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Abstract

Background: The past decade of microbiome research has concentrated on cataloging the diversity of taxa in different
environments. The next decade is poised to focus on microbial traits and function. Most existing methods for doing this
perform pathway analysis using reference databases. This has both benefits and drawbacks. Function can go undetected
if reference databases are coarse-grained or incomplete. Likewise, detection of a pathway does not guarantee expression
of the associated function. Finally, function cannot be connected to specific microbial constituents, making it difficult to
ascertain the types of organisms exhibiting particular traits—something that is important for understanding microbial
success in specific environments. A complementary approach to pathway analysis is to use the wealth of microbial trait
information collected over years of lab-based, culture experiments.

Methods: Here, we use journal articles and Bergey’s Manual of Systematic Bacteriology to develop a trait-based database
for 971 human skin bacterial taxa. We then use this database to examine functional traits that are over/underrepresented
among skin taxa. Specifically, we focus on three trait classes—binary, categorical, and quantitative—and compare trait
values among skin taxa and microbial taxa more broadly. We compare binary traits using a Chi-square test, categorical
traits using randomization trials, and quantitative traits using a nonparametric relative effects test based on global
rankings using Tukey contrasts.

Results: We find a number of traits that are over/underrepresented within the human skin microbiome. For example,
spore formation, acid phosphatase, alkaline phosphatase, pigment production, catalase, and oxidase are all less common
among skin taxa. As well, skin bacteria are less likely to be aerobic, favoring, instead, a facultative strategy. They are also
less likely to exhibit gliding motility, less likely to be spirillum or rod-shaped, and less likely to grow in chains. Finally, skin
bacteria have more difficulty at high pH, prefer warmer temperatures, and are much less resilient to hypotonic conditions.

Conclusions: Our analysis shows how an approach that relies on information from culture experiments can both support
findings from pathway analysis, and also generate new insights into the structuring principles of microbial communities.
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Background
The development of rapid, cost-effective sequencing tech-
nology has resulted in an explosion of microbiome
research over the past decade. Microbial communities are
now being sampled in almost every environment imagin-
able, ranging from the depths of the ocean [1, 2] to outer
space [3, 4]. Reflecting the tremendous scope and magni-
tude of microbiome research are recent initiatives such as
the Human Microbiome Project (HMP) [5–9] and the
Earth Microbiome Project (EMP) [10–12]. The former
aims to characterize all microbes on and in the hu-
man body, and the latter seeks to describe micro-
biomes across the entire globe. Already, discoveries
from these and other, similar efforts are proving
invaluable for understanding human disease [13–16],
developing novel therapeutics [17, 18], and improving
agricultural yields [19–21].
Existing microbiome research tends to focus on

cataloging taxonomic diversity. Microbial function, by
contrast, is less well studied [22, 23]. Unfortunately,
without an understanding of microbial traits and, in
particular, how traits differ among different environ-
ments, it is virtually impossible to answer key bio-
logical questions, like why certain microbes live
where they do [24]. Trait-based analyses, which have
a long history in macroscopic ecology [25–27], allow
researchers to connect ecological traits to environ-
mental associations, helping to explain the mecha-
nisms underlying observed microbial distributions.
The sheer diversity of typical microbiomes, however,
makes trait-based analysis daunting.
Several strategies have been developed to circumvent

challenges associated with trait-based microbial ecology.
Shot-gun sequencing studies, for example, have been
queried against reference databases, including COG/KOG,
KEGG, eggNOG, Pfam, and TIGRFAM, to determine
overrepresented genes, proteins, operons, and higher-
order cellular processes [28–35] that reflect microbial
function. Meanwhile, similar efforts have been extended
to amplicon sequencing using PICRUSt (Phylogenetic
Investigation of Communities by Reconstruction of
Unobserved States) [36] and Tax4Fun [37]—bioinformat-
ics tools that infer microbial function based on reference
databases, along with various assumptions about phylo-
genetic conservation. Although amplicon and shot-gun
sequencing approaches appear comparable [37, 38],
neither performs particularly well [38]—likely because of
problems with the underlying reference databases, which
are coarse-grained [38], represent only a minute fraction
of microbial diversity, and are heavily biased toward a few
organisms and environments [39]. More recently, machine
learning techniques have been applied in an attempt
correct for some of these problems and improve accuracy
of trait prediction [40, 41].

Despite ongoing improvements in functional reference
databases, the gold standard for defining microbial traits
remains culture experiments. Decades of lab-based
analyses have led to an impressive understanding of the
functions of diverse microbial taxa, including many of
those prevalent in microbiome studies. This information,
however, is largely available through journal articles and
Bergey’s Manual of Systematic Bacteriology [42–45],
neither of which is methodical in its presentation of
data. Recently, there has been an effort to catalog trait
information in more manageable and centrally organized
databases, including StrainInfo [46], which collects trait
data from biological resource centers and the JGI GOLD
database, which allows users to enter known information
on a handful of traits, including oxygen use, motility,
and Gram stain. In addition, a recent text-parsing tool
was developed that collects microbial descriptions from
six separate sources, and then uses this information to
predict microbial traits, including confidence scores [47].
The alternate, more precise but also more work-intensive
approach is to link traits determined from lab- and
culture-based experiments to output from microbiome
sequencing studies directly, by manually curating every
organism identified in a particular metagenomics sample.
Although the effort involved is immense, if curation is
done in a systematic fashion, then the resulting database
has added, long-term value.
Here, we introduce such a trait database for human skin

microbial communities, and then use it to characterize the
bacterial residents of human skin in trait space. Bacterial
traits are further compared to characteristics of bacteria
more broadly using a similar database generated without
any bias toward a particular habitat [48]. Finally, we com-
pare traits across different skin environments to determine
whether dry, moist, and sebaceous skin sites have func-
tionally different microbial constituents. Many of the traits
that we observe in skin microbiomes are consistent with
expectations. For example, skin bacteria prefer warmer
habitats and have higher salt requirements, in keeping with
abiotic conditions on the skin surface. Several findings,
however, suggest novel biological insight. Cocci, for
example, are overrepresented on skin. Bacteria that form
spores and possess phosphatases, by contrast, are under-
represented. Finally, relative to bacteria as a whole, skin
bacteria are more likely to be anaerobic—a feature that is
reflected not only in patterns of oxygen use, but also in
distributions of oxidase and catalase activity, both of which
are primarily beneficial in oxygen-rich environments.

Results
Trait composition of the human skin microbiome
Figure 1a presents binary traits for skin microbes. Spore
formation is uncommon, particularly among abundant
species, which are five times less likely to sporulate than
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skin microbes in general. By contrast, over half of skin
taxa produce at least one pigment. Enzyme activities are
varied. Whereas catalase is present in just under half of
skin bacteria, oxidase, urease, alkaline phosphatase,

gelatinase, and aesculin hydrolysis are less common,
while acid phosphatase, α-galactosidase, arylsulfatase,
pyrazinamidase, and tellurite reductase are rare. Catalase
is the only enzyme more prevalent in abundant taxa.

Fig. 1 Proportion of all taxa (> 0.001% of reads in at least one sample; white) and abundant taxa (> 0.1% of reads in at least one sample; gray) in
the human skin microbiome that exhibit (a) a range of different binary traits, (b) different types of oxygen use, (c) different types of motility, (d)
different shapes, (e) different Gram stains and (f) different patterns of aggregation
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Gas production by skin bacteria is limited: almost no
microbes generate methane, although a small fraction
produces hydrogen sulfide and indole. Nitrate reduction
is relatively common. This is in keeping with previous
findings that skin commensals frequently reduce the
nitrate in sweat [49, 50].
Figure 1b–f presents categorical traits for skin

microbes. The majority of skin microbes are facultatively
anaerobic, although there are sizeable fractions of strictly
aerobic and strictly anaerobic organisms as well. Most
skin microbes are also non-motile, and this is particu-
larly true of abundant taxa. Still, an unexpectedly large
proportion—approximately 40%—have flagella. No other
forms of motility are strongly represented. Most skin
bacteria are rod-shaped and occur in clumps. Overall,
skin microbes are predominantly Gram-negative, al-
though abundant bacteria are split equally between
Gram-negative and Gram-positive taxa.
Quantitative microbial traits are given in Table 1.

Optimal temperature for growth is between 33.2 and
35.0 °C, which is close to the range of mean skin surface
temperature, at 32.5–35.5 °C [51]. Optimal pH is near to
neutral, even for abundant bacterial species. This is sur-
prising, because the skin is an acidic environment, with
pH values ranging from 4.0 to 7.0, but generally concen-
trated around pH ~ 5.0 [52–54]. In fact, low pH is
thought to benefit commensal skin microbes, which
adhere better to the skin surface under acidic conditions
[54]. Optimal salt concentrations and salt concentration
ranges are, likewise, well above salt concentrations mea-
sured in sweat [55]. We hypothesize that this may be ex-
plained by sweat evaporation at the skin surface, which
can concentrate the salt from sweat. Mean GC content
is approximately 50%.
Figure 2 shows use of carbon substrates by skin

bacteria. Here, we include all forms of use, including
hydrolysis and fermentation. A wide range of carbon sub-
strates are consumed by multiple skin taxa. This is par-
ticularly true of amino acids, with > 50% of the amino
acids in our database used by > 70% of abundant skin taxa.
Rates of use of monosaccharides and organic acids are
lower, but still appreciable, with ~ 40% used by > 70% of
abundant skin taxa. Use of alcohols and oligosaccharides/
polysaccharides is less widely distributed, with 22% of

oligosaccharides and no (0%) alcohols used by > 70% of
abundant taxa. Of the carbon compounds considered, the
substrates used most often by abundant taxa are glutam-
ate (95%), asparagine (95%), valerate (92%), and glucose
(91%).1 The substrates used least are gelatin (3%), urea
(17%), and xylitol (17%).
Comparing abundant versus rare skin bacteria, abun-

dant taxa are more likely to use amino and organic
acids. Eight amino acids (alanine, asparagine, aspartate,
glutamate, glycine, leucine, proline, and serine; see Add-
itional file 1: Supplemental Information II Table S2.3)
are used more by abundant microbes than by the skin
community as whole. Similarly, nine organic acids (acet-
ate, citrate, formate, gluconate, malate, malonate, pyru-
vate, succinate, and valerate; see Additional file 1:
Supplemental Information II Table S2.3) are used more
by abundant microbes. For both amino acids and
organic acids, all significant differences indicate that
abundant skin taxa use these compounds more than skin
taxa as a whole. Differences in consumption of other
compounds, including alcohols and saccharides, are less
biased toward overuse by abundant species. Indeed, two
complex sugars (xylose and cellobiose) are used less by
abundant taxa. Glucose, a simple sugar, on the other
hand, is used more by abundant taxa (see Additional
file 1: Supplemental Information II Table S2.3).
It is well known that certain taxonomic groups, for

example Actinobacteria, are overrepresented among
skin microbes and, in particular, among abundant skin
microbes. While these groups are likely overrepresented
because they have traits that make them uniquely
adapted to the skin environment, it is possible that the
traits that are important for living on skin are not those
that we measured. Instead, the skin relevant traits may
be other traits and the differences that we observe in
the traits that we did measure may merely exist as a
result of phylogenetic conservation. For this reason, we
performed an additional analysis regressing the prob-
ability of a taxon being abundant versus rare against
each trait individually, both for a naïve logistic regres-
sion and for a regression where phylogenetic related-
ness was accounted for using the phylolm package in R
[56]. To test the overall significance of a fitted regres-
sion, we compared it to a null model using a likelihood

Table 1 Mean quantitative trait data for all skin bacteria (>0.001% of reads in at least one sample) and abundant skin bacteria (0.1%
of reads in at least one sample)

mean for all taxa (mean for abundant taxa)

GC content (%) 50.6 (51.7) %

minimum maximum optimum range

temperature (°C) 20.3 (18.8) 42.7 (42.3) 35.0 (33.2) 23.5 (25.3)

pH 5.60 (5.72) 8.30 (7.97) 7.04 (7.06) 2.74 (2.41)

NaCl concentration (%) 0.35 (1.09) 1.52 (1.68) 0.89 (1.23) 1.40 (1.14)
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ratio test. In general, we found that many of the differ-
ences between abundant and rare taxa were preserved
when phylogeny was accounted for. For instance,
oxygen use, spore formation, Gram stain, type of motil-
ity, H2S production, the presence of catalase, aesculin
hydrolysis and urease, and use of succinate, acetate,
gluconate (organic acids), serine, proline, and glutamate
(amino acids) were significantly different among abun-
dant and rare taxa, whether or not phylogeny was
considered. A few traits were not significant once phyl-
ogeny was included, for example cell shape, the
presence of alkaline phosphatase, pyrazinamidase and
gelatinase, and use of xylose, glucose, cellobiose
(saccharides), malonate, formate, valerate, pyruvate,
citrate, aspartate (organic acids), asparagine, alanine,
leucine, and glycine (amino acids). Finally, use of 2-
ketogluconate (organic acid) and the ability to perform

nitrate reduction were only significant when accounting
for phylogeny (see Additional file 1: Supplemental
Information II, Table S2.1–S2.3).

Trait overrepresentation on human skin
Without comparison to prevalence in the world as a
whole, it is impossible to know which traits are generally
common versus preferentially selected for in skin envi-
ronments. Figure 3a presents a comparison of binary
traits among abundant skin bacteria versus bacteria
more broadly (see “Materials and methods” section; see
also Additional file 1: Supplemental Information III Fig.
S3.1). Although there is a correlation between preva-
lence of a trait on skin and in the world as a whole,
several traits are underrepresented among abundant skin
taxa. Spore formation, for example is 7.5 times less likely
among skin taxa as compared to general bacteria.

a

b

c

e

d

f

Fig. 2 Proportion of all taxa (> 0.001% of reads in at least one sample; white) and abundant taxa (> 0.1% of reads in at least one sample; gray) in
the human skin microbiome that utilize particular (a) organic acids, (b) amino acids, (c) monosaccharides, (d) oligosaccharides and
polysaccharides, (e) alcohols and (f) other compounds
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Meanwhile, there is a 4.5-fold reduction in the likelihood
of a skin taxon possessing acid phosphatase and a 1.5-
fold reduction in the likelihood of a skin taxon posses-
sing alkaline phosphatase as compared to bacteria more
broadly. General bacteria are also 23% more likely to
produce a pigment, 21% more likely to possess catalase,
and 87% more likely to possess oxidase. For categorical
traits, we again see significant differences between skin
taxa and taxa from the world more broadly. Abundant
skin bacteria (see Fig. 3b) are approximately half as likely
to be aerobic, favoring, instead, a more flexible, facul-
tative strategy. Likewise, abundant skin bacteria are 8-
fold less likely to exhibit gliding motility, and none
possess axial filaments, whereas these occur in ~ 0.1%
of bacteria overall. Abundant skin taxa are also less
likely to be spirillum or rod-shaped, whereas the frac-
tion of cocci and coccibacilli on skin is inflated more
than 2-fold. Finally, abundant skin bacteria are half as
likely to grow in chains, preferring to aggregate as
clumps instead.
Figure 4 compares quantitative traits among world and

skin bacteria (see also Additional file 1: Supplemental
Information III, Figure S3.2). Abundant skin bacteria
have more difficulty at high pH, tolerating, on average, a
pH maximum of 7.97 versus 9.03 for the world in gen-
eral. Abundant skin taxa also have a smaller range of pH
values (2.41 versus 3.38) over which growth occurs. We
speculate that this is because skin is a largely acidic en-
vironment with a relatively stable pH. Interestingly,
however, optimal pH values for skin microbes do not

reflect pH ranges measured on skin. Abundant skin
bacteria also prefer warmer temperatures, can tolerate
warmer temperatures, and have more difficulty at cold
temperatures (with all three skin metrics being ~ +
2 °C) as compared to bacteria more broadly. Again, we
hypothesize that this is because the skin is, at least rela-
tively speaking, a warmer environment [48]. With re-
spect to salt requirements, abundant skin bacteria are
much less resilient to hypotonic conditions, requiring
on average 1.1% NaCl, whereas average requirements in
the world as a whole are closer to 0.02%. We speculate
that this is because the skin is subject to constant ex-
cretion of salts through sweating. Finally, skin bacteria
have a lower GC content (see also Additional file 1:
Supplemental Information I, Figure S2), consistent with
previous findings that host-associated organisms are
AT-rich [57, 58].
We do not consider differences in carbon substrate

usage between skin and the world because this informa-
tion was collected differently in the skin database
relative to the world database, making comparison
impossible (see “Materials and methods” section).

Phylum level differences
As suggested above, one explanation for observed trends
in functional traits on human skin is that these result from
certain phyla (Actinobacteria, Bacteroidetes, Firmicutes,
and Proteobacteria) being the predominant constituents
of the skin microbiome. To address this possibility, we
used two separate approaches. First, we determined

a b

Fig. 3 Qualitative trait comparison for abundant taxa (> 0.1% of reads in at least one sample; see also Supplementary Information I). a Proportion
of taxa with a specific, qualitative trait in skin microbial communities (x-axis) versus the world as a whole (y-axis). Filled symbols represent traits
that are significantly different in skin environments; open circles represent traits that are not significantly different; marker size reflects significance.
b Plots of trait proportions among skin bacteria (pink) and world bacteria (green). Open red circles denote traits that are overrepresented on skin;
filled green circles denote traits that are overrepresented in the world (underrepresented on skin)
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whether differences in functional traits between skin
microbes and microbes more broadly persist when consid-
ering each phylum separately (see Tables 2, 3, and 4 and
Additional file 1: Supplemental Information IV). For many
traits—specifically, spore formation, pigment production,
acid phosphatase, catalase (except for Actinobacteria),
oxidase (see Table 2, Additional file 1: Table S4.1–S4.3),
oxygen requirements, cell aggregation (see Table 3,
Additional file 1: Table S4.4–S4.6), GC content, pH, and
temperature requirements (see Table 4, Additional file 1:
Table S4.7–S4.9)—biases that were apparent at the king-
dom level are also apparent across multiple phyla. For
other traits—for example, alkaline phosphatase, aeculin
hydrolysis, and α-galactosidase (see Table 2, Additional
file 1: Table S4.1–S4.3)—biases from the global compos-
ition appear driven by a single phylum, usually
Proteobacteria, which is the most diverse phylum
(see Additional file 1: Table S1.2) and thus most
likely to impact overall results. Finally, for a few
traits—most notably H2S and indole production (see
Table 2, Additional file 1: Table S4.1–S4.3), motility,
Gram stain, and cell shape (see Table 3, Additional
file 1: Table S4.4–S4.6)—trends vary among phyla.

Second, similar to our comparison of abundant
versus rare taxa, we regressed the probability of a
taxon being on the skin versus in the world more
broadly against each trait individually using both a
naïve logistic regression and a regression where
phylogenetic relatedness was accounted for [56]. We
then tested the overall significance of a fitted regression
based on a null model using a likelihood ratio test. This
analysis showed that all traits significantly over/underrepre-
sented on skin relative to the world remained significant
when accounting for phylogeny, while three traits (urease,
pyrazinamidase, and nitrate reduction) were only signifi-
cant under phylogenetic correction (see Additional file 1:
Supplemental Information IV, Figure S4.10 and S4.11).

Trait differences among skin sites
Human skin microbiomes generally structure according
to skin environment, with three environments—dry,
moist, and sebaceous—represented (see Additional file 1:
Supplemental Information I, Table S1.1). Because taxo-
nomic composition differs among these three environ-
ments, functional diversity may vary as well. To test this
hypothesis, we performed pairwise comparisons (dry vs.

Fig. 4 Boxplots comparing quantitative traits among skin bacteria (pink) and bacteria from the world in general (green) for abundant skin
microbes (> 0.1% of reads in at least one sample; see also Supplemental Information I). Blue stars are used to denote significant differences
between a trait value in the world versus on skin. Box width indicates the relative number of microbes used for the comparison
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moist, dry vs. sebaceous, and moist vs. sebaceous) for all
traits and substrate utilizations in our database (see Sup-
plemental Information V). Surprisingly, not one differ-
ence emerged among skin environments for enzyme
activities, gas production, spore formation, pigment pro-
duction, nitrate reduction, Gram stain, cell aggregation,
or pH, temperature, and NaCl requirements (see Add-
itional file 1: Figure S5.1i, iii, S5.2i, iii, S5.3i, iii). Abun-
dant bacteria at sebaceous sites are less likely to be rods
as compared to abundant taxa at moist sites (49% versus
68%, see Additional file 1: Figure S5.3iv). As well, anaer-
obes are slightly underrepresented at dry sites as com-
pared to sebaceous sites (see Additional file 1: Figure
S5.2ii), and GC content is slightly lower at dry sites as
compared to moist sites (see Additional file 1: Figure
S5.5), although these latter two trends only emerge when
considering the full skin microbiome, not just abundant
taxa. Unfortunately, when accounting for phylogeny, the
model for cell shape was degenerate for abundant taxa.
However, variation in oxygen use between dry and seba-
ceous sites was observed even with phylogenetic correc-
tion. We did not attempt to control for phylogeny for
GC content, since this was a quantitative trait.
Substrate usage (see Additional file 1: Supplementary

Information V, Figure S5.6–S5.11) is similarly constant
among skin environments, and what few differences do
exist only occur between moist and sebaceous sites.

Specifically, bacterial use of three organic acids—quinate,
malonate, and caprate—as well as glucosamine (a mono-
saccharide) is overrepresented at sebaceous sites. By con-
trast, bacterial use of three saccharides—rhamnose, xylose,
and cellobiose—as well as glycine (an amino acid) and
urea are overrepresented at moist sites.
Our finding of high similarity among skin sites is in

keeping with previous studies [6], but contrasts with a
KEGG analysis performed in Oh et al. [59]. The discrep-
ancy between our trait database analysis and the KEGG
analysis may be because we considered a different set of
functions. Alternatively, it may be because of differences
in our definition of function prevalence. In particular,
Oh et al. [59] quantified commonness of pathways
across samples, whereas we quantify commonness of
functions across taxa. Defining prevalence across species
is not possible using pathway analysis, highlighting a
distinction and benefit of our trait-based approach.

Discussion
We have undertaken a comprehensive trait-based ana-
lysis of the microbial constituents of human skin. In
doing so, we have built an extensive trait-based database
that will benefit future endeavors to characterize the
functional properties of the skin microbiome. Below, we
discuss some of our findings in terms of biological
insight and interpretations.

Table 2 Summary of binary trait results across dominant phyla from the human skin microbiome. Black is used for traits that are over-
represented in the world; red is used for traits that are over-represented in the human skin microbiome. (See Table S3.1 for more detail)
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Catalase, oxidase, and oxygen tolerance
Catalase is the most broadly distributed enzyme across the
entire skin microbiome, and the only enzyme present in a
significantly higher fraction of abundant skin taxa as com-
pared to skin taxa as a whole. This suggests that catalase
may be particularly beneficial for survival on skin, which
should not be surprising. The majority of human skin is ex-
posed to oxygen, while the role of catalase is to protect cells
against hydrogen peroxide (H2O2)—an oxidant primarily
generated as a result of reaction between oxygen and growth
substrates [60]. Interestingly, however, catalase is still less
common in skin bacteria as compared to bacteria as a whole.
We speculate that this is because of the existence of one or
more diverse, low-oxygen niches on human skin. Further
evidence for such niches comes from the markedly lower
prevalence of oxidase and the increased fraction of facultative
and strict anaerobes and microaerophiles found on skin (see
Additional file 1: Figure S3.1). One potential low oxygen
niche is sebaceous follicles. These house the classic skin an-
aerobe, Propionibacterium acnes [61], and have been previ-
ously shown to be dominated by anaerobic taxa [62].
Sequencing studies, however, have pointed to low microbial
diversity within follicles [63], which is not consistent with

our finding that ~ 1/3 of culturable bacterial diversity on skin
is either anaerobic or microaerophilic. Thus, we hypothesize
that there are additional, low-oxygen environments hosting
anaerobic taxa. One potential candidate is mixed-species bio-
films [64]. Another is lower dermal layers, which may have
been collected through scraping of the skin [59].
Several previous studies have considered the anaerobic

portion of the skin microbiome, which is of interest
because of its role in wound infections [65, 66]. These
studies have found that counts of aerobes outnumber
counts of anaerobes [67]. Although this may seem to
contradict our conclusions, our analysis is based on
diversity, rather than absolute counts. Based on our
work, we theorize that, though anaerobes and microaer-
ophiles may be less abundant, they must still be quite
diverse. Consistent with previous findings, we observe
evidence of increased anaerobicity among microbes at
sebaceous sites (see Additional file 1: Figure S5.2) [67].
Similarly, our conclusion that anaerobes are less
common at dry sites (see Additional file 1: Figure S5.2)
accords with the KEGG analysis performed in [59],
which found that dry sites harbored an abundance of
citrate cycle modules.

Table 3 Summary of categorical trait results across dominant phyla from the human skin microbiome. Black is used for traits that are over-
represented in the world; red is used for traits that are over-represented in the human skin microbiome. (See Table S3.2 for more detail)
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Acid and alkaline phosphatases
Phosphatases enable bacteria to utilize certain compo-
nents of soluble organic phosphorus [68], and thus are
prevalent in environments where inorganic phosphorus
is limiting. Almost 50% of microorganisms in soil and
plant roots possess phosphatases [69–71]. By contrast,
we find acid phosphatase in 7–8% of skin bacteria, and
alkaline phosphatase in 12–13%; thus, we conjecture
that phosphorus limitation is not significant in skin envi-
ronments. This is surprising, because an experiment
designed to measure loss of inorganic elements through
healthy skin did not detect any phosphorus [72], nor is
phosphorus abundant in human sweat [73, 74]. One
explanation could be that skin bacteria rely on host-
produced phosphatases [75, 76] to meet their needs.
This would circumvent the metabolic cost of producing
phosphatases, highlighting potentially unique aspects of
microbial strategies in human-associated environments.

Spore formation
In a recent review article, Lennon and Jones [77] outlined
factors promoting bacterial dormancy, with spore forma-
tion being an extreme case. Unlike the human gut, where
few microbial genomes (~ 15%) show evidence of sporula-
tion [77], human skin satisfies many of the conditions for
dormancy. Skin, for example, is a highly inhospitable,
exposed environment, lacking in resource availability [78].
By contrast, the gut is well-fed and generally protected.
Furthermore, residence times on skin are long as
compared to in the gut. Despite these differences, we find

that the prevalence of sporulation is similar on skin and in
the gut, both of which are significantly lower than rates
among bacteria more broadly (see Fig. 3). Only ~ 20% of
skin taxa produce spores, and this number is drastically
lower (3%) when considering abundant taxa. Clearly, then,
human microbiomes favor species without sporulation.
We surmise that this is a result of the constant environ-
ment provided by host homeostasis.

Cell shape and aggregation
Relative to the broader world, skin microbiomes are
enriched for cocci and coccobacilli (see Fig. 3). There are
several hypotheses for why this might occur. First, rods
allow for increased surface-to-volume ratios, improving
nutrient uptake by passive diffusion [79] or when nutri-
ents are directly acquired from a surface [80]. The fact
that relatively fewer skin bacteria are elongated may thus
indicate that nutrients on skin are readily available or, at
the very least, are not acquired by passive diffusion (but
see [81]). Second, although rods and filamentous cells are
predicted to perform better under shear stress [82], cocci
may be better able to fit into small pockets and pores of
the stratum corneum. This is an alternate strategy for pro-
tection [82] that may be particularly advantageous on skin.
Third, rod-shaped cells are more hydrodynamic, and thus
can propel through liquid more efficiently [83]. This, how-
ever, may be of minimal importance in skin environments
(although it is worth noting that rods appear to be
enriched in moist regions). By contrast, cocci move much
faster under conditions of Brownian motion [84]. Because

Table 4 Summary of quantitative trait results across dominant phyla from the human skin microbiome. Black is used for traits that take on
higher values in the world; red is used for traits that take on higher values in the human skin microbiome. (See Table S3.3 for more detail)
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skin bacteria frequently spread from one person to an-
other through airborne release [85], a coccoid shape could
facilitate interpersonal dispersal. Interestingly, coccoid
cells can acquire some of the advantages of a rod shape
(e.g., increased surface attachment) by growing in chains
[82]. Despite this, chains, like rods, are underrepresented
on human skin, further supporting our conclusion that
skin selects for a spherical, rather than elongated shape.

Substrate utilization
Although many different substrates are consumed by
skin bacteria, several stand out as being particularly
important for success. Bacterial use of organic and
amino acids, for example, shows enrichment in abun-
dant skin bacteria. Interestingly, all eight of the amino
acids that we find used significantly more by successful
skin species have been positively identified in fingerprint
samples [86]. This is consistent with our conclusion that
these are important skin nutrients. Similar to amino
acids, many of the organic acids that are used by a
greater fraction of abundant skin taxa also appear
commonly on human skin. This includes lactate,
pyruvate [73], formate [87], caprate, and valerate [88].
In other cases, nutrients whose use is overrepresented
among abundant taxa may not be produced by hu-
man skin, but rather, by dominant skin constituents.
Succinate, for example, is a skin fermentation product of
Staphylococcus epidermidis, meaning that it is likely
widely available on the skin surface [89]. Further analysis
of the chemical composition of skin secretions, not only
by the human host but also by the entire skin microbiome,
will help elucidate our findings regarding preferential
substrate use.
Substrates that are less used by abundant skin taxa

tend to be plant sugars, for example cellobiose [90],
rhamnose [91], and xylose [92]. It is not difficult to
understand why the ability to consume plant compounds
provides little advantage on skin. Surprisingly, however,
consumption of these sugars seems to be preferentially
concentrated at moist sites, at least relative to sebaceous
sites (see Additional file 1: Supplemental Information V,
Figure S5.8 and S5.9). It is not obvious why there would
be any benefit of plant sugar consumption in these
regions. Urea use is also more common at moist sites
(see Additional file 1: Supplemental Information IV,
Figure S5.11), again for reasons that are unclear. In fact,
urea use in general is surprising. Despite being prevalent
on human skin [93], urea is one of the least commonly
used substrates in our study (see Figs. 1 and 2). Why
urea is not used by more skin bacteria, and why it seems
to be used most at moist sites, highlights how trait-based
analyses can uncover new, and unexpected trends,
opening novel lines of inquiry that will ultimately help to
elucidate factors governing skin microbiome composition.

Comparison to ProTrait
Both our database and the ProTrait database [47] draw from
a vast literature of culture-based experiments. Whereas we
manually curate our data, the ProTrait database uses a text-
mining algorithm. Not surprisingly, our database contains
information on fewer bacterial species (971 vs. 3046, with 25
unique to our database). Coverage of traits, however, is simi-
lar. We include several enzymes and carbon sources (for ex-
ample arylsulfatase, pyrazinamidase, tellurite reductase,
caprate, itaconate, suberate, succinate, urocanate, valerate, 3-
hydroxybutyric acid, 3-hydroxybenzoate, asparagine, orni-
thine, phenylalanine, proline, threonine, tryptophan, glu-
cosamine, methyl-B-D-glucoside, butanol, xylitol, 2,3-
butanediol, carnitine, phenethylamine, putrescine, thymi-
dine, uridine, and 2-aminethanol) that are not in ProTrait;
however, the ProTrait database contains other enzymes and
substrates that are not in our database. Interestingly, there
do not appear to be significant differences in error rates be-
tween the two databases, at least for traits whose values are
specified. The databases do, however, substantially
differ in trait coverage. In particular, our database
specifies the values of traits for a greater number of
organisms, whereas the ProTrait database is more
likely to report traits as unknown, at least using a
precision of ≥ 0.9 (see Supplemental Information VI
for several example comparisons).

Potential limitations
Our curated trait-based approach has many benefits, but
also some draw-backs. First, we only consider well-
defined taxa, ignoring detected taxa that have not been
fully characterized, as well as all “dark matter” [59]. This
could bias some of our predictions. While functional
database methods are not as restricted in this way, they
still rely on detection of orthologous genes. Conse-
quently, both approaches are likely to miss at least some
traits, particularly when these arise from poorly charac-
terized taxonomic groups. Another complication of our
approach is that it relies on conservation of functional
traits within a species. Though our assumptions are
likely less severe than tools like PICRUSt, functional
traits are not always conserved. In compiling our
database, we recorded evidence of strain variation, which
suggested that interstrain differences in carbon source
utilization are most common (14% of taxa), followed by
differences in enzyme activity (11% of taxa). Although
such variability complicates our analyses, it is more
likely to obscure patterns than create them. Thus, when
a pattern is detected, it likely reflects true biology.

Conclusions
Many opportunities exist for increased trait-based ana-
lysis of microbiome communities. Future studies consid-
ering additional human and non-human environments
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will help elucidate the structuring principles and biological
mechanisms driving patterns in worldwide microbial
distributions. Meanwhile, extended analyses of skin micro-
biomes will further highlight the principles governing
community assembly. Analyses that quantitatively account
for microbial abundance, for example, could clarify differ-
ences among dry, moist, and sebaceous sites, while further
gradation by body location is also possible. Another exten-
sion would be to consider functional trait differences
between different people—something that would be
particularly informative when comparing individuals with
skin disease to healthy controls.
Trait-based analyses and functional comparisons are

the next step in microbiome research. Although most
studies attempting to do this have taken a functional
database/pathway analysis approach, culture and lab-
based studies afford unique benefits. Our analysis of the
skin microbiome has elucidated some of these benefits,
detecting different patterns than were observed using
KEGG [59]. This, in turn, has opened up a range of
questions about why specific microbes exist in certain
skin environments, and what they are doing to survive.

Materials and methods
Species list for the human skin microbiome
We defined a list of skin bacterial species using a
recent study [59] that employed shotgun sequencing
(see Additional file 1: Supplemental Information I,
Table S1.1). Specifically, whole genome shotgun data
from the NCBI Sequence Read Archive (SRA) project
SRP002480 was obtained from the SRA FTP site and
converted to paired-end FASTQ format using the
splitsra script in our Git repository hosted at: https://
bitbucket.org/skinmicrobiome/metagenomics-scripts.
FASTQ data originating from the same BioSample
were consolidated into the same file using a custom shell
script and the SRA RunInfo table found here: http://www.
ncbi.nlm.nih.gov/Traces/study/?acc=SRP002480.
A reference database was constructed for the Kraken

classifier [94] using the complete genomes in RefSeq for
the bacterial (2199 taxonomic IDs), archaeal (165 taxo-
nomic IDs), and viral (4011 taxonomic IDs) domains, as
well as eight representative fungal taxonomic IDs, the
Plasmodium falciparum 3D7 genome, the human
genome, and the UniVec Core database (ftp://ftp.ncbi.
nlm.nih.gov/pub/UniVec). Low complexity regions of
the microbial reference sequences were masked using
the dustmasker program with a DUST level of 20
[http://www.ncbi.nlm.nih.gov/pubmed/16796549]. After
masking, every 31-mer nucleotide sequence present in the
collection of reference FASTA sequences was stored at
the taxonomic ID of the lowest common ancestor among
the leaf nodes that share that 31-mer (see [94] for details).
The total size of the database plus index was 110 GB.

Each input read from SRA project SRP002480 was
assigned a taxonomic ID using Kraken by finding exact
matches between every 31-mer nucleotide sequence
present in that read and the database of 31-mers con-
structed above. Because of the hierarchical storage of k-
mers in the database, reads can be classified at more gen-
eral taxonomic levels than the specific strain sequences
that were used to build the database. Output from the
Kraken classification was summarized by taxonomic ID
along with the number of unique k-mers detected in the
data using the kraken-report-modif script (present in the
metagenomics-scripts repository linked above). The total
number of unique k-mers for each taxonomic ID in the
database was obtained using the count_kmers.pl script,
and full taxonomic strings were generated using the taxi-
d2taxstring script, both included in the metagenomics-
scripts git repository linked above.
Two separate lists were constructed from the above

output (see Additional file 1: Supplemental Information
I, Table S3.1). The first list, representing all human skin
taxa, was determined by recording any species that
occurred in at least one sample with a relative abun-
dance > 0.001% of reads. We set a lower bound on the
percentage of reads because taxa with only a handful of
reads may be spurious and/or may represent incorrect
taxonomic assignments. The second list, representing
abundant skin taxa, was determined by recording any
species that occurred in at least one sample with a
relative abundance of 0.1% of reads. We chose to con-
sider abundance classes (all taxa vs. abundant taxa),
rather than specifically accounting for abundance
because abundance estimation from shotgun sequencing
data is notoriously difficult.

Skin database compilation
Using the lists of taxa generated above, we compiled a
database of microbial traits. For this, we relied on Bergey’s
Manual of Systematic Bacteriology [42–45] and the initial
journal articles describing each species. We only consid-
ered validly described species and did not include Candi-
datus taxa, since little information was available for these.
Our database contains information for 971 species.

World database compilation
We used a database compiled from species descriptions in
the International Journal of Systematic and Evolutionary
Microbiology. A full description of this database, including
its availability, can be found at [48] (see also, Additional
file 1: Supplemental Information I, Table S1.2).

Statistical analyses
Depending on the variable, we performed three types of
comparisons: binary, categorical, and quantitative,
across two sets of contrasts: skin vs. world and within
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skin bacteria, among the three skin environments: dry,
moist, and sebaceous. These comparisons were con-
ducted across all Bacteria and the four major phyla,
separately considering abundant (> 0.1% of reads) and
all taxa (> 0.001% of reads) respectively.
Binary comparisons were performed on variables

that had two outcomes (e.g., positive and negative).
When making two-way binary comparisons, we esti-
mated proportion of occurrence with standard errors
using a standard binomial model. For an overall test
of difference in proportion, we used a Chi-square test.
Pairwise comparisons were made using the standard
errors of the binomial proportion. We visualized the
comparisons with scatter plots of point estimates and
error bars, using the 45° equality line as a guide for
relative prevalence of the variables.
Categorical comparisons were performed on vari-

ables with multiple discrete, unordered outcomes
(e.g., chain, clump, or singly). We compared the rela-
tive frequencies of the different outcomes in skin vs.
world (or pairwise across skin environments) using a
randomization test in which we resampled the data
105 times and computed a p value for the null hypoth-
esis of equality of proportions by computing the number
of randomized samples that were less extreme than the
observed proportion.
Quantitative outcomes (e.g., volume, pH tolerance)

were compared using a nonparametric relative effects
test based on global rankings using Tukey contrasts [95].
We chose this test because it is robust to highly non-
normal distributions and non-uniform variances and
controls appropriately for multiple comparisons. We
used box-and-whisker plots of each variable for
visualization of the medians and deviations in the data.
Finally, to explore the role of phylogenetic conser-

vation as an explanation for observed trends, for all
binary and qualitative traits, we regressed the prob-
ability of a taxon being abundant versus rare or being
from skin versus the world against each trait indi-
vidually, both for a naïve logistic regression and for a
regression where phylogenetic relatedness was
accounted for. For the latter, we used the phylolm
package in R [56] and the phylogenetic tree from
Yarza et al. [96]. A handful of taxa were missing from
the tree, and these were ignored in subsequent
analysis. To test the overall significance of a fitted
regression, we compared the regression to a null
model using a likelihood ratio test. We then com-
pared p-values for the naïve logistic regression and
the regression with phylogenetic correction.
All statistical analysis was performed using the R

programming language (R Code Team 2016), with the
quantitative analysis performed using the nparcomp
package [95].

Endnotes
1Note that we have ignored several compounds (e.g.,

carnitine, phenylethylamine, methyl-pyruvate) where results
were only reported for a handful (< 20) of species.

Additional file

Additional file 1: Supplementary Information I through VI, containing
information on the dataset and database, phylogenetically corrected
analyses, additional analyses of full microbiomes, including rare members,
body-site comparisons, and a comparison to ProTrait. (DOCX 43176 kb)
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