments. The present study suggested
that negative SOC priming was positively correlated with
increased bacterial and fungal diversity. Despite soil pH
and moisture have been reported as crucial drivers of
SOC dynamics, soil bacterial and fungal communities are
a core backbone of terrestrial SOC cycling, mediating the
vast majority of SOC mineralization. There is an ongoing
controversy over whether the modern ecological concept
and theory of biodiversity-ecosystem functioning relation-
ships hold true for microorganisms [43]. Essentially, the
reported impacts of microbial diversity on SOC dynamics
vary considerably, ranging from being negative over
neutral to positive. The functional traits of keystone taxa
have frequently been proposed to be of particular eco-
logical importance to determine the relationships between
taxa richness and SOC dynamics [44, 45]. The keystone
taxa often serve as gatekeepers to community functions,
with profound contributions to SOC transformation and
sequestration [46].
Biochar can facilitate negative SOC priming in the

long term due to lowering the microbial mineralization
rate of natural SOC [47, 48]. The overall diversity of
bacterial and fungal communities was negatively asso-
ciated with microbial carbohydrate catabolism and qCO2

(Fig. 6, Additional file 1: Table S3). Theoretically, the
competitive interaction in the networks can powerfully
determine the direction and magnitude of the diversity-
function relationships [49]. Although the role of compe-
tition was relatively weak in the entire network, the
competitive interaction with keystone taxa may outweigh
any positive effects of highly co-existing taxa on SOC dy-
namics under the biochar amendments (Figs. 3, 4 and 5).
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We confirmed that the biochar-induced competitive in-
teraction with keystone taxa benefited SOC accumulation
by inhibiting of carbohydrate catabolism and qCO2. In
marked contrast, the non-amended networks exhibited
a pairwise positive relationship with keystone taxa.
Co-existing taxa with cooperative interactions may
stimulate community performance relevant to increasing
SOC mineralization. A new set of experimental studies
with synthesized microcosms has demonstrated that high
richness (more than ten species) enhances the inhibitory
force of competitors with the capability to dampen SOC
use efficiency [18, 50]. The soil has typically extremely
high diversity in the bacterial and fungal communities,
where competitive stress associated with inter-specific
interactions may likewise contribute to the eventual
suppression of carbon catabolic rates in the natural field
systems [43, 51]. Nevertheless, it should be noteworthy
that competitive relationships do not inevitably corres-
pond to “poor” ecosystem functioning. Reduced carbon
metabolism and SOC mineralization rates with increasing
bacterial and fungal diversity could stimulate SOC reten-
tion under the biochar amendments. Taken together, our
results favored the previous inference that the intensely
competitive or antagonistic interactions could impair the
community performance of SOC mineralization at
high levels of diversity. More broadly, the predictions
of how SOC mineralization varies with microbial di-
versity will enrich our knowledge of the mechanism
underlying the diversity-function patterns in diverse
microbial communities.

Conclusions
In conclusion, biochar amendments induced negative
priming effects on SOC sequestration by competitive
interaction coupled with keystone taxa in the micro-
biome networks. Biochar amendments structured the
competition with keystone taxa in the bacterial and
fungal networks, which promoted microbial diversity
and subsequently reduced carbohydrate catabolism and
qCO2. Our study highlighted the important role of bio-
char-induced competition with keystone taxa in stimulat-
ing SOC sequestration via negative priming. This finding
will stimulate the novel theoretical developments for the
priming effect on SOC dynamics.

Methods
Field experiment description
The field experiment was conducted at the tobacco field
station (35° 51′ 36″ N, 118° 37′ 48″ E), located in Linyi,
Shandong Province, China. This site has a temperate
monsoon climate with an annual average temperature
and precipitation of 14.1 °C and 849mm, respectively. The
tested soil is characterized as a Hapli-Ustic Cambisol in the
Food and Agricultural Organization (FAO) classification

system. Fifteen trial plots (5m long × 2m wide) were laid
out in a completely randomized block including five treat-
ments with three replicates: (1) no fertilizer (CK), (2) con-
ventional fertilization (CF), (3) low biochar with 2400 kg
ha−1 year−1 (LB), (4) medium biochar with 7200 kg ha−1

year−1 (MB), and (5) high biochar with 12,000 kg ha−1

year−1 (HB). The CF treatment contained 450 kg ha−1 com-
pound fertilizer (10–10–30, N–P2O5–K2O), 600 kg ha−1

fermented soybean meal, and 150 kg ha−1 K2SO4. Three
biochar amendments were given the equal application rates
of nitrogen, phosphorus, and potassium as those under the
CF treatment. The biochar used in the experiment was pro-
duced from maize straw pyrolyzed at 450 °C for 48 h. The
biochar had a pH value of 9.49, SOC of 915.4 g kg−1, total
nitrogen of 2.32 g kg−1, total phosphorus of 3.03 g kg−1, total
potassium of 32.94 g kg−1, available phosphorus of 336.24
mg kg−1, available potassium of 18,125mg kg−1, and cation
exchange capacity of 15.06 cmol kg−1. Tobacco (Nicotiana
tabacum L., cultivar NC102) grown in a monoculture was
transplanted in May and harvested in August since 2014.
Briefly, tillage and ridging were conducted 1 week before
the tobacco seedling transplanting. Healthy seedling trans-
planting was performed with a population density of 18,000
plants per hectare in each field plot. Technical guidelines
for the management of tobacco crops were applied during
the whole growth season. We manually removed the grass
at the rosetting stage, snapped the tobacco flowers at the
topping stage, and harvested mature leaves from bottom to
top of the stalks at the maturity stage. Tobacco crops were
harvested three times at weekly interval.

Soil sampling and physicochemical properties
Soil samples from each plot were collected at a depth of
0–20 cm after the harvest in early August 2016. After
field collection, fresh samples were placed on ice and
immediately transported to the laboratory, where they
were sieved (2 mm) to remove visible residues and then
homogenized. Soil samples were subdivided into three
subsamples for analyzing soil physiochemical properties,
microbial communities and functions, and DNA-SIP
microcosms.
Soil pH was detected by a glass electrode with water:

soil ratio of 2.5:1 (v/w). SOC was determined by wet di-
gestion using the potassium dichromate method [52].
Total nitrogen and available nitrogen were measured
using the micro-Kjeldahl method and the alkaline
hydrolysis diffusion method, respectively [53, 54]. Total
phosphorus was digested with HF-HClO4 and available
potassium was extracted with sodium bicarbonate, respec-
tively, which were determined using the molybdenum-blue
method [55, 56]. Total potassium was digested with
HF–HClO4 and available potassium was extracted
with ammonium acetate, respectively, which were detected
by atomic absorption spectrophotometer [57]. Cation
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exchange capacity was measured by ammonium acetate
solution at pH 7 [58]. Bulk density was determined by
the standard cylinders of 43 cm3. Soil water characteris-
tic curve was measured at 0, 0.0025, 0.006, 0.01, 0.03,
0.1, and 1.5 MPa using the pressure membrane meter
method [59]. Soil moisture capacity (SMC) are calculated
by progressive summation of pore volumes fractions based
on soil water characteristic curve, accomplished by pairing
each calculated pore volume fractions with the equivalent
pore radius [60].

PLFA profiles
To address question 1, we characterized microbial bio-
mass by PLFA analysis following a modified method [61].
Briefly, total lipids were extracted from 2 g freeze-dried
soil samples with a chloroform-methanol-citrate buffer
mixture (1:2:0.8, v/v/v) and separated into neutral, glyco-
and phospholipids by a silica acid column. Phospholipids
were subjected to a mild alkaline methanolysis, and the
fatty acid methyl esters were quantified by a HP 6890
Series gas chromatograph instrument (Hewlett Packard,
Wilmington, DE, USA). Identification was performed
using bacterial fatty acid standards and MIDI peak identi-
fication software (Microbial ID Inc., Newark, DE, USA).
Microbial biomass was calculated by summing the
abundance of specific biomarkers and expressed as
nmol PLFA g−1 dry soil [62]. The following PLFAs were
representative markers of the specific groups: Gram-nega-
tive bacteria (cyclopropyl bacteria and unsaturated PLFAs)
[63], Gram-positive bacteria (iso- and anteiso-branched
PLFAs) [63], actinomycetes (10Me PLFAs) [64], and fungi
(18:1 ω9c and 18:2 ω6, 9c) [62]. The sum of
Gram-positive bacteria, Gram-negative bacteria, and
non-specific bacteria was expressed as the bacterial
biomass [62].

Illumina sequencing and bioinformatic analysis
To address question 1, we determined the diversity,
composition, and network by Illumina sequencing of
16S rRNA and ITS genes. The samples for analyzing the
microbial communities were stored at − 80 °C until
DNA extraction. The DNA was extracted from 0.25 g
soil samples using a PowerSoil DNA extraction kit
(MoBio Laboratories Inc., Carlsbad, CA, USA) following
the manufacturer’s instructions. The extracted DNA was
suspended in nuclease-free TE buffer, and the quality
and quantity of DNA were checked using a NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA). For the high-throughput Illumina
sequencing, PCR amplifications of the bacterial 16S rRNA
and fungal ITS genes were performed using the universal
primer pairs of 338F/806R [65] and ITS1-1737F/
ITS2-2043R, respectively [66]. Both the forward and
reverse primers were tagged with an adapter and linker

sequence, and 8-bp barcode oligonucleotides were added
to distinguish the amplicons from different soil samples.
Reaction mixtures (20 μL) contained 4 μL of 5× FastPfu
Buffer, 0.25 μL of each primer (10 μM), 2 μL of 2.5 mM
dNTPs, 10 ng template DNA, and 0.4 μL FastPfu Poly-
merase. The PCR protocol was as follows: an initial
pre-denaturation at 95 °C for 5 min; 28 cycles of 30 s at 94
°C, 30 s at 55 °C, and 45 s at 72 °C; and a final extension at
72 °C for 10min. All amplicons were cleaned and pooled
in equimolar concentrations in a single tube, after which
they were subjected to library preparation, cluster gener-
ation, and 250-bp paired-end sequencing on an Illumina
MiSeq platform (Illumina Inc., San Diego, CA, USA).
The raw sequences were quality screened and trimmed

using the Quantitative Insights into Microbial Ecology
(QIIME package version 1.9.1) pipeline [67]. Sequences
that fully matched the barcodes were selected and dis-
tributed into separate files for the bacterial 16S rRNA
and fungal ITS genes. Additional sequence processing
was performed including quality trimming, demulti-
plexing, and taxonomic assignments. QIIME quality trim-
ming was performed in accordance with the following
criteria: (1) truncated before three consecutive low-quality
bases and re-evaluated for length, (2) no ambiguous
bases, and (3) the minimum sequence length of 469 bp
(16S rRNA) and 307 bp (ITS) after trimming. The
assembled reads were processed de novo chimera
detection conducted with UCHIME [68]. The remaining
sequences were additionally screened for frame shifts via
HMM-FRAME [69]. Thereafter, the sequence reads from
each sample were clustered to provide similarity-based
operational taxonomic units (OTUs) that had 97% identity
cutoffs [70]. Finally, the sequences of 16S rRNA and ITS
genes were subjected to a similarity search using the Basic
Local Alignment Search Tool (BLAST) of the Silva
Release 119 database and UNITE version 6.0 database,
respectively [71, 72]. Alpha diversity and Bray-Curtis
distances for a principal coordinate analysis of soil
microbial community were calculated after rarefying all
samples to the same sequencing depth.

DNA stable isotope probing microcosms and quantitative
PCR
To address question 2, we determined the impacts of soil
bacterial and fungal networks coupled with keystone taxa
on microbial diversity by DNA-stable isotope probing
(SIP) microcosms and qPCR. Subsamples were gathered
for each treatment from the portion that was stored
at − 80 °C. Microcosms with 20 g fresh soil were
established in 50mL sterilized glass serum vials, which
were sealed with membrane to allow for air exchange.
Microcosms were separated into duplicate groups that
were supplemented with 10mM 12C- or 13C-labeled
glucose, and then incubated at 28 °C for 15 days. The
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13C-labeled glucose was universally labeled by 13C atoms
at all carbons (> 99% atom purity, Cambridge Isotope
Laboratories, Andover, MA, USA). The isolation of
density-gradient fractions of microcosm DNA samples
was performed following Dunford and Neufeld [73].
Briefly, an appropriate volume of gradient buffer was
added to 2 μg of total DNA and 4.8 mL of 7.163M cesium
chloride (CsCl) density-gradient solution mix in a 15-mL
Falcon tube, and the solution was adjusted to a final
density of 1.725 gmL−1. The solution was transferred into
5mL Quick-Seal polyallomer centrifuge tubes that were
sealed to ensure tube quality. Then, the tubes were
weighed, balanced, and loaded into a TLA-120.2 rotor and
centrifuged at 45,000 rpm for 44 h under vacuum using a
Beckman optima TLX (Beckman Coulter, Inc., Palo Alto,
CA, USA). After ultracentrifugation, the solution was
immediately separated into 15 fractions from the bottom
of each tube using a calibrated infusion pump (New Era
Pump System, Inc., Farmingdale, NY, USA). Samples from
unlabeled control experiments were always analyzed in
parallel as negative controls. 12C controls were extremely
useful to identify the “heavy” DNA from SIP incubations
[74]. The DNA present in each fraction was purified on a
MicroCon YM-30 column (Millipore) to remove CsCl and
dissolved in 30 μL nuclease-free H2O. The pooled heavy
density fractions with buoyant densities from 1.725 to
1.750 gmL−1 were used for qPCR and Illumina sequen-
cing after incubation of the 12C- and 13C-labeled glucose.
On average, the heavy density fractions in the 13C-incu-
bated samples contained over 12 times more DNA than
those in the 12C-controls for the non-amended micro-
cosms and over 6 times than those for the biochar-
amended microcosms.
The copy numbers of 16S rRNA and ITS genes in the

fractioned DNA of each fraction were quantified by qPCR
on a CFX96 Optical Real-Time Detection System (Bio-Rad
Laboratories, Hercules, CA, USA) using the same primers
as described above. Reaction mixtures (20 μL) contained
1 μL DNA template (1–10 ng), 10 μL 2 × SYBR Premix Ex
Taq (TaKaRa, Dalian, China), and 0.5 μM each primer.
No-template controls were included with each qPCR run.
Standard curves were constructed by a serial dilution (102

to 108 copies) of plasmids harboring 16S rRNA and ITS
genes. All qPCR assays were run with 3min initial dena-
turation at 95 °C, followed by 40 cycles, with plate-reading,
of 30 s at 95 °C and 45 s at 60 °C, and then with a final
melt-curve step from 72 to 95 °C. The qPCR was performed
in triplicate, and amplification efficiencies > 97% were
obtained with the r2 values > 0.99.

Microbial carbon metabolic profiles and soil metabolic
quotient
To address question 3, we measured microbial carbon
metabolic activities using Biolog EcoPlates and determined

qCO2 as soil respiration divided by microbial biomass. The
capability of soil microbial community to utilize a variety of
carbon sources was measured with Biolog EcoPlates (Biolog
Inc., Hayward, CA, USA) [75]. The Biolog EcoPlates con-
sisted of 96-well microplates, containing 31 different carbon
sources plus a blank well including three replications.
Carbon sources were subdivided into six group substrates
including carbohydrates, carboxylic acids, amino acids,
polymers, phenolic acid, and amines/amides [76]. Soil mi-
croorganisms were extracted as follows: 5 g soil (dry weight
equivalent) was added to 45mL sterile 0.85% (w/v) saline
solution. The mixture was shaken for 30min at 90 rpm and
then left to stand for 30min. Next, 1mL supernatant was
diluted to 20mL with sterile saline solution. Then, each
well of the Biolog EcoPlates was inoculated by 200 μL of
the prepared suspension and incubated at 25 °C in the dark
for 7 days. The rate of utilization of the carbon sources was
pointed by the reduction of tetrazolium violet redox dye,
and color development reflecting carbon utilization in the
wells was detected by absorbance measurements at 590 nm
every 24 h. For the posterior analysis, absorbance at a single
time point (96 h) was used, when the asymptote was
reached. Optical density (OD590) value from each well was
corrected by subtracting the control (blank well) values.
Soil respiration was determined according to the

modified method described by Chen et al. [77]. Briefly,
25 g soil (dry weight equivalent) was moistened to 60%
water-holding capacity and incubated in a 125-mL jar
under aerobic conditions at 25 °C. All the jars were kept at
the same conditions as the pre-incubation during a period
of 7 days. Three replicates of gas samples from each treat-
ment were collected from the headspace of the jars using
a gas-tight syringe at 0.5, 1, 3, 5, 7, 10, 15, 20, 25, and 30
days during the incubation period. After gas sampling,
stoppers were removed from the jars, and aluminum foil
was used to seal the jars again. The CO2 concentration
was analyzed with a HP 6890 Series gas chromatography
(Hewlett Packard, Wilmington, DE, USA) equipped with a
flame ionization detector. Three extra jars containing the
same weight of pure silica sand were analyzed in parallel
as blanks. CO2 gas standards were purchased from the
National Research Center for Certified Reference Mate-
rials, China. The qCO2 was calculated as soil basal re-
spiration divided by total microbial biomass.

Statistical analysis
One-way analysis of variance (ANOVA) was performed
to assess the effects of fertilization treatments on soil
properties, the diversity and abundances of soil bacterial
and fungal communities, and microbial carbon metabo-
lism and qCO2 using Bonferroni’s post hoc test in SPSS
20.0 software (SPSS, Chicago, IL, USA). The significance
testing in one-way ANOVA was based on the data from
which the samples originated both followed a normal
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distribution and had the same variances [78]. Principal
coordinate analysis (PCoA) was used to evaluate the
biochar impacts on the Bray-Curtis distances of the
bacterial and fungal community compositions [79]. We
conducted the “capscale” function of the R package
vegan (version 3.1.2) to calculate the Bray-Curtis dis-
similarities for principal coordinate analysis and “per-
mutest” permutation-based testing for the calculation of
the significance values [80]. The compositional similarity
was calculated as 1 minus the Bray-Curtis dissimilarity.
The non-amended (CK and CF) and biochar-amended

(LB, MB, and HB) samples were separately examined for
biochar effects on soil bacterial and fungal networks.
The OTUs presented either in all non-amended or in all
biochar-amended samples were kept for the subsequent
network constructions, respectively. The co-occurrence
patterns of the bacterial and fungal communities were
constructed by calculating multiple correlations and
similarities with co-occurrence network (CoNet) in-
ference [81]. We used an ensemble approach based on the
four measurements, including Pearson and Spearman
correlations and Bray-Curtis and Kullback-Leibler dissimi-
larities between pairwise OTUs. A valid co-occurrence
was considered a statistically robust correlation between
taxa when the correlation threshold was above 0.7 and the
P value was below 0.01. The P values were merged using
Brown’s method for the four measurements [82] and then
adjusted using the Benjamini-Hochberg procedure to
reduce the chances of obtaining false-positive results [83].
Network visualization was conducted using Gephi soft-
ware [84]. Nodes indicated individual microbial taxa
(OTUs) in the microbiome network [26]. Network edges
represented the pairwise correlations between nodes,
suggesting a biologically or biochemically meaningful
interactions [12]. The modules were the clusters of closely
interconnected nodes (i.e., groups of co-existing or co-
evolving microbes) [26]. The microbial networks were
searched to identify highly associated nodes (clique-like
structures) using Molecular Complex Detection (MCODE)
introduced for the Cytoscape platform [85]. The algorithm
identifies seeded nodes for expansion by computing a score
of local density for each node in the graph. Over 90% accu-
racy of MCODE predictions yielded, when an overlap score
was above 0.2 threshold. The calculated topological charac-
teristics of the bacterial and fungal networks included the
following: the numbers of positive and negative corre-
lations, average path length, graph density, network dia-
meter, average clustering coefficient, average connectivity,
and modularity. The roles of individual nodes were esti-
mated by two topological parameters: the within-module
connectivity Z, which quantified to what extent a node
connected to other nodes in its own module, and the
among-module connectivity P, which quantified how well
the node connected to different modules [86]. The nodes

with either a high value of Z or P were defined as keystone
taxa, including module hubs (Z > 0.25, P ≤ 0.62; critical to
its own module coherence), connectors (Z ≤ 0.25, P > 0.62;
connect modules together and important to network co-
herence), and network hubs (Z > 0.25, P > 0.62; vital to both
the network and its own module coherence) [87]. For
network modules, the module eigengene could summarize
the closely connected members within a module [88]. The
singular value decomposition of the module expression
matrix was used to represent the module eigengene
networks [89]. The module eigengene of a module was
defined as the first principal component of the standardized
module expression data [90]. Then, the relationships
between soil properties, microbial diversity, network
module eigengenes, and SOC mineralization (microbial
carbon metabolism and qCO2) were evaluated using
Spearman’s rank correlation test.
Random forest modeling was used to quantitatively assess

the important predictors of carbohydrate catabolism and
qCO2 involving soil properties and the microbial com-
munity. Soil properties included soil pH, SMC, SOC, total
nitrogen, total phosphorus, total potassium, available nitro-
gen, available phosphorus, available potassium, and cation
exchange capacity, while the microbial community included
the biomass, diversity, composition, and network of soil
bacterial and fungal communities. The bacterial and fungal
biomass were characterized by bacterial and fungal PLFAs.
The bacterial and fungal diversities were represented by the
Shannon index based on the rarified same sequencing
depth. The compositions of soil bacterial and fungal com-
munities were indicated by the first principal coordinates
(PCoA1). The bacterial and fungal networks were repre-
sented by the module eigengenes that were significantly re-
lated to diversity and carbohydrate metabolism. The
importance of each factor was evaluated by the increase in
the mean square error between the observed and predicted
values when the predictor was randomly permuted [91].
This accuracy of importance was measured for each tree
and was averaged across the forest. Accuracy of importance
was estimated for each observation using the left-out indi-
vidual predictions (called “out-of-bag” estimation) and then
averaged over all observations [92]. These analyses were
conducted using the randomForest package [93], and the
significance of the model and predictor importance was
determined using the A3 and rfPermute packages, respec-
tively [94, 95]. Structural equation modeling (SEM) was
applied to determine the direct and indirect contributions
of soil properties and microbial community to carbohydrate
catabolism and qCO2 [96]. SEM analysis was conducted via
the robust maximum likelihood evaluation method using
AMOS 20.0 (AMOS IBM, USA). The SEM fitness was
examined on the basis of a non-significant chi-square test
(P > 0.05), the goodness-of-fit index (GFI), and the root
mean square error of approximation (RMSEA) [97].
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