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Abstract

Background: There are a variety of bioinformatic pipelines and downstream analysis methods for analyzing 16S rRNA
marker-gene surveys. However, appropriate assessment datasets and metrics are needed as there is limited guidance
to decide between available analysis methods. Mixtures of environmental samples are useful for assessing analysis
methods as one can evaluate methods based on calculated expected values using unmixed sample measurements
and the mixture design. Previous studies have used mixtures of environmental samples to assess other sequencing
methods such as RNAseq. But no studies have used mixtures of environmental to assess 16S rRNA sequencing.

Results: We developed a framework for assessing 16S rRNA sequencing analysis methods which utilizes a novel
two-sample titration mixture dataset and metrics to evaluate qualitative and quantitative characteristics of count
tables. Our qualitative assessment evaluates feature presence/absence exploiting features only present in unmixed
samples or titrations by testing if random sampling can account for their observed relative abundance. Our
quantitative assessment evaluates feature relative and differential abundance by comparing observed and expected
values. We demonstrated the framework by evaluating count tables generated with three commonly used
bioinformatic pipelines: (i) DADA2 a sequence inference method, (ii) Mothur a de novo clustering method, and (iii)
QIIME an open-reference clustering method. The qualitative assessment results indicated that the majority of Mothur
and QIIME features only present in unmixed samples or titrations were accounted for by random sampling alone, but
this was not the case for DADA2 features. Combined with count table sparsity (proportion of zero-valued cells in a
count table), these results indicate DADA2 has a higher false-negative rate whereas Mothur and QIIME have higher
false-positive rates. The quantitative assessment results indicated the observed relative abundance and differential
abundance values were consistent with expected values for all three pipelines.

Conclusions: We developed a novel framework for assessing 16S rRNA marker-gene survey methods and
demonstrated the framework by evaluating count tables generated with three bioinformatic pipelines. This
framework is a valuable community resource for assessing 16S rRNA marker-gene survey bioinformatic methods and
will help scientists identify appropriate analysis methods for their marker-gene surveys.
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Background
Studies often use 16S rRNA marker-gene surveys
(targeted sequencing of the 16S rRNA gene) to character-
ize microbial communities. The 16S rRNA marker-gene-
survey measurement process includes molecular steps
to selectively target and sequence the 16S rRNA gene,
and computational steps to convert the raw sequence
data into a count table of feature relative abundance
values [1]. Both molecular and computational measure-
ment processes contribute to the overall measurement
bias and dispersion [1–3]. Datasets that characterize com-
plex microbial communities with some degree of “ground
truth” are needed to properly characterize the 16S rRNA
marker-gene-survey measurement process accuracy.
Diverse bioinformatic pipelines used in practice pro-

duce count tables with diverse characteristics. For exam-
ple, the commonly used QIIME, Mothur, and DADA2
pipelines produce feature sets and count tables with dif-
ferent characteristics. The QIIME open-reference clus-
tering pipeline performs feature inference using refer-
ence clusters and full amplicon pairwise distances [4, 5].
The Mothur de novo clustering pipeline performs fea-
ture inference using pairwise distances calculated from
informative positions of a multiple sequence alignment
[6, 7]. Unlike QIIME, the Mothur feature representative
sequences are not the full amplicon due to the removal
of informative positions after the multiple sequence
alignment. The DADA2 pipeline performs feature infer-
ence using a probability model and an expectation
maximization algorithm [8]. Unlike distance-based clus-
tering methods employed by the Mothur and QIIME
pipelines, DADA2 parameters determine if low abun-
dance sequences are grouped with a higher abundance
sequences.
Numerous studies have evaluated qualitative and quan-

titative characteristics of the rRNA measurement process
using mock communities, simulated data, and environ-
mental samples. Assessments based on mock communi-
ties [9] show features sets that commonly contain sig-
nificantly more features than expected [10]. The higher
than expected number of features is often attributed to
sequencing and PCR artifacts as well as reagent contam-
inants [3, 11]. A notable exception is count tables gener-
ated using feature inference methods, such as DADA2 [8].
Sequence inference methods aim to reduce the number of
features from sequence artifacts by using statistical mod-
els to group sequences by both similarity and abundance.
Nonetheless, while mock communities are useful in this
type of assessment, they lack the diversity and dynamic
range of features present in real samples [9].
Quantitative assessment of 16S rRNA sequencing using

mock communities and simulated data provides an
incomplete characterization of the measurement process.
Results from relative abundance estimates using mock

communities generated from mixtures of single organ-
isms’ DNA have shown taxonomic-specific effects where
individual taxa are under- or over-represented in a sample.
For example, Gram-negative bacteria have higher extrac-
tion efficiency compared to Gram-positive bacteria and
are thus likely over-represented in count tables [12, 13].
Mismatches in the primer binding sites are also responsi-
ble for taxonomic-specific biases [3, 14, 15]. Additionally,
taxon-specific biases due to sequence template proper-
ties such as GC content, secondary structure, and gene
flanking regions have been observed [15–17]. Due to
limited community complexity, the applicability of mock
community assessment results to more complex environ-
mental samples is unknown. Environmental sample com-
plexity can be modeled using simulations. For example,
simulations have been used to assess differential abun-
dance methods, where specific taxa are artificially over-
represented in one set of samples compared to another
[18]. However, simulated data can only evaluate the com-
putational steps of the measurement process.
Quantitative and qualitative assessment can also be per-

formed using sequence data generated from mixtures of
environmental samples. While simulated data and mock
communities are useful in evaluating and benchmarking
new methods, one needs to consider that methods opti-
mized with mock communities and simulated data are not
necessarily optimized for the sequencing error profile and
feature diversity of real environmental samples. Data from
real environmental samples are often used to benchmark
new molecular laboratory and computational methods.
However, without expected values for use in assessment,
only measurement precision or agreement with other
methods can be evaluated. By mixing environmental sam-
ples, expected values are calculated using information
from the unmixed samples and the mixture design. Mix-
tures of environmental samples were previously used to
evaluate gene expression measurements [19–21].
Here, we present a framework for assessing 16S

rRNA marker-gene-survey computational analysis meth-
ods. The framework includes a 16S rRNA two-sample
titration dataset (generated using mixtures of human
stool sample DNA extracts) and metrics for assessing
count table quantitative and qualitative characteristics.
We demonstrated the framework by comparing count
tables generated using three commonly used bioinfor-
matic pipelines. Both the dataset and metrics developed
in this study are publicly available and can be used to
evaluate and optimize new and existing bioinformatic
pipelines.

Results
Assessment framework
Our framework assesses the qualitative and quantitative
characteristics of the 16S rRNA measurement process



Olson et al. Microbiome            (2020) 8:35 Page 3 of 18

(Fig. 1). The framework evaluates count tables gener-
ated by bioinformatic pipelines from a dataset developed
specifically for use in this framework. The qualitative
assessment provides insight into how much confidence a
user can have in feature presence/absence. The quantita-
tive assessment evaluates the bias and variance of relative
and differential abundance estimates.

Assessment dataset—mixture design
Using mixtures of environmental samples, we gener-
ated a dataset with expected values for our assessment
framework. For mixture datasets, expected values can be
obtained using information from unmixed samples and
the mixture design. Our mixture dataset uses a two-
sample titration mixture design, where DNA collected
from five vaccine trial participants before and after expo-
sure to pathogenic Escherichia coli was mixed following a
log2 dilution series (Fig. 2). Each sample was sequenced
in quadruplicate. For our two-sample titration mixture
design, expected feature relative abundance is calculated
using Eq. 1, where θi is the proportion of POST DNA
in titration i, qij is the relative abundance of feature j
in titration i, and the relative abundance of feature j in
the unmixed PRE and POST samples is qpre,j and qpost,j.
Throughout the rest of the manuscript, samples collected
prior to and after E. coli exposure are referred to as PRE
and POST, respectively.

qij = θiqpost,j + (1 − θi)qpre,j (1)

Qualitative assessment
The qualitative assessment shows how well pipelines
differentiate true biological sequences from measure-
ment process artifacts. Inadequate processing of arti-
facts results in false-positive and false-negative features
where false-positives are features in a count table not in
the sequenced sample, and false-negatives are biological
sequences in a sample not represented in the count table.
Our qualitative assessment methods characterize the arti-
factual feature proportion (the frequency of artifactual
features in a count table) by estimating the proportion
of titration- and unmixed-specific features (Fig. 1b) that
cannot be accounted for by sampling alone. We combine
the artifactual feature proportion assessment results with
sparsity estimates to hypothesize whether the artifactual
features are primarily false-positives or false-negatives.
Sparsity is defined as the fraction of 0 valued cells in the
count table (Fig. 1c).

Quantitative assessment
To evaluate count table abundance values, our quan-
titative assessment uses error, bias, and variance met-
rics (Fig. 1c). Error metrics measure agreement between
observed and expected abundance values. The bias and
variance metrics summarize feature-level performance.

Bias metrics summarize the overall agreement with
expected values and the variance metric characterizes
the distribution of the agreement. Overall, pipeline per-
formance is evaluated by comparing count table metric
distributions. Additionally, feature-level metrics are indi-
cators of feature-specific biases.

Assessment dataset characterization and validation
To assure the mixture dataset is suitable for our assess-
ment framework, we first validated the titration series
and raw sequence data. The mixture dataset had suffi-
cient sample coverage, reads per sample, and read quality
for use in our assessment framework. The number of
reads per sample and distribution of base quality scores by
position was consistent across individuals (Fig. S5). There
were 8.9548 × 104 (152,267–3195) sequences per sample,
median and range. Average base quality score was greater
than 30 over the length of the amplicon when considering
both forward and reverse reads (Fig. S5B).
Additionally, we characterized individual-specific dif-

ferences to inform the interpretation of our assessment
results. No subject-specific differences in base quality
score were observed (Fig. S5). However, average read
depth was greater for E01JH004 compared to the other
individuals (Fig. S5). Community composition differences
between PRE and POST samples and individuals were
characterized using alpha and beta diversity (Fig. 3).
Overall alpha diversity was higher for PRE except for
E01JH0011, though differences in diversity between PRE
and POST varied by individual. Based on the beta diversity
the community composition within individuals differed
between the PRE and POST samples. Note that the assess-
ment metrics defined above and results below are based
on within individual comparisons.
To validate the two-sample titration assessment dataset,

we evaluated two assumptions about the titrations: (1)
the samples were mixed volumetrically in a log2 dilu-
tion series according to the mixture design. (2) The
unmixed PRE and POST samples have the same propor-
tion of prokaryotic DNA. To validate the sample volu-
metric mixing exogenous DNA (ERCC plasmids) were
spiked into the unmixed samples before mixing and quan-
tified using qPCR (Fig. S1B). The stool samples used to
generate the mixtures have both eukaryotic (primarily
human) DNA and prokaryotic DNA. If the proportion
of prokaryotic DNA differs between the unmixed sam-
ples, then the amount of DNA from the unmixed samples
in a titration targeted by 16S rRNA gene sequencing
is not consistent with the mixture design. We quanti-
fied the proportion of prokaryotic DNA in the unmixed
samples using a qPCR assay targeting the 16S rRNA
gene (Fig. S1C).
Our assessment dataset validation results indicated that

the samples were volumetrically mixed according to the
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Fig. 1 Assessment framework. a Count tables evaluated by the assessment framework are generated from the assessment dataset using
marker-gene survey bioinformatic pipelines. Count table rows are features identified by the bioinformatic pipeline and columns are samples, four
PCR replicates (labeled A–D) were sampled for PRE and POST and titrations, to simplify the diagram only three titrations are shown(labeled T1–T3). b
The pictorial depiction and description of the seven feature types used in the assessment framework. c Qualitative and quantitative assessment
metrics used in the assessment framework. Artifactual feature proportion (AFP) and Sparsity (SPAR) were used in the qualitative assessment. The
artifactual feature proportion metric (AFP) is a qualitative assessment of feature presence/absence based on unmixed-specific or titration-specific
artifactual features. Sparsity (SPAR) is a qualitative assessment of the proportion of observed features in each sample relative to the total observed
features. For the quantitative assessment relative (Rel) and differential abundance (Diff), bias and variance metrics were used. For the quantitative
assessment metrics, the relative abundance (Rel) and differential abundance (Diff) plots of example features are used to describe how the bias and
variance metrics are calculated. For the relative abundance (Rel) metrics the error rate (|Obs-Exp|/Exp) is calculated for individual titrations and the
bias (median(error)) and variance (RCOV) metrics are summaries the error rates by feature. For the differential abundance (Diff) plot points
represent the log fold-change between two titrations, point text indicates the titrations compared. A linear model is fit to the data and the model fit
information is used for the differential abundance bias (|1 − slope|) and variance metrics (R2). Each feature type in b is labeled with the assessments
shown in c in which they are employed
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Fig. 2 Sample selection and experimental design for the two-sample titration 16S rRNA marker-gene-survey assessment dataset. a Pre- and
post-exposure (PRE and POST) samples from five vaccine trial participants were selected based on Escherichia coli abundance measured using qPCR
and 454 16S rRNA sequencing (454-NGS), data from Pop et al. [22]. Counts represent normalized relative abundance values for 454-NGS and copies
of the heat-labile toxin gene per microliter, a marker gene for ETEC, for qPCR. PRE and POST samples are indicated with orange and green data
points, respectively. Gray points are other samples from the vaccine trial time series. b Proportion of DNA from PRE and POST samples in titration
series samples. PRE samples were titrated into POST samples following a log2 dilution series. The NA titration factor represents the unmixed PRE
sample. c PRE and POST samples from the five vaccine trial participants, subjects, were used to generate independent two-sample titration series.
Four replicate PCRs were performed for each of the 45 samples, 7 titrations + 2 unmixed samples times 5 subjects, resulting in 190 PCRs

mixture design (Table S1) but prokaryotic DNA pro-
portion varied across the titration series (Fig. S2). To
account for deviations from the mixture design due to
differences in the proportion of prokaryotic DNA in
the unmixed samples, we estimated the proportion of

POST in each titration using the 16S rRNA sequenc-
ing data (Fig. S3), and the estimated POST proportions
were used in our assessment metric calculations. See
Supplemental Material for the assessment dataset valida-
tion methods and results.
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Fig. 3 Diversity metrics for PRE and POST samples by individual. α (a) and β (b) diversity was calculated using the DADA2 count table. Beta diversity
was calculated using Bray-Curtis diversity metric, and principal components analysis was used for ordination. The same color and shape scales were
used for plots A and B
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Count table assessment demonstration
Next, we demonstrate the utility of our assessment frame-
work on count tables generated using three different
bioinformatic pipelines; DADA2, Mothur, and QIIME.
First, we provide high level summary statistics for initial
insight into how the count tables differ. Next, we com-
pare the assessment framework results for the three count
tables. We summarize the pipeline assessment results in
Table 2.

Count table characteristics The count tables gener-
ated using the three bioinformatic pipelines vary in pre-
processing and feature inference methods. These differ-
ences are reflected in the number of features, total abun-
dance, and drop-out rate (Table 1, Fig. S6B). The pipelines
evaluated employ different approaches for handling low
quality reads resulting in large differences in the drop-out
rate, that is, the fraction of raw sequences not included in
the count table (Table 1). QIIME pipeline has the high-
est drop-out rate and number of features per sample but
fewer total features than Mothur (Fig. S6). The targeted
amplicon region has a relatively small overlap region, 136
bp for 300 bp paired-end reads, compared to other com-
monly used amplicons [23, 24]. The high drop-out rate
is due to low basecall accuracy at the ends of the reads
especially the reverse reads resulting in a high proportion
of unsuccessfully merged reads pairs (Fig. S5B). Further
increasing the drop-out rate, QIIME excludes singletons
(features only observed once in the dataset).
Feature taxonomic composition also varied by pipeline

(Fig. S7). The three pipelines generated unique feature sets
in terms of sequence length and amplicon position (see
pipeline description). Therefore, we used feature taxo-
nomic assignments for cross-pipeline community compo-
sition comparison. Phylum and order relative abundances
are similar across pipelines (Fig. S7A and B). We attribute
the observed differences to different taxonomic classi-
fication methods and databases used by the pipelines.
Regardless of the relative abundance threshold, most gen-
era were unique to individual pipelines (Fig. S7C and D).

Table 1 Summary statistics for the different bioinformatic
pipelines

Pipelines Features Sparsity Total abundance Drop-out rate

DADA2 3 144 0.93 68 649 (1661–112 058) 0.24 (0.18–0.59)

Mothur 3 8358 0.98 53 775 (1265–87 806) 0.40 (0.35–0.62)

QIIME 11 385 0.94 25 254 ( 517–46 897) 0.70 (0.62–0.97)

DADA2 is a denoising sequence inference pipeline, QIIME is an open-reference
clustering pipeline, and Mothur is a de novo clustering pipeline. NTC samples (no
template controls) were excluded from summary statistics. Sparsity is the
proportion of 0’s in the count table. Features is the total number of OTUs (QIIME and
Mothur ) or SVs (DADA2) in the count tables. Sample coverage is the median and
range (minimum-maximum) per sample total abundance. Drop-out rate is the
proportion of reads removed while processing the sequencing data for each
bioinformatic pipeline

QIIME shared the fewest genera with the other pipeline.
QIIME was the only pipeline to use open-reference clus-
tering and the Greengenes database. Mothur and DADA2
both used the SILVA dataset. The Mothur and DADA2
pipeline use different implementations of the RDP naïve
Bayesian classifier, which may be partially responsible for
the Mothur, unclustered, and DADA2 differences.

Qualitative assessment
To evaluate feature presence-absence, the framework’s
qualitative assessment measures artifactual feature pro-
portion and count table sparsity. Low abundance features
present only in unmixed samples or titration samples
are expected due to random sampling. Unmixed- and
titration-specific features were observed for all pipelines
(titration-specific: Fig. 4a, unmixed-specific: Fig. 4b).
Overall, the DADA2 count table had the largest number
of artifactual features (Table S3).
We next assessed the proportion of these artifactual

features that could be accounted for by sampling effects
alone. For our two-sample titration dataset, there were
unmixed-specific features with expected counts which
could not be accounted for by sampling alone for all indi-
viduals and bioinformatic pipelines (Fig. 4d). However, the
proportion of unmixed-specific features that could not be
accounted for by sampling alone varied by bioinformatic
pipeline. DADA2 had the highest proportion of unmixed-
specific artifactual features whereas Mothur had the low-
est proportion which is consistent with the distribution of
titration-specific observed feature counts (Fig. 4c, Table
S3). Based on the titration-specific artifactual features
taxonomic assignments, the features are unlikely contam-
inants as no genera were consistently observed across
pipeline and individual (Fig. S8 and S9).
We expected this mixture dataset to be less sparse rel-

ative to other datasets due to the redundant nature of
the samples where the 35 titration samples are derived
directly from the 10 unmixed samples, along with 4 PCR
replicates for each sample. We observed overall sparsity of
0.93 and 0.94 for DADA2 and QIIME, respectively, and a
higher value of 0.98 for Mothur (Table 1).
To account for differences in microbial community

composition across the five individuals, we also measured
sparsity at the individual level (Table S2). Individual-
level sparsity is lower than overall sparsity for all three
pipelines. Average sparsity across individuals was lowest
for DADA2 (0.75), followed by QIIME (0.84) and Mothur
(0.94).
Based on the artifactual feature proportions and count

table sparsity, DADA2 artifactual features are likely due to
false-negative features, whereas the Mothur and QIIME
high sparsity values were attributed to false-positive fea-
tures. Based on the observed sparsity levels it is unlikely
that any of the pipelines successfully filtered out amajority



Olson et al. Microbiome            (2020) 8:35 Page 8 of 18

Fig. 4 Distribution of a observed count values for titration-specific (TS) features and b expected count values for unmixed-specific (US) features by
pipeline and individual. The orange horizontal dashed line indicates a count value of 1. c Artifactual feature proportion (Art. Feat. Prop.) for
titration-specific and d unmixed-specific features with an adjusted p value < 0.05 for the Bayesian hypothesis test and binomial test respectively. We
failed to accept the null hypothesis when the p value < 0.05, indicating that the discrepancy between the feature only being observed in the
titrations or unmixed samples cannot be explained by sampling alone

of the sequencing artifacts. Unmixed- and titration-
specific features (regardless of whether they are explained
by sampling alone) contribute to sparsity and differences
in the artifactual feature proportion and sparsity provide
insight into how the pipelines treat sequencing artifacts.

Quantitative assessment
Relative abundance assessment To assess count table
feature relative abundance values, we evaluated the con-
sistency of the observed and expected relative abundance
estimates for a feature and titration as well as feature-level
bias and variance. Only features observed in all PRE and
POST PCR replicates and PRE and POST specific features
were included in the analysis (Table S3). Overall, agree-
ment between inferred and observed relative abundance
was high for all individuals and bioinformatic pipelines
(Fig. 5a). The error rate distribution was consistent across
pipelines (Fig. 5b).
To assess quantitative accuracy across pipelines, we

compared the feature-level relative abundance error rate
bias and variance using mixed effects models. To con-
trol for individual-specific differences, individual was

included in the model as a random effect. Large variance
metrics were observed for all pipelines and individuals
(Table S4). TheMothur, DADA2, and QIIME feature-level
biases were all significantly different from each other (p <

1× 10−6). DADA2 had the lowest mean feature-level bias
(0.13), followed by Mothur (0.17), with QIIME having the
highest bias (0.27) (Fig. 6a). The feature-level variance was
not significantly different between pipelines, with QIIME
having the lowest mean variance metric QIIME = 0.68,
Mothur = 0.81, and DADA2 = 0.88 (Fig. 6b).

Differential abundance assessment The agreement
between log-fold change estimates and expected values
were individual-specific and consistent across pipelines
(Fig. 7a). The individual-specific effect can be attributed
to the fact that inferred θ values were not used to cal-
culate expected values (unlike the relative abundance
assessment.) Inferred θ values were not used to calcu-
late the log-fold change expected values because all of
the titrations and the θ estimates for the higher titrations
were not monotonically decreasing. Using the inferred θ

resulted in unrealistic expected log fold-change values,
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Fig. 5 Relative abundance assessment. a A linear model of the relationship between the expected and observed relative abundance. The dashed
gray line indicates the expected 1-to-1 relationship. The plot is split by individual and bioinformatic pipeline indicated by line color. A negative
binomial model was used to calculate an average relative abundance estimate across PCR replicates. To highlight quantitative performance for
higher abundance features, points with observed and expected relative abundance values less than 1/median(total abundance) were excluded
from the plot. b Relative abundance error rate (|expected - observed|/expected) distribution by individual and pipeline

e.g., negative log-fold changes for PRE-specific features.
The log-fold change estimates and expected values were
consistent across pipelines with one notable exception:
for subject E01JH0011, the Mothur log fold-change esti-
mates were less consistent with expected values than the
other pipelines. However, as θ was not corrected for differ-
ences in the proportion of prokaryotic DNA between the
unmixed PRE and POST samples, we cannot say whether
Mothur’s performance was worse than the other pipelines.
The log fold-change error distribution was consistent

across pipelines (Fig. 7b). Additionally, we compared error
distributions for log-fold change estimates using different
normalization methods. Error rate distributions, includ-
ing their long tails, were consistent across normalization
methods. Seeing as the long tail was observed for the
unclustered data as well, the log-fold change estimates
contributing to the long tail are likely due to a bias asso-
ciated with the molecular aspects of the measurement
process and not the computational aspects.

Feature-level log fold-change bias and variance met-
rics were used to compare pipeline performance (Fig. 8).
Feature-level bias and variance metrics are defined as
the |1 − slope| and R2 calculated from individual fea-
ture linear models of the estimated and expected log
fold-change across all titration comparisons. For the bias
metric, |1 − slope|, the desired value is 0 (i.e., log fold-
change estimate = log fold-change expected). The linear
model R2 value was used to characterize the feature-
level log fold-change variance as it indicates consistency
between log fold-change estimates and expected values
across titration comparisons. To compare bias and vari-
ance metrics across pipelines, mixed-effects models were
used. The log fold-change bias metric was significantly
different between pipelines (F = 4.62, p = 0.0103, 0.08,
Fig. 8a), but the variance metric was not (F = 1.77, p =
0.17, Fig. 8b). QIIME had the lowest bias estimate (0.65)
followed by Mothur (0.84) and DADA2 had the highest
estimate (1.09). The QIIME and DADA2 estimates were
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Fig. 6 Comparison of pipeline relative abundance assessment feature-level error metrics. Distribution of feature-level relative abundance (a) bias
metric is the median error rate and (b) variance is the robust coefficient of variation (RCOV=IQR/|median error rate|) by individual and pipeline. For
both the bias and variance metrics, lower values are better. Boxplot outliers, 1.5 × IQR from the median were excluded from the figure to prevent
extreme metric values from obscuring metric value visual comparisons

significantly different from each other (t = −2.629, p =
0.022).
We should note that while edgeR uses a prior to moder-

ate its logFC estimates, we did not use a prior to calculate
the logFC expected values. To verify our conclusions are
robust to this use of a prior, we also calculated the logFC
estimates using multiple priors (Fig. S10 and S11). The
prior had little effect on the differential abundance assess-
ment results.

Discussion
We developed a novel assessment framework utilizing a
mixture dataset for evaluating marker-gene-survey com-
putational methods (Fig. 1). Previous studies have used
mixtures of environmental samples to assess RNAseq and
microarray gene expression measurements [19–21], but
this is the first study using mixtures to assess microbiome
measurements.
When mixtures of environmental samples are used for

assessment, expected values are calculated using infor-
mation from unmixed samples and the mixture design.

Our assessment dataset follows a two-sample titration
mixture design, where DNA collected from five vaccine
trial participants before and after exposure to pathogenic
Escherichia coli was mixed following a log2 dilution
series (Fig. 2). We assessed count table qualitative char-
acteristics using count table sparsity and relative abun-
dance information for features observed only in titra-
tions (titration-specific) and unmixed samples (unmixed-
specific) (Fig. 1b). We used statistical tests to determine
if random sampling could account for the absence of
unmixed-specific features from titrations or absence of
titration-specific features from unmixed. We assessed
count table quantitative characteristics using relative
abundance and differential abundance error rate and
feature-level bias and variance metrics (Fig. 1c).

Count table assessment demonstration
We demonstrated our assessment framework on count
tables generated by three commonly used bioinformatic
pipelines, QIIME, Mothur, and DADA2 (Table 2). The
objective of any pipeline is differentiating true biological
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Fig. 7 Differential abundance quantitative assessment. a Linear model of the relationship between estimated and expected log fold-change relative
abundance between titrations for PRE-specific and PRE-dominant features by pipeline and individual, line color indicates pipelines. Dashed gray line
indicates expected 1-to-1 relationship between the estimated and expected log fold-change. b Log fold-change error (|exp-est|) distribution by
pipeline and individual. The QIMME E01JH0011 dataset did not contain any PRE-specific or PRE-dominant features required and was therefore
excluded from this analysis

sequences from artifacts introduced by the measurement
process and arrive at accurate abundance estimates. Our
qualitative assessment results, when combined with spar-
sity information provides a new method for evaluating
how well bioinformatic pipelines account for sequencing
artifacts without loss of true biological sequences.
The qualitative assessment evaluates if titration- and

unmixed-specific features can be accounted for by ran-
dom sampling alone (Fig. 1b). Titration- and unmixed-
specific features not accounted for by sampling are
measurement process artifacts. These artifacts are false-
positives, not representative of actual sequences in a sam-
ple, or false-negatives, actual sequences in a sample not
represented by count table features. Artifacts result from
PCR errors such as chimeras, reads with high sequenc-
ing error rates, or cross sample contamination [25–27].
Count table sparsity information (the proportion of zero-
valued cells) provides additional insight into the qualita-
tive assessment results.

A high false-negative rate provides an explanation
for DADA2’s high proportion of artifactual titration-
and unmixed-specific features and count table having
comparable sparsity to the other pipelines despite hav-
ing significantly fewer features (Fig. S5 and Table 1).
The DADA2 feature inference algorithm may be aggres-
sively grouping lower abundance true sequences with
higher abundance sequences. As a result, the low abun-
dance sequences are not present in samples leading
to increased sparsity and high abundance of unmixed-
and titration-specific features. This aggressive group-
ing of sequences is a design choice made by the algo-
rithm developers. The DADA2 documentation states
that the default setting for OMEGA_A is conservative to
prevent false-positives at the cost of increasing false-
negatives [8]. Using the qualitative assessment methods
described here, a user can adjust the OMEGA_A param-
eter to obtain a false-negative rate appropriate for their
study.
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Fig. 8 Feature-level differential abundance assessment. Log-fold change error bias (a) and variance (b) metric distribution by subject and pipeline.
The bias (1−slope) and variance (R2) metrics are derived from the linear model fit to the estimated and expected log fold-change values for individual
features. Boxplot outliers, 1.5 × IQR from the median were excluded from the figure to prevent extreme metric values from obscuring metric value
visual comparisons. As the QIMME E01JH0011 dataset did not contain any PRE-specific or PRE-dominant features is was not included in this analysis

Our assessment results (Table 2), suggest using DADA2
for feature-level abundance analysis, e.g., differential
abundance testing. While DADA2 performed poorly in
our qualitative assessment, the pipeline performed bet-
ter in the quantitative assessment compared to the
other pipelines. Additionally, the DADA2 poor quali-
tative assessment results due to false-negative features
are unlikely to negatively impact feature-level abundance
analysis. When determining which pipeline to use for a
study, users should consider whether minimizing false-
positives (by using DADA2) or false -negatives (by using
Mothur) is more appropriate for their study objectives.
Based on our findings we find that users of DADA2 can
be more confident that an observed feature represents
a member of the microbial community and not a mea-
surement artifact, but careful examination of sequences
assigned to features of interest should still be performed to
ensure that low abundance features were not incorrectly
clustered with high abundance features.
Limitations were observed for all the pipelines assessed

in this study. To address these limitations the assessment
framework presented here can be used for pipeline design

optimization. For example the assessment framework can
be used to evaluate the impact of using alternative paired-
end alignment methods in the QIIME pipeline on the read
drop-out rate.

Usingmixtures to assess 16S rRNA sequencing—lessons
learned
There are limitations in the use of our assessment dataset,
these include (1) lack of agreement between the pro-
portion of prokaryotic DNA from the unmixed samples
in the titrations and the mixture design. (2) The mix-
ture design resulted in a limited number of features
and range of expected log-fold changes. These limita-
tions are described below along with recommendations
for addressing them in future studies.
Differences in the proportion of prokaryotic DNA in the

samples used to generate the two-sample titrations series
resulted in differences between the true mixture propor-
tions and mixture design. We attempted to account for
differences in mixture proportion from mixture design
by using sequence data to estimate mixture proportions
similar to how mRNA proportions in RNA samples were
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Table 2 Count table assessment summary

Assessment Measurand Metric Pipelines Rank

Qualitative Presence/ absence AFP DADA2 3

Mothur 1

QIIME 1

Sparsity DADA2 1

Mothur 3

QIIME 2

Quantitative Relative abundance Bias DADA2 1

Mothur 2

QIIME 3

Variance DADA2 1

Mothur 1

QIIME 1

Differential abundance Bias DADA2 3

Mothur 1

QIIME 1

Variance DADA2 1

Mothur 1

QIIME 1

Pipelines are ranked (1–3) based on performance for each component of the
assessment framework

used in a previous mixture study [19]. We used an assay
targeting the 16S rRNA gene to detect changes in the
concentration of prokaryotic DNA across titrations, but
were unable to quantify the proportion of prokaryotic
DNA in the unmixed samples using qPCR data. Using the
16S rRNA sequencing data, we inferred the proportion of
prokaryotic DNA from the POST sample in each titration.
However, the uncertainty and accuracy of the inference
method are not known, resulting in an unaccounted for
source of error.
A better method for quantifying sample prokaryotic

DNA proportion or using samples with consistent pro-
portions would increase confidence in the expected value
and, in-turn, error metric accuracy. Limitations in the
prokaryotic DNA qPCR assay’s concentration precision
limits the assay’s suitability for use in mixture studies.
Digital PCR provides a more precise alternative to qPCR
and is, therefore, a more appropriate method. Synthetic
spike-ins developed to quantify microbial absolute abun-
dance and correct for microbial load differences is another
method that could be used to quantifying sample prokary-
otic DNA proportions [28, 29]. Alternatively, using sam-
ples where the majority of the DNA is prokaryotic would
minimize this issue. Mixtures of environmental samples
can also be used to assess shotgun metagenomic meth-
ods as well. As shotgun metagenomics is not a targeted
approach; differences in the proportion of prokaryotic

DNA in a sample would not impact the assessment results
in the same way as 16S rRNA marker-gene-surveys.
Using samples from a vaccine trial allowed for the use

of a specific marker with an expected response, E. coli,
during methods development. However, the high level of
similarity between the PRE and POST unmixed samples
resulted in a limited number of features for our the quanti-
tative assessment. Using more diverse samples to generate
mixtures would address this issue. Alternatively, instead of
mixing PRE and POST samples from the same individual,
mixing PRE and POST samples from different individuals
would have resulted in additional features for use in our
quantitative assessment. While unmixed sample similar-
ity impacts the number of features that can be used in the
quantitative assessment, the qualitative assessment is not
impacted by unmixed sample similarity. Finally, a symmet-
ric mixture design, for example, one with unmixed PRE
and POST ratios of 1:4, 1:2, 1:1, 2:1, and 4:1, would provide
a larger dynamic range of abundance values for assessing
both PRE and POST-specific features.

Conclusions
Our assessment framework can be used to evaluate
and characterize 16S rRNA marker-gene survey analy-
sis methods, in particular count tables produced by any
16S rRNA bioinformatic pipeline. We demonstrated our
assessment framework with three commonly used bioin-
formatic pipelines. Our qualitative assessment results
indicated that the QIIME and Mothur pipelines produced
count tables with more false-positive features whereas the
DADA2 count tables had more false-negative features.
Overall, the three pipelines performed well in our quan-
titative assessment. Nevertheless, feature-level results for
any 16S rRNA marker-gene survey should be interpreted
with care. Improving quantitative and qualitative con-
sistency requires advances in both the molecular biol-
ogy and computational components of the measurement
process.

Methods
Assessment framework
To assess the qualitative and quantitative performance
of marker-gene survey analysis methods we developed
a framework utilizing our two-sample titration dataset
(Fig. 1). The qualitative assessment evaluates feature
presence-absence. The quantitative assessment evaluates
feature relative and differential abundance.

Assessment dataset—mixture design
We developed a dataset with real-world complexity and
expected values for method assessment using mixtures
of environmental samples. The mixtures were generated
from samples collected at multiple timepoints during an
Enterotoxigenic E. coli (ETEC) vaccine trial [30] (Fig. 2).
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Samples from five trial participants were selected for our
mixture dataset. We mixed samples collected prior to
(PRE) and after (POST) ETEC exposure following a two-
sample titration mixture design. We selected trial partici-
pants (individuals) and sampling time points based on E.
coli abundance data collected using qPCR and 16S rRNA
sequencing from Pop et al. [22]. For our dataset, we iden-
tified five individuals with no E. coli detected in samples
collected from trial participants prior to ETEC exposure
(PRE). Post ETEC exposure (POST) samples were iden-
tified as the timepoint after exposure to ETEC with the
highest E. coli concentration for each subject (Fig. 2a).
Due to limited sample availability, for E01JH0016, the
timepoint with the second highest E. coli concentration
was used as the POST sample. Independent titration
series were generated for each subject. POST samples
were titrated into PRE samples with POST proportions of
1/2, 1/4, 1/8, 1/16, 1/32, 1/1024, and 1/32,768 (Fig. 2b).
Unmixed (PRE and POST) sample DNA concentration
was measured using NanoDrop ND-1000 (Thermo Fisher
Scientific Inc. Waltham, MA USA). Unmixed samples
were diluted to 12.5 ng/μL in tris-EDTA buffer before
mixing. The resulting titration series was composed of 45
samples, 7 titrations, and 2 unmixed samples for each of
the 5 subjects.
The 45 samples were processed using the Illumina 16S

library protocol (16S Metagenomic Sequencing Library
Preparation, posted date November 27, 2013, down-
loaded from https://support.illumina.com). This protocol
specifies an initial PCR of the 16S rRNA gene, followed by
a sample indexing PCR, sample concentration normaliza-
tion, and sequencing.
A total of 192 16S rRNA PCR assays were sequenced

across 2 96-well plates including 4 PCR replicates per sam-
ple and 12 no-template controls. The initial PCR assay tar-
geted the V3–V5 region of the 16S rRNA gene, Bakt_341F,
and Bakt_806R [14]. The V3–V5 region is 464 base pairs
(bp) long, with forward and reverse reads overlapping
by 136 bp, using 2 × 300 bp paired-end sequencing
[31] ( http://probebase.csb.univie.ac.at). Primer sequences
include overhang adapter sequences for library prepara-
tion (forward primer 5’- TCG TCG GCA GCG TCA GAT
GTG TAT AAG AGA CAG CCT ACG GGN GGC WGC
AG - 3’ and reverse primer 5’- GTC TCG TGG GCT
CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV
GGG TAT CTA ATC C - 3’). The 16S rRNA gene was
PCR amplified using the Kapa HiFi HotStart ReadyMix
reagents (KAPA Biosystems, Inc. Wilmington, MA, USA)
and product amplicon size was verified using agarose gel
electrophoresis. Concentration measurements were made
after the initial 16S rRNA PCR, the indexing PCR, and
normalization steps. DNA concentration was measured
using the QuantIT Picogreen dsDNA Kit (Cat # P7589,
ThermoFisher Scientific) and fluorescent measurements

were made with a Synergy2 Multi-Detection MicroPlate
Reader (BioTek Instruments, Inc, Winooski, VT, USA).
Initial PCR products were purified using 0.8X AMPure

XP beads (Beckman Coulter Genomics, Danvers, MA,
USA) following the manufacturer’s protocol. After purifi-
cation, the 192 samples were indexed using the Illumina
Nextera XT index kits A and D (Illumina Inc., San Diego
CA, USA) and then purified using 1.12X AMPure XP
beads. Prior to pooling, the purified sample concen-
tration was normalized using SequalPrep Normalization
Plate Kit (Catalog n. A10510-01, Invitrogen Corp., Carls-
bad, CA, USA), according to the manufacturer’s protocol.
Pooled library concentration was checked using the Qubit
dsDNAHS Assay Kit (Part# Q32851, Lot# 1735902, Ther-
moFisher, Waltham, MA, USA). Due to the low pooled
amplicon library DNA concentration, a modified protocol
for low concentration libraries was used. The library was
run on an Illumina MiSeq, and base calls were made using
Illumina Real Time Analysis Software version 1.18.54.
The sequence data were deposited in the NCBI SRA
archive under Bioproject PRJNA480312. Individual SRA
run accession numbers and metadata in Supplemental
Table. The sequencing data presented in this manuscript
are part of a larger study and the SRX accession numbers
should be used to access the specific data presented here.
Sequencing data quality control metrics were computed
using the Bioconductor Rqc package [32, 33].
Sequence data were processed using four bioinformatic

pipelines: a de novo clustering method - Mothur [7],
an open-reference clustering method - QIIME [5], and
a sequence inference method—DADA2 [8], and unclus-
tered sequences as a control. The code used to run the
bioinformatic pipelines is available at https://github.com/
nate-d-olson/mgtst_pipelines.
The Mothur pipeline follows the developer’s MiSeq

SOP [7, 23]. The pipeline was run using Mothur version
1.37 (http://www.mothur.org/). We sequenced a larger
16S rRNA region, with smaller overlap between the
forward and reverse reads, than the 16S rRNA region
the SOP was designed for. Pipeline parameters were
modified to account for differences in overlap and are
noted for individual steps below. The Makefile and scripts
used to run the Mothur pipeline are available https://
github.com/nate-d-olson/mgtst_pipelines/blob/master/
code/mothur. The Mothur pipeline included an initial
preprocessing step where the forward and reverse reads
are trimmed and filtered using base quality scores and
were merged into single contigs for each read pair. The
following parameters were used for the initial contig
filtering, no ambiguous bases, max contig length of 500
bp, and max homopolymer length of 8 bases. For the
initial read filtering and merging step, low-quality reads
were identified and filtered from the dataset based on the
presence of ambiguous bases, failure to align to the SILVA

https://support.illumina.com
http://probebase.csb.univie.ac.at
https://github.com/nate-d-olson/mgtst_pipelines
https://github.com/nate-d-olson/mgtst_pipelines
http://www.mothur.org/
https://github.com/nate-d-olson/mgtst_pipelines/blob/master/code/mothur
https://github.com/nate-d-olson/mgtst_pipelines/blob/master/code/mothur
https://github.com/nate-d-olson/mgtst_pipelines/blob/master/code/mothur
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reference database (V119, https://www.arb-silva.de/)
[34], and identification as chimeras. Prior to alignment,
the SILVA reference multiple sequence alignment was
trimmed to the V3–V5 region, positions 6388 and 25,316.
Chimera filtering was performed using UChime (ver-
sion v4.2.40) without a reference database [25]. OTU
clustering was performed using the OptiClust algorithm
with a clustering threshold of 0.97 [6]. The RDP classifier
implemented in Mothur was used for taxonomic classifi-
cation against the Mothur provided version of the RDP v9
training set [35].
The QIIME open-reference clustering pipeline for

paired-end Illumina data was performed according to
the online tutorial (Illumina Overview Tutorial (an
IPython Notebook): open reference OTU picking and
core diversity analyses, http://qiime.org/tutorials/)
using QIIME version 1.9.1 [5]. Briefly, the paired-end
reads were merged using fastq-join (version 1.3.1,
[36]) and open-reference clustering was performed
using the Usearch algorithm [37] with Greengenes
database version 13.8 with a 97% similarity thresh-
old [38]. The bash script used to run the QIIME
pipeline is available at https://github.com/nate-d-
olson/mgtst_pipelines/blob/master/code/qiime_pipeline.sh.
DADA2, an R native pipeline, was also used to process

the sequencing data [8]. The forward and reverse reads
were independently quality filtered and grouped using the
DADA2 probability model. Independently grouped for-
ward and reverse reads were then merged and chimeras
were filtered. Taxonomic classification was performed
using the DADA2 implementation of the RDP naïve
Bayesian classifier [35] and the SILVA database V123
provided by the DADA2 developers [34, https://benjjneb.
github.io/dada2/training.html]. Code for running the
DADA2 pipeline is available at https://github.com/nate-d-
olson/mgtst_pipelines/blob/master/code/dada2_pipeline.R.
The unclustered pipeline was based on the Mothur de

novo clustering pipeline, where the paired-end reads were
merged, filtered, and dereplicated. Reads were aligned
to the reference Silva alignment (V119, https://www.
arb-silva.de/), and reads failing alignment were excluded
from the dataset. Taxonomic classification implemented
in Mothur was performed using the Mothur implemented
RDP classifier implemented and the RDP v9 training set
provided by the Mothur developers. To limit the dataset
size, only the most abundant 40,000 OTUs (comparable to
the Mothur dataset) across all samples were used.

Qualitative assessment
The qualitative assessment evaluates feature presence
absence by count table sparsity and artifactual feature pro-
portion. Count table sparsity is the proportion of 0 valued
cells in the count table. Artifactual feature proportion is
the proportion of unmixed- and titration-specific features

with observed abundance values not explained by sam-
pling alone. Unmixed-specific features are features only
observed in the unmixed PRE or POST samples (Fig. 1b).
Titration-specific features are features only observed in
the titrations. Unmixed- and titration-specific features
can arise from errors in PCR/sequencing, feature infer-
ence processes, or differences in sampling depth. The
artifactual feature proportion provides context for inter-
preting count table sparsity results, where low artifactual
feature proportion and high sparsity is indicative of a
high false-positive rate and high artifactual feature pro-
portion, and high sparsity indicates a high false-negative
rate (Fig. 1c).
Hypothesis tests were used to determine if random sam-

pling alone, here sequencing depth, could account for
unmixed- and titration-specific features. p values were
adjusted for multiple comparisons using the Benjamini
and Hochberg method [39]. For unmixed-specific fea-
tures, a binomial test was used to evaluate if true fea-
ture relative abundance is less than the expected relative
abundance. The binomial test was infeasible for titration-
specific features. Count table abundance values for the
titration-specific features was 0 in the unmixed samples,
their estimated probability of occurrence, πmin, is equal
to 0, and thus, the binomial test fails. Therefore, we for-
mulated a Bayesian hypothesis test for titration-specific
features defined in Eq. 2. This Bayesian approach evalu-
ated if the true feature proportion is less than the mini-
mum detected proportion. When assuming equal priors,
P(π < πmin) = P(π > πmin), (2) reduces to (3). We
define π as the true feature proportion, πmin the mini-
mum detected proportion, C the expected feature counts,
and Cobs the observed feature counts. Count values for C
were simulated using a beta prior (with varying alpha and
beta values) for π > πmin and a uniform distribution for
π < πmin. Higher values of alpha and beta will skew the
prior right and left, respectively. Our Bayesian hypothesis
tests (3) results were largely unaffected by beta distribu-
tion parameterization (Fig. S4). πmin was calculated using
the mixture Eq. 1 where qpre,j and qpost,j are min(Qpre) and
min(Qpost) across all features for a subject and pipeline.
Our assumption is that π is less than πmin for features
not observed in unmixed samples. Artifacts not explained
by sequencing alone are likely false-positives or false-
negatives due to errors in the sequence measurement and
inference processes.

p = P(π < πmin|C ≥ Cobs)

= P(C ≥ Cobs|π < πmin)P(π < πmin)

P(C≥Cobs|π <πmin)P(π <πmin)+P(C≥Cobs|π ≥≥πmin)P(π ≥πmin)

(2)

p = P(C ≥ Cobs|π < πmin)

P(C ≥ Cobs)
(3)

https://www.arb-silva.de/
http://qiime.org/tutorials/
https://benjjneb.github.io/dada2/training.html
https://benjjneb.github.io/dada2/training.html
https://www.arb-silva.de/
https://www.arb-silva.de/
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Quantitative assessment
For the quantitative assessment, we compared the
observed relative abundance and log fold-changes to
expected values derived from the titration experimental
design. For the observed values in our relative abundance
assessment, we averaged feature relative abundance across
PCR replicates. Feature average relative abundance across
PCR replicates was calculated using a negative binomial
model. We used the averaged relative abundance across
PCR replicates as the observed relative abundance values
obs for the relative abundance assessment. Average rela-
tive abundance values were used to prevent PCR replicate
outliers from biasing the assessment results. Equation (1)
and inferred θ values were used to calculate the expected
relative abundance values (exp). We defined the relative
abundance error rate as |exp − obs|/exp. We developed
bias and variance metrics to assess feature performance.
The feature-level bias and variance metrics were defined
as themedian error rate and robust coefficient of variation
(RCOV = IQR/median), respectively.
We assessed differential abundance estimates by com-

paring log fold-change between samples in the titration
series including PRE and POST to the expected log fold-
change values. Log fold-change estimates were calculated
using EdgeR [40, 41]. Expected log fold-change values for
feature j between titrations l and m was calculated using
Eq. (4), where θ was the proportion of POST bacterial
DNA in a titration, and q is feature relative abundance.
For features only present in PRE samples, PRE-specific,
the expected log fold-change was independent of the
observed counts for the unmixed samples and was calcu-
lated using Eq. (5). For features only present in POST sam-
ples, POST-specific, the expected log fold-change values
can be calculated in a similar manner. However, POST-
specific features were rarely observed in more than one
titration and therefore not included in this analysis.
Due to a limited number of PRE-specific features, both

PRE-specific and PRE-dominant features were used in the
differential abundance assessment. PRE-specific features
were defined as features observed in all four PRE PCR
replicates and not observed in any of the POST PCR repli-
cates and PRE-dominant features were also observed in
all four PRE PCR replicates and observed in one or more
of the POST PCR replicates but with a log fold-change
greater than 5 between PRE and POST samples .

logFClm,j = log2
(

θlqpost,j + (1 − θl)qpre,j
θmqpost,j + (1 − θm)qpre,j

)
(4)

logFClm,j = log2
(
1 − θl
1 − θm

)
(5)

Count table assessment demonstration
We demonstrated the assessment framework by compar-
ing the qualitative and quantitative assessment results

across the three pipelines. We first characterized overall
differences in the count tables produced by the pipelines.
This characterization included total number of features,
total abundance by individual, dropout-rate, and taxo-
nomic composition.

Qualitative assessment
For the qualitative assessment, we compared the pro-
portion of artifactual features. The artifactual feature
proportion was defined as the proportion of unmixed-
and titration-specific features with abundance values that
could not be explained by sampling alone. These are
PCR replicates with p values less than 0.05 after multiple
hypothesis test correction for the binomial and Bayesian
hypothesis tests described in the “Assessment framework”
section. We additionally used the count table sparsity
values to identify potential mechanisms responsible for
differences in artifactual feature proportions.

Quantitative assessment
Mixed-effects models with individual as a random effect
were used to compare feature-level error rate bias and
variance metrics across pipelines. Extreme feature-level
error rate bias and variance metric outliers were excluded
from this analysis to minimize biases due to poor model
fit. Features with large bias and variancemetrics, 1.5×IQR
from the median, were deemed outliers.
We fit the following mixed effect model to test for

differences in measurement bias across pipelines

eijk = b + bi + zj + εijk

where eijk was the observed error across features and
titrations k for pipeline i on individual j. bi was a fixed
term modeling the pipeline effect, zj was a random effect
(normally distributed with mean 0) capturing overall bias
differences across individuals. We fit a similar model for
differences in error variance across pipelines.
We used estimated terms b̂i from the mixed effects

model to test for pair-wise differences between pipelines.
These multiple comparisons were performed with Tukey’s
HSD test. A one-sided alternative hypothesis was used to
determine which pipelines had smaller feature-level error
rates.
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