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Abstract

Background: Viruses are a significant player in many biosphere and human ecosystems, but most signals remain
“hidden” in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers,
database representatives, and insufficiently advanced identification tools.

Results: Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed
database advances across a collection of customized automatic classifiers to improve the accuracy and range of
virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses,
VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other
tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order
Caudovirales). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with
atypical cellular sequences including eukaryotic genomes and plasmids. Finally, as the virosphere exploration
unravels novel viral sequences, VirSorter2’s modular design makes it inherently able to expand to new types of
viruses via the design of new classifiers to maintain maximal sensitivity and specificity.

Conclusion: With multi-classifier and modular design, VirSorter2 demonstrates higher overall accuracy across major
viral groups and will advance our knowledge of virus evolution, diversity, and virus-microbe interaction in various
ecosystems. Source code of VirSorter2 is freely available (https://bitbucket.org/MAVERICLab/virsorter2), and
VirSorter2 is also available both on bioconda and as an iVirus app on CyVerse (https://de.cyverse.org/de).

Introduction
Microbes are now widely recognized as driving nutrient
and energy cycles that fuel marine and terrestrial ecosys-
tems [1, 2], directly influencing human health and
disease, and controlling the output of engineered ecosys-
tems [3]. This explosive paradigm shift of our perspec-
tive of microbes is derived in large part from an ability

to identify the “unculturable majority.” As high-
throughput gene marker and metagenomic sequencing
technologies have advanced, the true taxonomic and
functional diversity of microbial communities could pro-
gressively be better explored [4–6]. Discovery and identi-
fication of viral sequences was at the forefront of the
metagenomic revolution [7–9], but early studies were
plagued by the lack of marker genes and an inability to
“count” appropriate units in viral sequence space [10–
12]. Fortunately, relevant “units” of viral diversity, at
least for dsDNA viruses, are now routinely accessible
through the de novo assembly of viral genomes from
metagenomes. Thus the estimated 1031 viruses on the
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planet [13, 14] are being rapidly surveyed across soil,
ocean, and human microbiomes, commonly yielding
thousands to hundreds of thousands of dsDNA viruses
in a single study [12, 15–19]. These large-scale surveys
have helped implicate viruses as key microbiome regula-
tors infecting ecologically critical microbes, impacting
biogeochemical cycles, and altering evolutionary trajec-
tories through horizontal gene transfer [20, 21]. Beyond
viruses of bacteria and archaea, vast stores of previously
unidentified viruses that infect eukaryotes including
ssDNA viruses [22], RNA viruses [23–25], and giant vi-
ruses (the phylum Nucleocytoviricota, also known as
NucleoCytoplasmic Large DNA Viruses [NCLDV]) [19,
26] are being identified, but are still in need of analytical
approaches for systematic identification.
Given the sheer magnitude and significant importance

of the virosphere across diverse ecosystems, establishing
a broad genomic catalog of Earth’s viral diversity is crit-
ical. These efforts will rely on automated detection of
viral genomes across a broad range of sequencing
datasets [9]. Currently, two general computational ap-
proaches exist to identifying viral sequences. One set of
tools rely on a combination of gene content and gen-
omic structural features to distinguish viral from micro-
bial sequences, including Prophinder [27], PhiSpy [28],
VirSorter [29], the Earth’s Virome pipeline [17], PHAS
TER [30], MARVEL [31], and VIBRANT [32]. These
genomic features are either statistically compared to a
null model (Prophinder, VirSorter, PHASTER), or more
recently have been used as input for automatic machine-
learning classifiers (MARVEL and VIBRANT). The other
approach uses the frequencies of DNA “words” (i.e., k-
mers) found in known viral and cellular genomes as sig-
natures to train machine-learning classifiers to recognize
new viral and microbial sequences (e.g., VirFinder and
DeepVirFinder [33, 34]). Both approaches efficiently
detect common viruses that are well represented in
databases, such as dsDNA bacteriophages from the Cau-
dovirales order [31, 32], but they struggle with less well-
documented viruses like ssDNA viruses [35], RNA
viruses [36, 37], and viruses that infect archaea [38, 39].
One reason for this is that current approaches consider
viruses as a single cohesive group for detection purposes,
which is potentially problematic given the varied eco-
logical and evolutionary rules that govern the diversity
and evolution of different viral genomes [40]. While
some features may span the virosphere (e.g., enrichment
of uncharacterized genes, relative to microbes), others
are group-specific (e.g., hallmark genes, specific genomic
structure, or the presence of metabolic genes). Though
machine learning approaches based on nucleotide com-
position would not suffer as much from viral database
representation, they tend to confuse any unusual se-
quence as viral (e.g., plasmids or eukaryotic genome

fragments [39]). Together, these observations call for the
field to move beyond a single model to represent the
virosphere for virus identification.
Here, we develop and introduce a new viral sequence

identification tool, VirSorter2, which leverages recent se-
quencing efforts for under-represented viral groups to
develop customized automatic classifiers that improve
detection of viruses in the order Caudovirales (the focus
of the original VirSorter tool [29]), while also identifying
other major virus groups across a broad range of hosts,
genome lengths, and genome complexity. VirSorter2 is
designed modularly, enabling easy update of reference
databases and individual classifiers as new viral groups
are progressively described and characterized.

Results and discussion
The VirSorter2 framework
Viral sequence identification in VirSorter2 occurs via
three steps: (i) input sequences are automatically anno-
tated and relevant features are extracted, (ii) each se-
quence is scored independently using a set of classifiers
customized for individual viral groups, and (iii) these
scores are aggregated into a single prediction provided
to the user (Fig. 1). Annotation of the input sequences
follows current standards in the field [9] including cod-
ing sequence (CDS) identification with Prodigal (version
2.6.3) [41], and annotation of predicted CDS using
HMMER3 (version 3.3) [42] against Pfam (release 32.0)
[43] and a custom comprehensive viral HMM database
including Xfams (described in the “Methods” section)
and viral protein families (VPF) from the JGI Earth’s vir-
ome project [17]. Within this custom viral HMM data-
base, profiles corresponding to viral hallmark genes were
manually identified based on functional annotation and
distribution across viral and microbial genomes for dif-
ferent viral groups. These include structural genes such
as major capsid protein (MCP) or terminase large sub-
unit for viruses in the order Caudovirales (as done in
the original VirSorter); RNA-dependent RNA polymer-
ase (RdRP) for the viral kingdom Orthornavirae (RNA
viruses); MCP for viruses in the family Microviridae;
replication-associated protein for viruses in the phylum
Cressdnaviricota [44]; ATPase for viruses in the family
Inoviridae; MCP, pATPase, primase, transcription elong-
ation factor (TFIIS), and viral late gene transcription
factor (VLTF3) for viruses in the phylum Nucleocytoviri-
cota (i.e., nucleocytoplasmic large DNA viruses; NCLD
Vs); and MCP for viruses in the family Lavidaviridae
(virophages) [40].
Different features were extracted from these annota-

tions (Table 1 and Fig. 2). These features were then used
as input for five distinct random forest classifiers, each
associated with a different major type of viral group.
These classifiers were trained on reference virus
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sequences from NCBI RefSeq and high quality genomes
from new unpublished isolates (ssDNA) [22], metagen-
omes [15, 16, 19, 26, 45–47], and proviruses, i.e., viral
genomes residing in bacteria or archaeal host cell [48]
(see “Methods” section). Each classifier yields a “viral-
ness” score, which can be used to determine the likeli-
hood of the input sequence to represent a partial or
complete genome from the corresponding viral group.
To train the different classifiers, reference genomes

for each viral group were split into training and test-
ing sets with a 9 to 1 ratio, respectively, and 5 ran-
dom fragments were generated from each genome
starting at a random position and with size ranging
from 1 kb to complete genomes. Separate classifiers
were trained for the following viral groups (i) caudo-
virids (Caudovirales) and comparable dsDNA phages
(e.g., corticovirids), (ii) NCLDVs, (iii) RNA viruses,
(iv) ssDNA viruses, and (v) lavivirids (Lavidaviridae).
Separately, a negative (non-viral) dataset was gener-
ated from genomes of three groups: (i) bacteria and
archaea, (ii) eukaryotes (fungi and protozoa), and (iii)
plasmids. The training and testing sets for non-viral
genomes were generated the same way as the viral set
described above.
For each input sequence to be classified, all ran-

dom forest classifiers are first applied to the entire
sequence. If the score obtained with one or more of
the classifiers is above the cutoff set by the user (the
default was 0.5, as used in the classifier training
step), the score is considered significant and the se-
quence was considered as entirely or near-entirely
viral. To identify potential host regions on the edge

Fig. 1 Overview of the VirSorter2 framework. Schematic of the viral prediction pipeline used in VirSorter2. “hmmDB” represents databases of
HMM profiles including viral HMMs from Xfam (described in the “Methods” section) and viral protein families (VPF) from JGI Earth’s Virome [17],
and cellular HMMs (archaeal, bacterial, eukaryotic) as well as “mixed” HMMs (not specific to either virus or cellular organisms) from Pfam [43]. A
default cutoff of 30 is used for the HMM searches. “Classifiers” refers to random forest classifiers trained on known viral genomes and cellular
genomes from different viral groups (see “Training classifiers” section in “Methods”). The default max score cutoff is set to 0.5

Table 1 Features used in Virsorter2, VirSorter, and MARVEL.
Detailed explanation of each feature is provided in the
“Methods” section. In VirSorter, features 3 to 6 are summed up
as one feature (% of Pfam affiliated genes)

VirSorter2 VirSorter MARVEL

1. Hallmark gene count x x

2. % of viral genes x x x

3. % of archaeal genes x x

4. % of bacterial genes x

5. % of eukaryotic genes x

6. % of mixed genes x

7. % of unaligned genes x x

8. Average gene size x x x

9. Gene overlapping frequency x

10. Gene density x x x

11. Strand switching frequency x x x

12. % of ATG as starting codon x x

13. % of GTG as starting codon x

14. % of TTG as starting codon x

15. Mean of GC content x

16. SD of GC content x

17–27. % of RBS motifs x
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of these contigs, sub-sequences of the input se-
quence with 0 to 5 genes or 10% of total genes
(whichever larger) trimmed in 5′ and/or 3′ proc-
essed with the same classifiers, and selected if the
viralness score increased compared to the full se-
quence. If no score was significant when analyzing
the complete sequence, the same classifiers are ap-
plied to sliding windows across the input sequence.
The size of the sliding window was determined sep-
arately for each classifier as the minimal size of a
genome from the corresponding viral group (Table
S1). The sliding window starts from the 5′ edge of a
contig and shifts one gene at a time while there is
no significant score. For each window yielding a sig-
nificant score, this window is extended one CDS at a
time in 3′ as long as the score stays significant.
Eventually, overlapping regions identified by different
classifiers are compared and the longest prediction is
retained.

Expanded and manually curated databases enable a
robust detection of viruses in the order Caudovirales
We first evaluated the new VirSorter2 approach on ge-
nomes in the order Caudovirales. As described above,
test sequences included both phage isolate sequences
from NCBI Viral RefSeq [49] and uncultivated phage ge-
nomes obtained from metagenomes or identified as pro-
viruses in bacterial and archaeal whole genome shotgun
sequencing ([15, 16, 48], see “Methods” section). Test se-
quences also did not overlap with the references used to
train the classifier. As negative control, the same number
of sequences from the non-viral testing set were in-
cluded. The same test sequences were also processed
with established viral sequence detection tools including
VirSorter [29], VirFinder [33], DeepVirFinder [34],
MARVEL [31], and VIBRANT [32]. The overall per-
formance of each tool was evaluated using the F1 score,
which represents the harmonic mean of precision and
recall [50].

Fig. 2 Boxplot of different features across non-viral and viral groups. “Nonviral” includes bacteria and archaea, fungi and protozoa, and plasmids.
A subset of 100 random genome fragments were used for each group. “% of viral gene” is calculated as the percent of genes annotated as viral
(best hit to viral HMMs) of all genes; “% of bacterial gene” is calculated as the percent of genes annotated as bacterial (best hit to bacterial
HMMs) of all genes; “Strand switch frequency” is the percent of genes located on a different strand from the upstream gene (scanning from 5′ to
3′ in the + strand); “Gene density” is the average number of genes in every 1000 bp sequence (total number of genes divided by contig length
and then multiplied by 1000); “Average GC content of genes” is the mean of GC content of all genes in a contig; “TATATA_3-6 motif frequency” is
the percent of ribosomal binding sites (RBS) with “TATATA_3-6” motif
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Overall, all tools performed well in the identification
of viral sequences in the order Caudovirales from
RefSeq, as they all displayed F-score ≥ 0.8 with se-
quences 5 kb and longer (Fig. 3a, Figs. S1 & S2). As pre-
viously observed [29, 39], all approaches also displayed a
decreased accuracy with shorter sequences, especially
when reaching lengths of ~ 1–2 kb (Fig. 3a). While in-
creased accuracy with sequence length was also observed
when evaluating the same tools with uncultivated viral
sequences of the order Caudovirales, the overall per-
formance of several tools was lower (Fig. 3b, c, Figs. S1
& S2). Specifically, the performance of VirSorter, VirFin-
der, DeepVirFinder, and MARVEL was decreased by 10–
30%, while VIBRANT and VirSorter2 displayed F-score
comparable to those when evaluated with the RefSeq se-
quences (± 5%), likely due to their larger reference data-
base and their ability to use hallmark genes to identify
viruses only distantly related to RefSeq genomes. Similar
results were obtained when analyzing viral sequences, ei-
ther from RefSeq or uncultivated, for which < 25% of the
genes were annotated as viral based on the custom
HMM database (Fig. S3), confirming that the differences
in tool performances were mostly due to the ability to
identify novel viruses. To verify that the VirSorter2 ap-
proach was similarly efficient for integrated proviruses,

we processed bacterial genomes from a gold-standard
set of 51 microbial genomes [51] for which 82 integrated
proviruses have been manually curated. As for viral con-
tigs, VirSorter2 recall and precision was comparable or
higher to all other tools (Table 2). Overall, the approach
used by VirSorter2 to identify Caudovirales is thus on
par or more efficient than other recently published tools
for both isolate and environmental sequences, across a
broad range of contig length, and for sequences both en-
tirely and partially viral. The only exception was for viral
contigs of < 3 kb that have representation in NCBI
RefSeq, which were better recovered by kmer-based
methods such as VirFinder and DeepVirFinder (Fig. 3a).

Dedicated custom models allow identification of diverse
viral sequences
We next reasoned that, since different viral groups have
different defining characteristics, a single model was un-
likely to efficiently handle the entire viral diversity.
Hence, just as viral taxonomists have to use different
characteristics to classify viruses across the known viro-
sphere [52], different rules would be needed to robustly
identify different types of viruses in nature instead of the
single model used by all other tools available to date, in-
cluding the original VirSorter. To demonstrate the

Fig. 3 Tool performances on dsDNA phages from different data sources. VirSorter2 consistently has comparable or better performance than
existing tools in identifying dsDNA phages. Genome fragments of different lengths (x-axis) are generated from genomes in the order Caudovirales
in NCBI Viral RefSeq (a), proviruses extracted from microbial genomes in NCBI RefSeq (b) [48], and other sources (c) [15, 16]. An equal number
(50) of viral and non-viral (archaea and bacteria, fungi and protozoa, and plasmids) genome fragments were combined as an input for the tested
tools. Error bars show 95% confidence intervals over five replicates (100 sequences each as described above). F1 score is used as the metric (y-
axis) to compare tools, while detailed recall and precision results are available in Figs. S1 and S2. The dotted line is y = 0.8

Table 2 Performance of VirSorter2 and previously published prophage identification tools when calling proviruses from the standard
dataset described in Casjens [51]

PHAST
(all categories)

PHAST
(no questionable)

PhiSpy Phage
Finder

VirSorter
(categories 1 and 2)

Virsorter
(ll categories)

VirSorter2

Recall 84.27% 70.04% 78.28% 64.42% 73.41% 79.30% 94.38%

Precision 83.03% 82.74% 73.59% 79.26% 92.89% 72.24% 73.04%
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effectiveness of this multi-classifier approach, we focused
our efforts on four major virus groups outside the order
Caudovirales where significant data and expertise have
accumulated—ssDNA viruses, RNA viruses, NCLDV,
and lavidavirids (virophages)—as described above.
Comparing the range and median value of each feature

between groups confirmed that features such as gene
density or percentage of viral gene could clearly differ
between groups (Fig. 2). The relative importance of each
feature in individual classifiers was also variable between
different groups, confirming fundamental differences in
genome organization and content between viruses (Fig.

S4). Comparing the performance of VirSorter2 to other
existing approaches on these non-Caudovirales viruses
demonstrated that most of the tools evaluated were not
able to consistently identify these sequences (Fig. 4, Figs.
S5 & S6). Overall, current virus detection tools typically
struggled with at least one type of non-Caudovirales
virus, and also showed reduced performance for se-
quences not currently part of NCBI Viral RefSeq, i.e.,
more distantly related to known references. Meanwhile,
VirSorter2 was the only tool which displayed F1-scores
> 0.8 across all groups for contigs 5 kb and longer, and
always had the highest F-score for all contigs ≥ 3 kb

Fig. 4 Tool performances on different viral groups (other than dsDNA phage) from different data sources. VirSorter2 consistently outperforms
existing tools in identifying viral groups outside dsDNA phages Genome fragments of different lengths (x-axis) are generated from NCBI RefSeq
(“refseq”) genomes in each viral group and other sources (“non-refseq”) [19, 45–47, 53]. “RNA-non-refseq*” is a collection of ssRNA phage
genomes [45]. An equal number (50) of viral and non-viral (archaea and bacteria, fungi and protozoa, and plasmids) genome fragments were
combined as an input for the tested tools. F1 score is used as the metric (y-axis) to compare tools. The dotted horizontal line is y = 0.8. vs2
VirSorter2, vs1 VirSorter, vf VirFinder, dvf DeepVirFinder, mv MARVEL, vb VIBRANT
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except for RNA viruses from RefSeq where DeepVirfin-
der performed better. Through its modular framework,
VirSorter2 is thus uniquely able to reliably detect differ-
ent types of non-Caudovirales viruses. Importantly how-
ever, VirSorter2’s F1-score substantially decreased for
sequences < 3 kb, as previously observed for the viruses
in the order Caudovirales, due to loss of sensitivity (Figs.
S5 and S6). Thus, the VirSorter2 approach is currently
not optimal for short (< 3 kb) contigs.
The decrease in F1-score between VirSorter2 and the

next best tool varied between groups and lengths, from
4.4% for the ssDNA to 31.8% for NCLDV on average
with sequences longer than 5 kb, highlighting that some
groups benefited from a separate classifier more than
others (Fig. 4, Figs. S5 & S6). Pragmatically, this means
that lavidavirid gene content and genome structure may
be close enough to the “extended Caudovirales” group
that it could potentially be included in the same classi-
fier, whereas NCLDV and ssDNA viruses are better
identified when considered separately. VirSorter2 was
thus designed modularly to enable modification and
addition of new classifiers as our knowledge of viral se-
quence space increases.

Plasmids and eukaryotic genomes represent unique
challenges for viral detection tools
While initial tests were performed using random frag-
ments of bacterial and archaeal genomes as non-virus
sequences, previous studies showed that eukaryotic gen-
ome and plasmid fragments were especially prone to be
mis-identified as a putative viral sequence [39]. We thus
evaluated how VirSorter2 and other tools handled both
eukaryotic and plasmid sequences, by processing data-
sets entirely composed of eukaryotic genome fragments
or plasmid fragments and measuring at which frequency
these would be wrongly considered as viral (Fig. 5).
For eukaryotic genomes, both MARVEL and VirSorter

showed high specificity with 2.4% and 0.1% false posi-
tives on average respectively, while VirSorter2 and VI-
BRANT displayed on average 12.1% and 20.9% of false
positives respectively (Fig. 5a). The error rate was con-
sistent across sequence length for all tools except for

VirSorter2, where this error rate decreased quickly when
sequence length increased, to reach < 1% for fragments
≥ 20 kb. These differences in specificity are consistent
with the original scope of the tools: both VirSorter and
MARVEL were designed to identify bacteriophages and
archaeoviruses [29]. While they do not mistake
eukaryotic sequences as viral, they also poorly detect
eukaryotic viruses such as NCLDV (Fig. 4). VirSorter2
and VIBRANT are both able to recover eukaryotic virus
sequences, such as NCLDV, and RNA viruses, but do so
at the cost of a specificity loss that is relatively similar
across the two tools. However, VirSorter2’s modular
framework can be leveraged by users interested in
particular subsets of viruses to reduce these losses. For
example, to target viruses of bacteria and archaea, users
can omit the NCLDV, Lavidaviridae, and RNA virus
classifiers to drop VirSorter2 error rate associated with
eukaryotic genomes, as demonstrated by a reduction in
false-positive rate to < 1.5% for all fragment lengths on
average (Fig. S7). Finally, both VirFinder and DeepVir-
Finder were most likely to mistake eukaryotic sequences
as viruses as they had more than double the false posi-
tive rate of VirSorter2 (21.7% for VirFinder, 32.1% for
DeepVirFinder on average). This high eukaryote-for-
virus error rate for k-mer-based methods, including for
large (20 kb) sequences, is a known limitation of these
approaches [39].
In contrast to eukaryotic genome sequences, no tool

performed well against plasmid sequences (Fig. 5b).
This included both gene-content and k-mer based
tools, and stayed true even for large plasmid frag-
ments (e.g., ≥ 20 kb) for which the error rate ranged
between 6.4 and 42.0% for all tools. This highlights
how plasmid sequences cannot be entirely distin-
guished from viruses using current approaches and
suggests that alternative methods need to be designed
for this purpose. Given the growing list of examples
of how plasmid and viral sequence space are inter-
twined [54–57], significant work in this area will
presumably be required, including possibly the in-
corporation of a dedicated tool for plasmid detection
in VirSorter2 modular framework.

Fig. 5 False positives comparison of tools on eukaryotes and plasmids. Genome fragments (50) of different lengths (x-axis) were generated from
eukaryotic genomes (fungi and protozoa) in NCBI RefSeq, and plasmids. Percent of genome fragments classified as viral is used as the metric (y-
axis) to compare tools. vs2 VirSorter2, vs1 VirSorter, vf VirFinder, dvf DeepVirFinder, mv MARVEL, vb VIBRANT
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VirSorter2 is easily available and can be scaled to handle
large-scale datasets
Beyond accurate and sensitive virus identification, scal-
ability to process large (> 100,000 sequences) datasets
and broad availability for users regardless of their know-
ledge of command-line or scripting are desirable traits in
virus sequence detection tools. For the former, VirSor-
ter2 can process an input dataset of 100,000 sequences
totaling 4.2 Gb in 28.6 h using 32 threads. Its memory
usage stays nearly constant with increasing data size,
and scales nearly linearly with threads used (Figs. S8 &
S9). Its total CPU time is higher than other tools (typic-
ally 2–10× higher, Fig. S8), but VirSorter2’s internal pro-
cesses are highly parallelizable, and written with
snakemake, a cutting-edge pipeline management tool de-
signed for computer clusters [58]. VirSorter2 is thus able
to utilize multiple cores in the same node and across
multiple nodes efficiently, so that compute time would
not be a limiting factor even for (ultra)large-scale data-
sets if state-of-the-art computing cluster resources are
available (Fig. S9). Further, this increased CPU time is
mostly due to the annotation step with larger viral
HMM database (> 90% of CPU time) and not to the use
of several distinct classifiers, suggesting that additional
viral groups and classifiers could be added to the VirSor-
ter2 framework with minimal impact on performance.
Finally, users can explore the annotation and per-model
score computed by VirSorter2 for each individual se-
quence, and can generate new output files using differ-
ent options and cutoffs based on an existing VirSorter2
directory without having to re-compute the annotation
step. To illustrate this and other differences between
VirSorter and VirSorter2, we provide a detailed analysis
of viral sequence detection from an ocean virome using
both VirSorter and VirSorter2 (Supplementary Text, Fig.
S10, Additional files 4 and 5).
In order to make VirSorter2 useful for the largest

community possible, we provide it through multiple
implementations and accompanied with extended docu-
mentation. Specifically, VirSorter2 is freely available at
bitbucket (https://bitbucket .org/MAVERICLab/
VirSorter2), as an App on the CyVerse (https://de.
cyverse.org/de), and available for local installation
through a bioconda package (https://anaconda.org/
bioconda/virsorter). In addition, we provide an extensive
step-by-step tutorial on how to run VirSorter2 and how
to design new classifiers for additional viral groups and
integrate this within a local VirSorter2 instance on pro-
tocols.io/VERVENET (https://www.protocols.io/view/
getting-started-with-virsorter2-bhdij24e).

Current limitations and future developments
Together, these benchmark experiments demonstrate
that by integrating multiple classifiers, each customized

for a specific viral group, VirSorter2 vastly improves the
diversity of viruses that can be automatically detected
from environmental sequence data. However, we note
several limitations that will benefit from future improve-
ments in our understanding of the virosphere and tech-
nical capabilities.
First, while separating the global viral diversity in dif-

ferent groups clearly improved viral sequence detection,
there is currently no automated process to optimally
group reference viral sequences into different viral clas-
sifiers. If the viral groups selected are too large and/or
diverse, the corresponding classifier would likely suffer
from the same flaw as previous tools, whereby rare
members would be under-detected. Conversely, classi-
fiers designed for groups lacking diverse representation
will show reduced accuracy, due to an under-trained
random forest classifier being unable to extract mean-
ingful identifying features for the group. Thus, further
virosphere exploration and systematic classification is
critical to provide the training data needed to optimize
detection.
Second, some viral groups may require additional ref-

erences and/or features to achieve a systematic and ro-
bust identification. The limits associated with reference
sequences are shared by all viral sequence identification
tools: as new viral genomes and groups are discovered,
e.g., high-quality genomes assembled from metagenomes
[59], these need to be integrated into virus detection ap-
proach to keep these up-to-date. This iterative process is
now facilitated by the modular framework of VirSorter2,
for which we provide a detailed step-by-step protocol to
add additional viral groups and classifiers. The addition
of other features would also be a possible avenue for ex-
tending the range and/or accuracy of VirSorter2. Con-
trary to the addition of new viral groups, integrating new
feature(s) would require substantial modification of Vir-
Sorter2 code, and would thus be only associated with
the release of new versions of the tool.
Finally, while run times and computational resources

required by VirSorter2 are compatible with modern
omics datasets, the size of these datasets will likely keep
increasing over the next few years, and may eventually
limit the usefulness of VirSorter2. Given that most of
the computation time is currently dedicated to the anno-
tation step, this issue will require integration of scalable
and improved sequence comparison tools (e.g.,
MMSeqs2 [60], HHBlits [61]) and/or new versions of
the tools currently used.

Conclusion
The automatic extraction of viral sequences from large-
scale sequencing data is now a cornerstone of the
current viral ecogenomics toolkit. Identifying viral ge-
nomes from omics data enables unprecedented studies
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of viral taxonomic diversity [62], viral population distri-
bution and associated eco-evolutionary constraints [15,
16, 47], and viral potential for microbial metabolic re-
programming [20]. While current tools typically detect
known and “standard” viruses, i.e., viruses in the order
Caudovirales, pretty well, the approaches available to
date remain challenged by novel and/or unusual viral
groups. VirSorter2 now provides a framework to go be-
yond the detection of viruses in the order Caudovirales
and enables robust detection of all types of viruses in se-
quencing data. By defining subgroups of viruses with
consistent genome features and unique markers, the Vir-
Sorter2 framework is designed to grow as databases do
such that new viral diversity can be readily detected in
large-scale datasets. This will in turn enable researchers
to investigate the role(s) played by all viruses across
Earth’s biomes, and better understand how these viruses
constrain fundamental microbial processes.

Methods
Viral HMM database
The viral HMM database includes viral HMMs from
viral protein families (VPF) of JGI earth’s virome project
[17] and Xfams (https://de.cyverse.org/dl/d/648936
0D-1126-413B-A667-D18E39D5F2F1/viral_db_default.
hmm). Xfams were generated from a large collection of
viral sequences from the Global Ocean Viromes 2.0
(GOV 2.0) [16] and the Stordalen Mire Viromes (SMV)
[63]. Briefly, viral contigs were identified by VirSorter
[29], DeepVirFinder [34], and MARVEL [31]. The inter-
section between the three tools (Category 1 in VirSorter
with “--virome” mode, score ≥ 90% in Marvel, and a
score of ≥ 0.9 with a p value of < 0.05 in DeepVirFinder),
were kept. Open reading frames (ORF) were predicted
using prodigal with “--meta” mode [41], filtered by remov-
ing ones with ≥ 95% similarity to RefSeq’s bacterial and ar-
chaeal proteins, and then clustered by ClusterONE [64] to
get rid of singletons (-d 0.3 -s 0.2 --max-overlap 0.8). Mul-
tiple sequence alignments were generated for each cluster
by MUSCLE (--maxiters 4) [65], and then made into
HMMs by hmmbuild in HMMER3 package [66]. More
details of Xfams can be found at iVirus in CyVerse’s Dis-
covery Environment (https://de.cyverse.org/de/): /iplant/
home/shared/iVirus/Xfams/version_0.5/Xfams-XC.

Training classifiers
NCBI RefSeq genomes including archaea, bacteria, protists,
fungi, and virus were downloaded from NCBI (ftp://ftp.
ncbi.nlm.nih.gov/genomes/refseq) on 2020-01-12. Viral ge-
nomes from the order Caudovirales were used for dsDNA
phage; genomes from the families Mimiviridae, Phycodna-
viridae, Faustoviridae, Iridoviridae, Marseilleviridae, Ascov-
iridae, Pithoviridae, Poxviridae, and Pandoraviridae were
used for NCLDV; genomes from the realm Riboviria were

used for RNA viruses; genomes from the families Bacillad-
naviridae, Circoviridae, Geminiviridae, Nanoviridae
Genomoviridae, Parvoviridae, Microviridae, Smacoviridae,
Alphasatellitidae, Tolecusatellitidae, Anelloviridae, Bidna-
viridae, Pleolipoviridae, Spiraviridae, and Inoviridae were
used for ssDNA viruses; genomes from the family Lavida-
viridae were used for Lavidaviridae classifier. Other than
NCBI RefSeq genomes, a set of high-quality genomes was
also obtained from the literature [15, 16, 19, 45–47, 53] and
unpublished ssDNA virus genome data (Varsani, unpub-
lished data). These genomes were identified based on Vir-
Sorter1, VirFinder, or using custom pipelines, and were
further analyzed and manually curated as part of their re-
spective publication. Hence, they represent useful examples
of “novel” viruses, often distantly related to RefSeq refer-
ence genomes. The genomes of all viral and non-viral
groups were split into “training” and “testing” sets with a 9
to 1 ratio, respectively. The “training” sets from RefSeq and
non-RefSeq sources were combined. For viral genomes, five
fragments were generated starting at a random genome
position with length ranging from 1000 bp to the maximal
length (extending to the end of genome). For bacteria, ar-
chaea, and eukaryotes, five fragments were generated from
a representative genome from each genus in the same way
as described above; for plasmids, because no systematic glo-
bal classification is available and the total number of plas-
mids in the input dataset [67] was only 6642 sequences, five
fragments were generated from each sequence. The gener-
ated fragments from each of the three non-viral groups
(bacteria and archaea, eukaryotes, and plasmids) were sub-
sampled to the minimum within these three negative
groups (bacterial and archaea, eukaryotes, and plasmids)
and combined as a final “negative set.” For each viral group,
the viral “training set” and the non-viral “training set” were
evenly subsampled to the smaller size between the two, and
then used for training the classifier. Then the following 27
features were extracted from each sequence fragment:

1. “Hallmark gene count” is the count of hallmark
genes in a viral sequence

2. “% of viral genes” is calculated as the percent of genes
annotated as viral (best hit to viral HMMs) of all genes

3. “% of archaeal genes” is calculated as the percent of
genes annotated as archaeal (best hit to archaeal
HMMs) of all genes

4. “% of bacterial genes” is calculated as the percent of
genes annotated as bacterial (best hit to bacterial
HMMs) of all genes

5. “% of eukaryotic genes” is calculated as the percent
of genes annotated as eukaryotic (best hit to
eukaryotic HMMs) of all genes

6. “% of mixed genes” is calculated as the percent of
genes with best hit to HMMs shared between
viruses and cells
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7. “% of unaligned genes” is calculated as the percent
of genes with no hits to HMMs in the VirSorter2
HMM database (bit score cutoff 30)

8. “Average gene size” is the mean of gene sizes in a
viral sequence

9. “Gene overlapping frequency” is the percent of
consecutive genes that are on the same strand and
overlap when scanning from 5′ to 3′ on the +
strand

10. “Gene density” is the average number of genes in
every 1000 bp sequence window (total number of
genes divided by contig length and then multiplied
by 1000)

11. “Strand switching frequency” is the percent of genes
located on the opposite strand from the gene
upstream (scanning from 5′ to 3′ in the + strand)

12. “% of ATG as starting codon” is the percent of gene
with ATG as starting codon

13. “% of GTG as starting codon” is the percent of gene
with ATG as starting codon

14. “% of TTG as starting codon” is the percent of gene
with ATG as starting codon

15. “Mean of GC content” is the mean of GC content
of all genes in a sequence

16. “SD of GC content” is the standard deviation of GC
content of all genes in a sequence

17. “% of RBS motifs” is percent of ribosomal
binding sites (RBS) with a specific motif. There are
11 types of motifs included: SD_Canonical,
SD_Bacteroidetes, TATATA_3-6, OnlyA, OnlyT,
DoubleA, DoubleT, Other_GA, NoA, Other, and
None (no motif found) [19].

Features 8–27 are all extracted from the gff output
from prodigal [41].
With the above features, “RandomForestClassifier”

in scikit-learn package [50] was used to train the ran-
dom forest classifier. “MinMax” scaler was used to
scale all the feature data, and “GridSearchCV” was
used to find optimal parameter sets among “n_estima-
tors” of 20, 50, 100, 150, 200, and “criterion” of gini
or entropy.

Accuracy
To compare the accuracy of VirSorter2 to other viral
identification tools, datasets with equal number (50)
of viral and non-viral random DNA fragments were
generated from the testing set created above and with
different lengths (1.5, 3, 5, 10, and 20 kb) to discern
the impact of sequence length on accuracy. VirSorter2
(version 2.0.beta) was run with “--include-groups
dsDNAphage, NCLDV, RNA, ssDNA, lavidaviridae,
--min-score 0.5,” and sequences in “final-viral-combi-
ned.fa” were considered as viral. VirSorter (version

1.1.0) was run with “--db 2 --virome –diamond,” and
sequences in categories 1, 2, 4 and 5 were considered
as viral; VIBRANT (version 1.2.1) was run with “--vir-
ome -f nucl”, and sequences in “VIBRANT_*/VI-
BRANT_phages_*/*.phages_combined.fna” were
considered as viral; VirFinder (version 1.1) was run
with VF.pred function within R as described in
(https://github.com/jessieren/VirFinder); DeepVirFin-
der was installed directly from GitHub (https://github.
com/jessieren/DeepVirFinder) with last commit ID of
ddb4a9433132febe5cda39548cb9332669e11427 and
was run with default parameters; for both VirFinder
and DeepVirFinder, sequences with p value < 0.05
were chosen as viral. Since MARVEL (version 0.2) re-
quired each viral genome as a separate file, input se-
quences were first split so that each sequence was an
individual sequence file, and then default parameters
were used, and the sequences in “results/phage_bins”
were considered as viral. F1 score (harmonic mean of
recall and precision) was used as a metric for tool ac-
curacy comparisons. For measuring false positives on
eukaryotic and plasmid sequences, the fraction of
eukaryotic or plasmid sequences classified as viral
were calculated. To test performance on provirus de-
tection, 54 bacterial genomes with known provirus
boundary [51] were used. VirSorter2 was run with the
“--include-groups all, --min-score 0.5” flag. If a pro-
virus has ≥ 50% of its genome recovered, it was con-
sidered as a true positive, and the VirSorter2
identified viral sequences without any true positives
identified in them were considered as false positives.
Recall and precision of other tools [28, 68, 69] were
retrieved from the original VirSorter benchmarking
experiments [29].

Computational efficiency
To measure how tools scale with input data size,
datasets with 10, 100, and 1000 sequences of 10 kb
in length were generated in the same way as in ac-
curacy benchmarking described above. To measure
multithreading efficiency, datasets with 1000 se-
quences of 10 kb were generated and used as an
input for VirSorter2, VirSorter, MARVEL, and VI-
BRANT were run with 1, 2, 4, 8, 16, 32 threads. Vir-
Finder was not included since it did not have a
multi-threading option. DeepVirFinder had unex-
pected behavior with its multi-threading option
(“-c”), i.e., the “-c” option could not control thread
number, so was also not included. CPU time and
run time was measured with “/usr/bin/time -v” com-
mand available in the Linux operating system and
peak memory was measure with “memusg” script
(https://gist.github.com/netj/526585).
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Additional file 1: Figure S1. Recall comparisons of tools on dsDNA
phages from different data sources. VirSorter2 consistently has
comparable or better performance than existing tools in identifying
dsDNA phages. Genome fragments of different lengths (x-axis) are
generated from genomes in the order Caudovirales in NCBI Viral RefSeq
(A), proviruses extracted from microbial genomes in NCBI RefSeq (B) and
other sources (C) (described in the “Training classifier” part of the Method
section). An equal number (50) of viral and non-viral (archaea and bac-
teria, fungi and protozoa, and plasmids) genome fragments were com-
bined as an input for the tested tools. Error bars show 95% confidence
intervals over five replicates (100 sequences each as described above). Re-
call is used as the metric (y-axis) to compare tools. The dotted line is y =
0.8. Figure S2. Precision comparisons of tools on dsDNA phages from
different data sources. Genome fragments of different lengths (x-axis) are
generated from genomes in the order Caudovirales in NCBI Viral RefSeq
(A), proviruses extracted from microbial genomes in NCBI RefSeq (B) and
other sources (C) (described in the “Training classifier” part of the Method
section). An equal number (50) of viral and non-viral (archaea and bac-
teria, fungi and protozoa, and plasmids) genome fragments were com-
bined as an input for the tested tools. Error bars show 95% confidence
intervals over five replicates (100 sequences each as described above).
Precision is used as the metric (y-axis) to compare tools. The dotted line
is y = 0.8. Figure S3. Tool performances with viral sequences having <
25% of the genes annotated as viral. Genome fragments of different
lengths (x-axis) were generated from Caudovirales genomes from both
NCBI RefSeq genomes and other sources. Only data sources with > 10
viral sequences that have < 25% genes annotated as viral were kept.
Then equal numbers (50) of viral and non-viral (archaea and bacteria,
fungi and protozoa, and plasmids) genome fragments were combined as
an input for the tested tools. F1 score is used as the metric (y-axis) to
compare tools. vs2 = VirSorter2; vs1 = VirSorter; vf = VirFinder; dvf = Deep-
VirFinder; mv = MARVEL; vb = VIBRANT. Figure S4. Importance of differ-
ent features for viral sequence identification across viral groups. The y-
axis shows the relative contribution of individual features in separating
the training viral and nonviral (bacterial and archaea, fungi and protozoa,
and plasmid) data (total is 1), provided by the Random Forest classifier
after processing training data, and based on the F1 score. Top four fea-
tures from each viral group (10 in total) are shown. In the features (color),
“vir” (% of viral genes) is calculated as the percent of genes annotated as
viral (best hit to viral HMMs) of all genes; “bac” (% of bacterial genes) is
calculated as the percent of genes annotated as bacterial (best hit to bac-
terial HMMs) of all genes; “hallmark” (hallmark gene count) is the count of
hallmark genes in a viral sequence; “mix” (% of mixed genes) is calculated
as the percent of genes with best hit to HMMs not specific to virus or
non-virus; “Strand_switch_perc” (Strand switching frequency) is the per-
cent of genes located on a different strand from the previous gene (scan-
ning from 5′ to 3′ in the + strand); “density” (Gene density) is the average
number of genes in every 1000 bp sequence (total number of genes di-
vided by contig length and then multiply by 1000); “gc_mean” (Mean GC
content) is the mean of GC content of all genes in a contig; “atg_perc”
(% of ATG as start codon) is the percent of genes with ATG as a starting
codon; “rbs_None” is the percent of ribosomal binding sites (RBS) with
no motif detected; “rbs_TATATA_3-6” is the percent of RBS with
“TATATA_3-6” motif. Figure S5. Recall comparisons of tools on different
viral groups (other than dsDNA phage) from different data sources. Gen-
ome fragments of different lengths (x-axis) are generated from NCBI
RefSeq (“refseq”) genomes in each viral group and other sources (“non-
refseq”). Then equal numbers (50) of viral and non-viral (archaea and bac-
teria, fungi and protozoa, and plasmids) genome fragments were com-
bined as input for tools. Recall was used as the metric (y-axis) to compare
tools. The dotted horizontal line is y = 0.8. vs2 = VirSorter2; vs1 = VirSorter;
vf = VirFinder; dvf = DeepVirFinder; mv = MARVEL; vb = VIBRANT. Figure
S6. Precision comparisons of tools on different viral groups (other than
dsDNA phage) from different data sources. Genome fragments of differ-
ent lengths (x-axis) are generated from NCBI RefSeq (“refseq”) genomes
in each viral group and other sources (“non-refseq”). Then equal numbers

(50) of viral and non-viral (archaea and bacteria, fungi and protozoa, and
plasmids) genome fragments were combined as input for tools. Precision
was used as the metric (y-axis) to compare tools. The dotted horizontal
line is y = 0.8. vs2 = VirSorter2; vs1 = VirSorter; vf = VirFinder; dvf = DeepVir-
Finder; mv = MARVEL; vb = VIBRANT. Figure S7. False positives by VirSor-
ter2 on eukaryotes and plasmids. Genome fragments (50) of different
lengths (x-axis) are generated from eukaryotic genomes (fungi and proto-
zoa) in NCBI RefSeq, and plasmids. Percent of genome fragments classi-
fied as viral was used as the metric (y-axis) to evaluate tools. Plot A and C
show contribution of each classifier (color) to total false positives in Vir-
Sorter2 (as shown in Fig. 4) for eukaryotes and plasmid respectively. Plot
B and D show the total false positive in VirSorter2 after excluding NCLDV,
RNA, and Lavidaviridae classifiers. vs2 = VirSorter2. Figure S8. CPU time
and peak memory comparison among tools across data sizes. Tools were
run on different input sizes of 10, 100, 1000 sequences with 10 kb in
length. Plot (A) shows all tools scale nearly linearly with data size, and (B)
shows peak memory usage of all tools are <1 GB. VirSorter2 and VirFinder
peak memory usage stay nearly constant. vs2 = VirSorter2; vs1 = VirSorter;
vf = VirFinder; dvf = DeepVirFinder; mv = MARVEL; vb = VIBRANT. Figure
S9. Multi-threading efficiency comparison among tools. Tools were run
on 1000 sequences with 10 kb in length. Plot (A) shows VirSorter2 and VI-
BRANT have the best multi-threading efficiency, i.e. total run time de-
creases nearly linearly with the number of threads used. VirSorter can not
use more than four threads. MARVEL’s multi-threading option does not
significantly reduce run time. Plot (B) shows VirSorter2, VirSorter and VI-
BRANT memory usage increases with the number of threads used, with
VirSorter2 and VIBRANT increasing at a higher rate than VirSorter. MARV
EL’s memory usage stayed constant. vs2 = VirSorter2; vs1 = VirSorter; mv =
MARVEL; vb = VIBRANT. Figure S10. Overview of VirSorter2 results for
Tara Oceans virome 85_SRF. A. Detection of viral contigs via VirSorter
1.0.4 and VirSorter 2.0.beta by contig size. The top panel displays the total
number of viral contigs identified in each size class, while the bottom
panel indicates the overlap between these predictions. B. Distribution of
VirSorter 2.0.beta score (maximum score across all 5 classifiers, y-axis) for
Tara Oceans virome 85_SRF sequences, according to the confidence cat-
egory estimated by VirSorter1 (x-axis). “NA” indicates contigs that were
not detected as viral by VirSorter1. VirSorter 2.0.beta detections were
based on a minimum score cutoff of 0.5. C. Proportion of sequences from
Tara Oceans virome 85_SRF detected as viral based on the dsDNAphage,
RNA, and/or ssDNA model(s) (red) or detected based on the NCLDV or
Lavidaviridae classifiers only, by size class (x-axis). Table S1. Summary sta-
tistics of the genomes used for training VirSorter2 classifiers of different
viral groups from RefSeq and non-RefSeq sources. “Genome #” is the
number of genomes. “Min size”, “Median size”, and “Max size” are the
minimum, median, and maximum of genome sizes per each viral group.

Additional file 2. Case-study: identifying viral contig from a Tara Oceans
virome dataset

Additional file 3. First 20 rows of the “final-viral-score.tsv” VirSorter2
output file for Tara Oceans virome 85_SRF. VirSorter 2.0.beta was used with
default parameters, including all classifiers and a minimum score cutoff of
0.5. The columns include first the sequence name, the score for each of the
5 classifiers, the maximum score for this sequence, the group yielding this
maximum score, the sequence length, the number of hallmark gene(s) for
the maximum score group, and the percentage of viral and cellular genes.

Additional file 4. Manual inspection of contigs newly identified by
VirSorter2 in Tara Oceans virome 85_SRF. The spreadsheet includes four
tabs, including the list and characteristics of contigs ≥ 5kb selected for
manual inspection (“Contigs ≥ 5kb - Manual inspection”), the DRAM-v an-
notation of these contigs (“Contigs ≥ 5kb - DRAM-v annotation”), the list
and characteristics of contigs ≥ 5kb selected for manual inspection (“Con-
tigs < 5kb - Manual inspection”), and their DRAM-v annotation (“Contigs
< 5kb - DRAM-v annotation”). For the manual inspection tabs, column
headers correspond to the standard output of VirSorter2 (“final-viral-scor-
e.tsv”), i.e. sequence name, score for each of the 5 classifiers, maximum
score for this sequence, group yielding this maximum score, sequence
length, number of hallmark gene(s) for the maximum score group, per-
centage of viral and cellular genes, along with an additional column
(“Manual inspection notes”) indicating the conclusions from the expert
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curators. The DRAM-v annotation tabs column headers correspond to the
default DRAM-v output.
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