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Abstract

Background: Identification of complex multidimensional interaction patterns within microbial communities is the
key to understand, modulate, and design beneficial microbiomes. Every community has members that fulfill an
essential function affecting multiple other community members through secondary metabolism. Since microbial
community members are often simultaneously involved in multiple relations, not all interaction patterns for such
microorganisms are expected to exhibit a visually uninterrupted pattern. As a result, such relations cannot be
detected using traditional correlation, mutual information, principal coordinate analysis, or covariation-based
network inference approaches.

Results: We present a novel pattern-specific method to quantify the strength and estimate the statistical significance
of two-dimensional co-presence, co-exclusion, and one-way relation patterns between abundance profiles of two
organisms as well as extend this approach to allow search and visualize three-, four-, and higher dimensional patterns.
The proposed approach has been tested using 2380 microbiome samples from the Human Microbiome Project
resulting in body site-specific networks of statistically significant 2D patterns as well as revealed the presence of 3D
patterns in the Human Microbiome Project data.

Conclusions: The presented study suggested that search for Boolean patterns in the microbial abundance
data needs to be pattern specific. The reported presence of multidimensional patterns (which cannot be
reduced to a combination of two-dimensional patterns) suggests that multidimensional (multi-organism)
relations may play important roles in the organization of microbial communities, and their detection (and
appropriate visualization) may lead to a deeper understanding of the organization and dynamics of microbial
communities.

Keywords: Microbiome, Multidimensional Boolean patterns, Microbial communities, Co-exclusion, Co-presence,
Pattern-specific score
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Background
Identification of complex multidimensional patterns of
abundances/appearances among members of microbial
communities (MC) is the key to understand, control,
and (in the future) design beneficial microbial communi-
ties as well as guide microbial transplantation and
personalize antimicrobial and probiotic treatments. Since
members of microbial communities can be simultan-
eously involved in multiple relations that altogether will
determine their abundance, not all significant relations
between organisms are expected to be manifested as
visually uninterrupted patterns and be detected using
traditional correlation, mutual information, principal co-
ordinate analysis, or covariation-based approaches. They,
however, might be identified and described using Bool-
ean two-, three-, and higher dimensional patterns.

Non-continuous multidimensional patterns
To a certain extent, complex relations between microor-
ganisms within microbial communities (MC) can be re-
covered by observing their abundances as well as
monitoring how they change in response to internal and
external perturbations/variables [1]. While initial micro-
biome characterization studies have been focused on
detection of particular organisms under different

conditions (healthy vs diseased state), recent studies em-
ploy pairwise microbial interaction network analysis to
provide a deeper understanding of interactions in MC
[2–5]. Traditional methods are generally used to recover
pairwise relations between microorganisms in MC which
include mutual information-based approaches such as
MIC [6], Pearson’s or Spearman’s correlation [7, 8], and
covariation. Several computational tools utilizing mutual
information, correlation, and covariation techniques
have become an essential part of advanced analysis to
identify interaction patterns in microbial communities
[9–13]. Tools like SparCC [14], developed to infer cor-
relation networks from compositional data, and CoNet
[15], which uses an ensemble method to combine infor-
mation from several different standard comparison met-
rics, have become widely accepted by the scientific
community. While methods based on mutual informa-
tion (MI), such as MIC [16], are capable of identifying
nonlinear and non-continuous pairwise relations [17],
they lack the ability to discriminate against intuitively
difficult to interpret patterns and can miss some import-
ant relationships such as mutual exclusion among mi-
croorganisms [18].
Some members of MC can be simultaneously involved

in multiple relations which together determine their

Fig. 1 Examples of non-continuous two- and three-dimensional Boolean patterns. Two-dimensional patterns: a co-presence, b one-way, and c co-
exclusion patterns. X1 and X2 are the abundances of microorganisms; ε1 and ε2 represent the presence/absence threshold; p00, p01, p10, and p11 are
the proportion of points (observation) located in each partition. Three-dimensional patterns: d type 1 co-exclusion, e type 2 co-exclusion, f a
pattern when the presence of organism X1 changed patterns between X2 and X3 from co-presence to co-exclusion, and g the case where three
organisms can be present only all together on one-by-one. Red color represents quadrants requiring the proportion of observation to exceed the
minimum threshold. Red and blue quadrants are areas contributing to the pattern score
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abundance. For example, in many environmental micro-
bial communities, functions vital to the whole commu-
nity (e.g., nitrogen fixation) are often performed by a
single species [19, 20], so the abundance pattern be-
tween these organisms and other members of MC will
not be represented by correlation, but are rather ex-
pected to exhibit a Boolean pattern. A Boolean one-way
relation pattern is exhibited when the presence of
“dependent” microorganism(s) requires the presence of a
“provider,” but not vice versa (Fig. 1b). Similarly, other
pairwise relations such as co-presence and co-exclusion
may be represented as non-continuous Boolean patterns
(Fig. 1a, c). For pairwise relations, there are a total of 24

possible combinations (22n, where n = number of vari-
ables/organisms), given that there are four Boolean func-
tions (constant function true, negation function, identity
function, and constant function false) for every Boolean
variable [21]. However, out of 24 possible combinations
of the presence/absence profiles between two organisms,
only four may be interpreted as possible relations: co-
presence, co-exclusion, and two one-way relations (organ-
ism 1 needs organism 2 to survive and vice versa). It is
also important to keep in mind that if the cooperation of
several organisms is required to maintain a single

metabolic pathway, their abundances will fit into multi-
dimensional Boolean patterns, such as multidimensional
co-presence (Fig. 1g).

Complications of using mutual information as a score for
non-continuous patterns
In Boolean patterns, two microorganisms’ abundances
can vary without affecting the pattern (e.g., variation in
abundance within the same quadrant), and the pattern
strength can be defined based on the fraction of observa-
tions located in four quadrants of two-dimensional
space: p00, p01, p01, p11 (Fig. 1a–c). However, it is im-
portant to mention that since different roles played by
microorganisms in MC may require different minimal
abundances. The appropriate calculation of the pij will
require identification of the microorganism-specific
thresholds, so pij becomes a function of four variables:
pij(X1, X2, ε1, ε2), where X1 and X2 are the abundance
profiles of two microorganisms under consideration and
ε1 and ε2 are the corresponding presence/absence
thresholds.
The most obvious choice to define the strength of a

Boolean pattern would be by using a mutual information
score (MIS):

Fig. 2 Mutual information score values for different pattern types. MIS values for “ideal” a co-presence, b co-exclusion, and c one-way patterns.
Effect of disbalance on d co-presence, e co-exclusion, and f one-way relations on MIS values
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MIS X1;X2ð Þ ¼ max
ε1;ε2

MI X1;X2; ε1; ε2ð Þð Þ
¼ max

ε1;ε2

�
H1 X1; ε1ð Þ

þ H2 X2; ε2ð Þ−H12 X1;X2; ε1; ε2ð ÞÞ ;

where Hi(Xi, εi) and Hij(Xi, Xj, εi, εj) correspond to one-
and two-dimensional entropies.
The use of mutual information to identify such pat-

terns, however, has several significant disadvantages.
The best possible (maximal) MIS value is not the same
for different pattern types. For example, while MIS value
for “ideal” co-presence and co-exclusion patterns is 0.693
(Fig. 2a, b), the score for “ideal” one-way pattern is only
0.174 (Fig. 2c). Moreover, a small disbalance between
fractions of points located in four partitions p00, …, p11
can significantly affect the MIS value. For example, while
two co-exclusion patterns may be intuitively obvious
(Fig. 2a, d), a disbalance between p00 and p11 can cause a
significant drop in the MIS value. A similar observation
can be made for co-exclusion (Fig. 2b, e). The use of MIS
value can be especially misleading in the case of one-way
relation patterns. An MIS value may be extremely low
(0.055) for patterns which can be clearly interpreted as
one-way relation (Fig. 2f). These observations suggest
that the use of MIS to identify non-continuous Boolean
patterns may result in missing certain intuitively obvious
patterns. The presented work is an attempt to introduce
an alternative, pattern-specific approach, to estimate the
strength and statistical significance of two- and higher
dimensional patterns between members of microbial
communities.

Methods
Pattern-specific strength score
The basic idea of the proposed approach is to estimate
the pattern score by counting the fraction of observa-
tions belonging to the pattern under investigation. As-
suming that p00 + p01 + p10 + p11 = 1 and the presence/
absence threshold can be microorganism specific, the
strength of each pattern can be defined as the following:

Sco−presence ¼ max
ε1;ε2

p00 þ p11ð Þ;

Sco−exclusion ¼ max
ε1;ε2

p00 þ p10 þ p01ð Þ;

Sone−way ¼ max
ε1;ε2

ðp00 þ p01 þ p11Þ ; (where X2 depends

on X1)
Sone−way ¼ max

ε1;ε2
ðp00 þ p10 þ p11Þ ; (where X1 depends

on X2).
It is important to mention that the presence of p00 is

required to distinguish co-presence patterns from cases
when both organisms are simply present in all samples.
Co-presence patterns require the existence of co-absence

between the microorganisms in the sample set. Add-
itionally, co-exclusion and one-way relation pattern
scores include p00 because mutual absence does not
contradict the pattern.
While presence/absence threshold optimization allows

considering that different microorganisms may have
various minimal abundance thresholds to interact with
the MC, this approach also can produce misleading re-
sults. For example, a perfect co-presence score may be
achieved by increasing the presence/absence threshold
to the point where all the observations will be counted
as absent: ε1 ≥ (X1) and ε2 ≥ (X2) .
This effect can be minimized by requiring a proportion

of experimental observations in quadrants contributing
to the pattern under consideration to be above a prede-
fined minimal threshold (m):
Sco−presence ¼ max

ε1;ε2
ðp00 þ p11Þ, where p00 >m; p11 >m;

Sco−exclusion ¼ max
ε1;ε2

ðp00 þ p10 þ p01Þ , where p01 >m;

p10 >m;
Sone−way ¼ max

ε1;ε2
ðp00 þ p01 þ p11Þ; where p01 >m, p11 >

m;
(where X2 depends on X1);
Sone−way ¼ max

ε1;ε2
ðp00 þ p10 þ p11Þ, where p10 >m, p11 >

m;
(where X1 depends on X2).

Non-trivial multidimensional patterns
The proposed approach can be further extended to iden-
tify more complex multidimensional patterns. For ex-
ample, in some 3D patterns, the presence or absence of
one organism may define the kind of 2D patterns exhib-
ited between two other organisms. Figure 1f shows a
case where organisms 2 and 3 will be co-present if organ-
ism 1 is present and co-exclude if this organism is
absent:

Spattern A ¼ max
ε1;ε2;ε3

ðp000 þ p111 þ p010 þ p001Þ , where

p111 >m; p010 >m; p001 >m.
Similar to 2D patterns, not all combinations of pijk

values can be interpreted as possible relations between mi-
croorganisms. Some 3D patterns can be the direct result
of three pairwise 2D patterns: for example, the pairwise
co-exclusion pattern between three organisms will unam-
biguously lead to a 3D co-exclusion pattern (Fig. 1d):

S3D co−exclusion type 1 ¼ max
ε1;ε2;ε3

ðp000 þ p100 þ p010 þ p001Þ ,
where p100 >m; p010 >m; p001 >m;
Is a direct consequence of its 2D patterns:
Sco−exclusion 1;2 ¼ max

ε1;ε2
ðp000 þ p100 þ p010Þ , where

p010 >m; p100 >m;
Sco−exclusion 1;3 ¼ max

ε1;ε2
ðp000 þ p100 þ p001Þ , where

p100 >m; p001 >m;
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Sco−exclusion 2;3 ¼ max
ε1;ε2

ðp000 þ p010 þ p001Þ , where

p001 >m; p010 >m.
Three-dimensional co-exclusion patterns may addition-

ally be observed in a very different way where each pair
of organisms is co-present only if the third one is absent
(Fig. 1e):

S3D co−exclusion type 2 ¼ max
ε1;ε2;ε3

ðp000 þ p110 þ p101 þ p011Þ ,
where p110 >m; p101 >m; p011 >m.
In fact, every 2D pattern has at least one non-trivial

3D analog which can be interpreted as the relation be-
tween organisms and not derived directly from any 2D
combination:

S3D co−presence ¼ max
ε1;ε2;ε3

ðp000 þ p111Þ , where p111 >m;

p000 >m;
S4D co−presence ¼ max

ε1;ε2;ε3
ðp0000 þ p1111Þ , where p1111 >m;

p0000 >m;
or for one-way relations:

S3D one−way relation ¼ max
ε1;ε2;ε3

p000 þ p111 þ p001 þ p010ð Þ;

where p111 >m; p001 >m; p010 >m; (organism 1 requires
two others to be present).

S4D one−way relation ¼ max
ε1;ε2;ε3;ε4

p0000 þ p1111 þ p0001 þ p0010 þ p0100ð Þ;

where p1111 >m; p0001 >m; p0010 >m; p0100 >m;
(organism 1 requires three others to be present).
Additionally, some high dimensional patterns can re-

flect interesting new relations which exist only in higher
dimensions. Figure 1f presents a case where two

microorganisms (X1 and X2) follow co-exclusion patterns
in the presence of the third (X3), as well as co-presence
in its absence; Fig. 1g shows a case where three organ-
isms can be present only all together or individually:

S3D all together or alone ¼ max
ε1;ε2;ε3

p000 þ p111 þ p001 þ p010 þ p100ð Þ;

where p111 >m; p100 >m; p001 >m; p010 >m; (three or-
ganisms present only all together or individually).

Statistical significance and type 1 error
It is important to keep in mind that an arbitrary choice
of the presence threshold (m) and minimal score (Smin)
above which patterns are considered to be present can
significantly affect the results of the analysis in both: a
number of detected patterns and their statistical signifi-
cance (e.g., type 1 error). Lowering these thresholds in-
creases chances for patterns to appear randomly, and
this can be detected by comparing the results produced
by real data against a randomized (shuffled) dataset.
Table 1 provides an example of the number of two-
dimensional one-way relation patterns identified in ori-
ginal and shuffled (and renormalized) datasets from the
Human Microbiome Project (genus level, mid-vagina
samples) [22, 23].
The choice of the shuffling method reflects the under-

lying assumption about what would be considered as the
random alternative to the observed dataset (zero model)
[14, 24]. For example, the shuffling of the abundance
values across the whole dataset reflects the assumption
of the total randomness of the appearances of all the
values across samples and organisms. While this model
preserves the overall distribution of the abundance

Table 1 The number of two-dimensional one-way relation patterns identified in shuffled and real (original) mid-vagina samples. Bold
font reflects the score/threshold combinations where no patterns have been observed in simulated (shuffled) data

Number of patterns in real data/number of patterns in shuffled data

Population threshold/score 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

0.05 268/166 257/144 234/124 234/124 220/110 189/78 166/59 135/35 98/19 57/10 57/10

0.075 149/63 140/55 120/46 120/46 104/35 86/26 75/20 62/13 48/4 30/2 30/2

0.1 83/31 78/25 68/21 68/21 65/18 51/10 41/8 35/4 23/2 15/0 15/0

0.125 54/13 50/10 47/9 47/9 43/6 36/4 31/1 24/1 18/1 13/0 13/0

0.15 34/8 31/5 27/3 27/3 26/1 21/1 18/1 14/1 12/1 11/0 11/0

0.175 18/7 16/2 16/1 16/1 15/1 10/0 10/0 8/0 6/0 3/0 3/0

0.2 13/3 12/1 12/1 12/1 12/0 9/0 7/0 7/0 6/0 2/0 2/0

0.225 7/1 7/0 7/0 7/0 6/0 5/0 4/0 4/0 4/0 2/0 2/0

0.25 5/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0 2/0 2/0

0.275 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0 2/0 2/0

0.3 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0 1/0 1/0

0.325 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 0/0 0/0

0.35 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
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values, it does not take into consideration that some or-
ganisms may always be present in low abundance and
others can become highly dominated species in the com-
munity. In order to reflect this property on microbial
abundance data, shuffling across individual OTU profiles
has been implemented in the presented method and
used in all the examples shown in this manuscript.
The shuffling approach has been implemented as part

of all pattern-specific computational pipelines (see the
“Methods” section) to make sure that the search for the
patterns in real data is performed only for the presence
(m) and minimal score (Smin) thresholds for which the
number of specific patterns in shuffled data is equal to
zero. The presented method, however, allows a variety of
modifications including less strict type 1 error require-
ments. The next versions of the software will include the
ability to perform multiple shuffling types as well as the
ability to perform shuffling multiple times.

Implementation
The presented method is able to identify three types of 2D
patterns (co-presence, co-exclusion, and one-way relations) as
well as three types of 3D patterns shown on Fig. 1e–g. The
codebase was developed in C++, and the executable files and
source code are available on GitHub (https://github.com/
kkhanipov/MultidimensionalBooleanPatterns).
In order to improve performance in the proposed im-

plementation, the patterns in shuffled data for all the
combinations of presence threshold (m) and minimal
score (Smin) are calculated during the first step of the
analysis, so search for patterns in real data can be per-
formed in a limited search space where zero patterns are
detected in randomized (shuffled) data.
To evaluate performance, the presented source code

was compiled using a GCC compiler version 6.3.1 under
Linux CentOS 6.7. Sixteen HMP OTU files were used
for the identification of 2D and 3D patterns on 4× AMD
Opteron 8 core processors, 512 GB RAM, and 30 TB of
storage system. Search for the two-dimensional co-pres-
ence, co-exclusion, and one-way relation patterns for all
tested samples took between 1 and 3 min, and the mem-
ory footprint did not exceed 50 Mb of RAM. However,
search for the 3D patterns may take hundreds of hours
and requires a higher level of parallelization and a high-
performance computing environment.

Data acquisition
The microbial community compositions used for this
analysis originated from the NIH Human Microbiome
Project [22, 23] and contained 18 datasets associated
with 16 body sites. Microbial profiles for 2910 samples
have been downloaded from the project website as of
December 2016 in text format (HMQCP–QIIME com-
munity Profiling v13 OTU table). Samples representing

significantly low (less than 2000) and significantly high
(over 50,000) number of sequencing reads were excluded
from the analysis. The microbial profiles of the
remaining 2380 samples, varying from 67 for posterior
fornix to 200 for antecubital fossa, have been normalized
against the total number of reads in each sample and
transformed into relative abundance profiles merged to
genus taxonomy level for each body site resulting in 619
profiles. Analysis has been performed for each body site
individually. For each body site under consideration,
genera present in less than 5% of samples have been ex-
cluded from the analysis.

Boolean patterns detected in Human Microbiome Project
data
All three types of 2D patterns have been identified in
virtually every type of sample of the Human Microbiome
Project data (Additional File 1). The largest number of
patterns (all types included) has been detected in supra-
gingival plaque, tongue dorsum, stool, and subgingival
plaque datasets (Fig. 3a–d and Additional File 2). No ap-
parent correlation has been observed between the num-
ber of patterns and the total number of samples nor the
number of OTUs in the datasets. It is important to men-
tion that while all of the observed 2D patterns pass stat-
istical significance criteria, the overall size and
complexity of the resulting networks depend on the pat-
tern score threshold (Fig. 3e). In the interaction patterns
of HMP supragingival (Fig. 3a), the Fusobacteria genus
(green) node has 11 one-way relationships with other
taxa. Additionally, there are another 12 such significant
patterns with lower scores as shown in the supplemen-
tary file “Additional File 1.” Fusobacteria nucleatum is a
well-known pathogen that was not only found in the
subgingival and supragingival plaques [25], but also pre-
viously characterized in vitro [26] and in vivo [27] dental
plaque biofilms. Interestingly, one group found out that
F. nucleatum is unable to grow as a single species and
builds a mutualistic relationship with other members of
local microbiota such as Aggregatibacter. The presence
of this pattern is in agreement with previous findings
that orofacial odontogenic infections are usually polymi-
crobial [28]. While the Fusobacterium-Aggregatibacter
pattern has not been identified in our cohort of samples,
our findings of one-way relation patterns between Fuso-
bacterium and other members of microbial communities
yield rather interesting results. Thirteen such patterns
showed interaction between Fusobacteria spp. and other
known pathogens. For example, Catonella and Clostri-
diales spp. have been previously associated as uniquely
present in the patients with caries [29]. Another pattern
includes a one-way relation with Tannerella spp., which
is also known as periodontal pathogen [30], as well as
very well-studied Dialister spp. and their role as
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periodontopathic bacteria [31]. Finally, while species of
identified Johnsonella genus are not known directly re-
lated to dental diseases, they have been linked to chronic

obstructive pulmonary disease (COPD) which strengthen
proposed method as a tool for hypothesis discovery in
microbial communities [32].

Fig. 3 2D microbe-microbe interaction networks. 2D networks for a supragingival plaque, b tongue dorsum, c stool, d subgingival plaque, and e
vaginal introitus samples at the genus level. Example of the effects of the patterns’ score threshold on the network’s complexity (e). Node colors
reflect different taxonomy assignments at phylum level, and node sizes are proportional to the average relative abundance of the microorganism
across samples. Capital letters inside square brackets represent the lowest taxonomy level identified for each OTU: G, genus; F, family; O, order; C,
class; and P, phyla. The color of edges indicates relationship type: blue with a black arrow (one-way relations), red (co-exclusion), and light
green (co-presence)
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While the available HMP data does not possess
enough precision power to pinpoint the exact patho-
genic strains that are contained within the samples and
which happen to be within the pathogenic genera, fam-
ily, or even order, we believe these observations of inter-
action between Fusobacteria and other members of
microbial communities are not random and may benefit
from further analysis and validation. Improvement of
high-throughput sequence technologies, decrease of cost,

and availability of the high-quality public data will close
this data precision gap.
Some 3D patterns have also been observed in buccal

mucosa, supragingival plaque, and merged retroauricular
crease datasets (see example in Table 2).

Discussion and conclusion
Identification of interaction patterns in microbial com-
munities is essential to further our understanding of

Table 2 Example of 3D patterns where organisms 2 and 3 are co-present if organism 1 is present and co-excluded if organism 1 is
absent identified in anterior nares samples (genus level). Calculations have been performed with the minimum population threshold
set to 0.1 Capital letters inside square brackets represent the lowest taxonomy level identified for each OTU: G genus, F family, O
order, C class, and P phyla

Organism 1 Organism 2 Organism 3 Pattern score p000 p001 p010 p011 p100 p101 p110 p111

[G] Actinomyces [G] Rothia [G] Neisseria 0.94 0.48 0.12 0.18 0.05 0.00 0.00 0.02 0.16

[F] Ruminococcaceae [G] Bacteroides [F] Lachnospiraceae 0.94 0.54 0.12 0.17 0.03 0.02 0.00 0.00 0.11

[G] Faecalibacterium [G] Bacteroides [F] Lachnospiraceae 0.94 0.57 0.12 0.16 0.04 0.00 0.00 0.02 0.10

[G] Oscillospira [G] Bacteroides [F] Lachnospiraceae 0.94 0.60 0.12 0.12 0.03 0.01 0.01 0.02 0.10

[G] Oscillospira [F] Lachnospiraceae [G] Faecalibacterium 0.94 0.57 0.10 0.17 0.04 0.01 0.02 0.00 0.10

[G] Neisseria [G] Rothia [G] Prevotella 0.94 0.56 0.15 0.12 0.02 0.01 0.01 0.02 0.11

[G] Neisseria [G] Rothia [G] Veillonella 0.94 0.48 0.23 0.10 0.04 0.01 0.01 0.00 0.13

Fig. 4 Example of multi-layer network. Multi-layer network visualization of two- and three-dimensional patterns in attached keratinized gingiva
samples. The network contains two types of nodes representing OTUs (circular) and three-dimensional patterns (circular with a triangle). Node
colors reflect different taxonomy assignments at phylum level, and node sizes are proportional to the average relative abundance of the
microorganism across samples. Capital letters inside square brackets represent the lowest taxonomy level identified for each OTU: G, genus; F,
family; O, order; C, class; and P, phyla. The color of edges indicates relationship type: blue with a black arrow (one-way relations), red (co-exclusion),
light green (co-presence), dark green (3D co-presence), and orange (type 2 co-exclusion)
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relationships in microbial communities. Knowledge of
the interactions between specific organisms can help
transition microbiomes between enterotypes and better
predict microbial responses due to perturbations (e.g.,
targeted antimicrobials, probiotics, prebiotics). Ability to
manipulate microbial communities in terms of commu-
nity members and their functions will open new oppor-
tunities for precision medicine and personalized
treatments. Thus, the development of systematic and
statistically sound methods for interaction pattern iden-
tification is a necessary step to understand the structure
of microbiomes and the processes by which they evolve.
Since correlation and MI-based approaches can miss

important multidimensional patterns and produce mis-
leadingly low scores for certain intuitively obvious pat-
terns, the proposed method could serve as a useful
addition to the set of tools available for the microbiome
analysis. It is important to keep in mind, however, that
the presence of statistically significant patterns between
the abundance of two and more organisms must be
interpreted very carefully and treated more like an indi-
cation of a potential interaction and requires independ-
ent experimental validation. Additionally, datasets from
different environments or conditions should not be ana-
lyzed simultaneously for patterns, since this may result
in false interaction patterns such as co-exclusion due to
the datasets being of different nature with different com-
positions. The comparison of interactions between dif-
ferent conditions should be done between the calculated
interaction pattern sets (networks).
The visualization of multidimensional patterns involv-

ing multiple organisms, however, remains a significant
challenge. Traditionally, the graph (network) representa-
tion of the patterns between organisms in microbial
communities represents each OTU as the node and pair-
wise relationships as edges [14, 16, 24, 33]. We believe
that one of the possible ways to visualize 2D, 3D, and
higher dimensional patterns could be by using a multi-
layer network (multi-layer graph) which in contrast with
traditional graphs (networks) can simultaneously include
nodes of different types [34], such as OTUs and multidi-
mensional patterns. Figure 4 shows an example of such
a representation for two- and three-dimensional patterns
in attached keratinized gingiva samples from the Human
Microbiome Project.
The presented approach can also be extended by in-

cluding a variety of physical (pH, temperature, oxygen
concentration) and biochemical (antimicrobial suscepti-
bility, nutrient, and metabolite concentration) variables
into the search for multidimensional patterns. We also
believe that it can be extended to the simultaneous ana-
lysis of multi-omics data, such as protein and mRNA ex-
pression in both microbial communities and the
mammalian host.
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