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Abstract

Background: The human skin microbiota is considered to be essential for skin homeostasis and barrier function.
Comprehensive analyses of its function would substantially benefit from a catalog of reference genes derived from
metagenomic sequencing. The existing catalog for the human skin microbiome is based on samples from limited
individuals from a single cohort on reference genomes, which limits the coverage of global skin microbiome diversity.

Results: In the present study, we have used shotgun metagenomics to newly sequence 822 skin samples from Han
Chinese, which were subsequently combined with 538 previously sequenced North American samples to construct an
integrated Human Skin Microbial Gene Catalog (iHSMGC). The iHSMGC comprised 10,930,638 genes with the detection
of 4,879,024 new genes. Characterization of the human skin resistome based on iHSMGC confirmed that skin
commensals, such as Staphylococcus spp, are an important reservoir of antibiotic resistance genes (ARGs). Further
analyses of skin microbial ARGs detected microbe-specific and skin site-specific ARG signatures. Of note, the abundance
of ARGs was significantly higher in Chinese than Americans, while multidrug-resistant bacteria (“superbugs”) existed on
the skin of both Americans and Chinese. A detailed analysis of microbial signatures identified Moraxella osloensis as a
species specific for Chinese skin. Importantly, Moraxella osloensis proved to be a signature species for one of two robust
patterns of microbial networks present on Chinese skin, with Cutibacterium acnes indicating the second one. Each of
such “cutotypes” was associated with distinct patterns of data-driven marker genes, functional modules, and host skin
properties. The two cutotypes markedly differed in functional modules related to their metabolic characteristics,
indicating that host-dependent trophic chains might underlie their development.
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Conclusions: The development of the iHSMGC will facilitate further studies on the human skin microbiome. In the
present study, it was used to further characterize the human skin resistome. It also allowed to discover the existence of
two cutotypes on the human skin. The latter finding will contribute to a better understanding of the interpersonal
complexity of the skin microbiome.

Keywords: Shotgun metagenomic sequencing, Skin microbiome, Gene catalog, Resistome, Antibiotic resistance genes
(ARGs), Moraxella osloensis, Cutotypes

Background
The skin microbiota plays fundamental roles in main-
taining skin homeostasis, and microbial dysbiosis is asso-
ciated with the onset and progression of many common
skin diseases [1–3]. A precise characterization of the
microbiota with high resolution is essential to fully ex-
plore the potential of manipulating the microbiome to
manage disease [4]. In this regard, profiling based on
shotgun metagenomic sequencing has remarkable ad-
vantages when compared to phylogenic marker gene-
based microbiota surveys. It allows for more precise rec-
ognition of skin microbiota across all kingdoms (bac-
teria, fungi, and viruses) with high resolution (species to
strain level) and it can also provide first insight into their
functional diversity. Based on metagenomic data sets,
reference gene catalogs have been developed and found
to be essential tools that greatly facilitate data analysis
[5–7]. Accordingly, for the gut microbiome, a repeatedly
updated and increasingly comprehensive gene catalog
exists [8]. This is in contrast to the current microbial
gene catalog for human skin. It mainly relies on the
foundational work by the Human Microbiome Project
(HMP) [9], which was based on samples collected from
12 healthy adults from North America. Given this lim-
ited population size and the recognition that skin micro-
bial communities vary among ethnic groups [10, 11], it
may be regarded as prototypic in nature.
In the present study, we, therefore, developed a more

comprehensive, integrated catalog. To this end, we re-
cruited 294 healthy individuals in Shanghai, China, and
collected their skin microbiome from three anatomical
sites in the face (forehead (Fh), cheek (Ck), and the back
of the nose (Ns)). We analyzed the 822 samples of skin
microbiome by metagenome shotgun sequencing, gener-
ating an average of 3.9 Gb paired-end reads (100 bp) for
each of the skin sample on BGISEQ-500 platform, total-
ing 3.2 Tb of high-quality data that was free of human
DNA contaminants (Table S1). These data were subse-
quently combined with the previously mentioned HMP
data from North Americans [9, 12] in order to construct
an inter-continental gene catalog. The resulting Inte-
grated Skin Gene Catalogue allowed (i) the first large
sample-based characterization of the human skin resis-
tome and (ii) the discovery that on facial skin two

defined patterns of the microbial network exist, for
which we coined the term “cutotypes.” Each cutotype
was associated with a distinct pattern of data-driven
marker genes, functional modules, and clinical
phenotypes.

Results
The construction of the integrated Human Skin Microbial
Gene Catalog
To construct an inter-continental gene catalog, we inte-
grated our data with published raw data from HMP [9, 12],
which led to a total of 1360 samples from 306 subjects, gen-
erating 4.3 Tb metagenomic sequencing data (Table S1). By
using a newly established pipeline (Figure S1), we obtained
the Human Skin Microbial Gene Catalog (iHSMGC) con-
taining 10,930,638 genes. In comparison to the HMP gene
catalog [9], 4,879,024 genes were newly identified in the
iHSMGC. Each skin sample contained on average 501,756
genes, which is a bit less than the gene number reported
for gut samples (762,665) [6]. More than 10% “trashed”
reads from anatomical sites assessed in the HMP study [12]
which correspond to Fh, Ch, and Ns could now be mapped
and for these the average mapping rate was 60.01% (Fig. 1a
and Table S1). In the HMP, samples were also obtained
from other anatomical sites. When these data were mapped
to iHSMGC, mapping rates were improved by 15.79% (for
“moist” skin areas), 17.42% (for “sebaceous” skin areas),
30.78% (for “foot” skin areas), and 12.63% (for “dry” skin
areas) (Figure S2a and Table S1). For Han Chinese samples,
40% more reads could be mapped to the iHSMGC than to
the HMP catalog (Fig. 1a and Table S1), which might also
reflect gene differences in the skin microbiota between Han
Chinese and North Americans. When publicly available
data from other shotgun metagenomic analysis of the hu-
man skin microbiome, including samples from patients
with atopic dermatitis (AD) [13], psoriasis [14], and healthy
children [15] were mapped to the iHSMGC, the average
mapping rates were 62.45%, 72.26%, and 59.93%, respect-
ively (Figure S2d). Richness estimation based on Chao2
[16] suggested that the iHMSGC covered most of the gene
content in the sampled skin microbiome. This does not ex-
clude; however, the possibility that the skin microbiome
gene content will grow if more individuals and/or more
skin sites will be sequenced (Figure S2c).
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Next, we applied reference-based taxonomy annota-
tion of the iHSMGC using the NCBI-NT database. 5,
841,953 (53.45%) of the genes in the iHSMGC could be
uniquely and reliably assigned to a phylum, 3,940,092
(36.05%) to a genus, and 3,219,956 (29.46%) to a species.

Still, nearly half of the genes belonged to uncharacter-
ized “microbial dark matter,” which may be derived from
unknown taxa or genomic variations and may represent
important gene content [9]. When assessing genome in-
tegrity (see “Methods” section), the iHSMGC covered on

Fig. 1 Evaluation of the integrated Human Skin Microbial Gene Catalog (iHSMGC). a Box plots comparing the reads mapping rate between the
HMP skin catalog and the iHSMGC with two sets of sequencing data from this study (Chinese) and previous HMP study (Americans). Fh forehead,
Ck cheek, and Ns the back of the nose. b The prevalence of certain microbial species in the population. The shadow bar chart (correspond to the
left Y-axis) represents the number of microbial species that appeared across a certain number of samples (X-axis); the dashed lines separate the
samples at sample size 1, 100, 500, 1000, respectively. The pie charts represent the corresponding proportion of bacteria, fungi, and viruses at the
sample size 100, 500, 1000. The linear curve (correspond to the right Y-axis) quantifies the cumulative relative abundance of these species
presented across the samples. c Box plot comparing the functional modules from the HMP gene catalog and newly identified genes in the
iHSMGC. Box plots quantify the relative abundance of the genes within the corresponding functional module (vertical listed). The heat map next
to the list represents the Spearman correlation coefficients between the genes in the HMP catalog and the genes newly identified within a
certain functional module in terms of the gene abundance (+ p < 0.05, * p < 0.01, ** p < 0.001). d Box plot representing gene relative abundance
from Han Chinese samples involved in a certain functional module. Different colors represent different functional modules in the KEGG
KOs (B-level)
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average, 82.13% of the microbial genomes for its top 10
abundant fungi genera, 78.96% of the virus genera, and
78.92% of the microbial genomes for the top 60 abun-
dant bacteria genera (Figure S3b, c, d and Table S3).
The average coverage of the most common fungi
(Malassezia), bacteria (Cutibacterium and Staphylococ-
cus), and viruses (Propionibacterium virus and human
papilloma virus) in the skin was higher than 90% (Figure
S3b, c, d and Table S3). At the strain level, common
strains such as Cutibacterium sp., Staphylococcus sp.,
and Malassezia sp. reached a coverage of over 99.5%
(Figure S3a, e and Table S3). Other skin bacteria such as
Streptococcus sp., Moraxella sp., Corynebacterium sp.,
and Ralstonia sp. had coverages of more than 80% (Fig-
ure S3d, e, f and Table S3). Taken together, these results
demonstrate that the iHSMGC is widely compatible and
highly comprehensive.
Of note, by annotating phylogenetic composition ac-

cording to the iHSMGC, we found that regardless of
ethnic groups or anatomical sites, seven bacterial species
were ubiquitously present across all samples. These in-
cluded Corynebacterium simulans, Cutibacterium acnes,
Cutibacterium granulosum, Staphylococcus aureus,
Staphylococcus capitis, Staphylococcus epidermidis,
Streptococcus pneumonia, and together they accounted
for 60.8% of the microbial abundance (Fig. 1b). These
species are likely to exert highly conserved functions in
the human skin. In addition to these taxa, skin samples
demonstrated high individual diversity of the microbial
composition (Fig. 1b), similar to the phylogenetic profile
in the human gut microbiota [17].
We next annotated the genes in the iHSMGC accord-

ing to the Kyoto Encyclopedia of Genes and Genomes
(KEGG). 10,964 KEGG orthologous groups (KOs) were
identified from 6,415,308 genes (58.69% of the iHSMGC
genes), which were assigned to 732 KEGG modules
(Level D) under 49 main functional categories (Level C)
(Fig. 1d). Among those newly identified 4,879,024 genes,
1,592,975 genes had functional annotation. Despite the
enormous number of new genes, most of the new genes
were still assigned to the previous categories. We ob-
served that the functional potential related to microbial
survival and growth showed no clear differences com-
pared to the HMP dataset. A clear shift was detectable
in some functional capacities, e.g., the nucleotides and
amino acids metabolism and some carbohydrates metab-
olism (Fig. 1c). These differences may suggest functional
diversity between the two ethnic groups.

Antibiotic resistance genes in the skin microbiome
The resistance of bacteria to antibiotic drugs is posing a
major challenge to modern medicine. The collection of
all the antibiotic resistance genes (ARGs) and their pre-
cursors which are expressed by both pathogenic and

non-pathogenic bacteria has been termed the “resis-
tome” [18]. The resistome has been intensively studied
for gut-associated bacteria [18–21]. This is in contrast to
the skin resistome, which has not yet been assessed in a
large sample size. By capitalizing on the iHSMGC, we
here provide the first large sample size-based
characterization of the human skin resistome in Chinese
and compare it with published North American data [9,
12]. We identified 3810 non-redundant ARGs to be dis-
tributed all over human skin (Table S4). Principal com-
ponent analysis (PCA) based on resistome profiles
showed significant separation among samples which
were obtained from different skin environments (seba-
ceous, moist, dry, and foot) (Fig. 2d, PERMANOVA test,
p < 0.05). The abundance of ARGs was highest in the
foot areas and lowest in sebaceous regions (Fig. 2a, b)
and thereby resembled the distribution of microbial di-
versity/species richness in these regions [12]. In the skin,
the following six resistance mechanisms were found to be
present with decreasing abundance: sequentially antibi-
otics efflux, followed by antibiotic target alteration, anti-
biotic inactivation, target protection, target replacement,
and finally reduced permeability (Fig. 2e, Figure S4c).
Notably, the abundance of ARGs in Han Chinese was

significantly higher than that in the North Americans
(Fig. 2b). Moreover, the overall distribution of ARG
genes in the two ethnic groups was significantly discrep-
ant, including comparing samples of the same age and
sampling sites between the two donor groups (Fig. 2d, f).
3418 non-redundant ARGs could be phylogenetically an-
notated to 456 microbial species. From these, we sorted
the top 10 species by ARG abundance and found that
ubiquitous skin commensals like Staphylococcus aureus,
Staphylococcus epidermidis, and Corynebacterium spp.
spread ARGs across all skin sites (Fig. 2a, c). Notably,
two members of this top 10 list, i.e., Acinetobacter bau-
mannii and Pseudomonas aeruginosa, were listed in the
2019 Antibiotic Resistance Threats Report (https://www.
cdc.gov/drugresistance/index.html) and considered as
multidrug-resistant “superbugs” that caused the majority
of in-hospital mortality in the USA [22]. Our results
show that such “superbugs” do exist in the skin of
healthy Chinese and North Americans. Specifically, both
species mainly presented in the foot region (Fig. 2a, c).
Consistent with another study [23], we here confirmed
that Staphylococcus spp. carried highly abundant ARGs
(Fig. 2c), while another dominant commensal Cutibac-
terium acnes showed no ARGs.
The ARGs which we identified here to be present in skin

are known to confer resistance to 38 classes of antibiotics
(38 classes), of which fluoroquinolones (21.9%), tetracy-
clines (18.6%), and cephalosporins (7.8%) represent the
most dominant ones (Figure S4a, b). Notably, these antibi-
otics are frequently used for skin-related indications, e.g.,
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fluoroquinolones for the treatment of skin infections [24],
tetracyclines for the management of acne and rosacea [25],
and cephalosporins for the treatment of infected wounds
and the prevention of skin infections after surgical proce-
dures [26]. Consistent with the skin profiles of ARGs, PCA
revealed significant separations between different antibi-
otics among different skin environments (sebaceous, moist,
dry, and foot) (Figure S4d, PERMANOVA test, p < 0.05).

We next asked which factors beyond anatomical site
might be associated with ARGs in human skins (Figure
S5a). We found that the age of the individual from
which the samples had been collected showed the stron-
gest effect size (R2 ≈ 0.08, PERMANOVA test, p < 0.001)
for ARGs among all variables (Figure S5a). Specifically,
25 classes of resistance potential were significantly corre-
lated and mostly increased with age (Figure S5b). In

Fig. 2 Antibiotic resistance genes (ARGs) in the skin microbiome. a Sankey diagram depicting the distribution of the top 10 antibiotic resistance
bacteria ranked by the ARG abundance. The height of the rectangles indicates the relative abundance of the ARGs in the skin site (left) and
species (right), different sites and species are indicated in different colors. Fh forehead, Ck cheek, Ns nose, Ea external auditory canal, Ra
retroarticular crease, Oc occiput, Ba back, Mb manubrium, Na nare, Ac antecubital fossa, Id interdigital web, Pc popliteal fossa, Ic inguinal crease,
Vf volar forearm, Hp hypothenar palm, Tw toe webspace, Tn toenail, Ph plantar heel. b Box plot comparing the relative abundance of ARGs in
different body sites from Han Chinese and Americans. Venn diagram showing the ARG numbers in Chinese and Americans. c Box plot showing
the relative ARG abundance of the top 10 antibiotic resistance bacteria ranked by ARG abundance. The exact number of ARGs in the species is
noted in the brackets. d Principal component analysis demonstrating the patterns of ARG profile in different skin environments in Chinese and
Americans. The PERMANOVA test was used to determine significance. e Sankey diagram depicting the distribution pattern of different resistance
mechanisms deployed within a skin site. The rectangle’s area represents the relative abundance of ARGs in the sites or involved in the antibiotic
resistance mechanisms. f Principal component analysis demonstrating the patterns of ARG profile in same skin sites and age ranges in Chinese
and Americans. The PERMANOVA test was used to determine significance
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addition, skincare habits also impacted on the abun-
dance of ARGs (Figure S5a, c). A personal history of
regularly applying skincare products was significantly as-
sociated with the increased abundance of ARGs against
the free fatty acids, lincosamide, pleuromutilin, oxazoli-
dinone, and streptogramin (Figure S5c).

The composition of the facial skin microbiota in Han
Chinese
We next analyzed the microbial profile present in Han
Chinese skin in a greater detail. In Chinese facial sam-
ples, bacteria, viruses, and fungi accounted for an aver-
age of 95.83%, 1.51%, and 2.66%, respectively (Fig. 3a).
The most abundant fungal species were Malassezia sp.,
Komagataella phaffii, and Candida parapsilosis; for vi-
ruses Propionibacterium phage, Betapillomavirus, and
Staphylococcus phage (Fig. 3b). In general, the propor-
tion of fungal and viral members present in Chinese
samples was much lower than that reported for the same
anatomical sites from the HMP dataset [9]. The most
abundant bacteria in the Chinese samples were Cutibac-
terium acnes, M. osloensis, Ralstonia solanacearum, and

Staphylococcus epidermidis. Of note, M. osloensis
emerged as the second most abundant species in the
Chinese samples. This is in marked contrast to North
American samples, in which M. osloensis was detectable
at only very low abundancy [27]. Considering the differ-
ent sequencing platforms, we confirmed the high abun-
dance of M. osloensis by analyzing the raw data from an
independent shotgun sequencing dataset (Illumina
HiSeq 2000) based on 40 samples from 40 Singapore
Chinese (Figure S6) [13]. Taken together these results
indicate a high abundancy of M. osloensis in Chinese,
but not in North American skin, indicating microbial di-
versity between these two ethnic groups.

Detection of microbiota-based cutotypes
Similar to a previous study [9], the data provided here
revealed enormous inter-individual microbial variations
in the skin (Figure S7). We, therefore, asked if different
individuals could be stratified according to their facial
skin microbiota. To this end, we deployed multi-
dimensional cluster analysis and principal coordinates
analysis (PCoA). We discovered that the forehead skin

Fig. 3 The composition of the facial skin microbiota in Han Chinese. a The relative abundance of microorganisms in the three kingdoms
(bacteria, fungi, viruses) present in the three anatomical sites of the face. The central pie chart represents the average proportion of species in all
samples and the outer circle depicts the proportions of species in each sample. b The compositions of the top 10 species of bacteria, fungi, and
viruses in the three sites correspondingly. The bar chart on the left shows the average relative abundance of the species and the stacked area
chart indicates the composition of species in each individual, ordered by the abundance of the top dominant species. Different colors represent
different species
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samples from the 294 Han Chinese formed two distinct
clusters (Fig. 4a and Table S5), for which we here coin
the term “cutotypes.” We defined these two cutotypes by
the dominance of one out of two species: C. acnes (re-
ferred to as “C-cutotype”) and M. osloensis (referred to
as “M-cutotype”) (Fig. 4c). Differential analysis revealed
that other microbes preferentially appeared within each
cutotype. For example, Moraxella bovoculi and Psychro-
bacter sp. were enriched in the M-cutotype, while Cuti-
bacterium avidum, C. granulosum, Staphylococcus sp.,
Propionibacterium virus, and Staphylococcus phage were
enriched in the C-cutotype (Figure S8a). Species within
one cutotype were highly correlated with each other in
abundance (Fig. 4d), indicating stable ecological net-
works. Clustering into these two cutotypes was also

applicable to facial skin sites other than the forehead,
i.e., the back of the nose and the cheek (Figure S8e, f,
Table S5). In fact, 69.64% of the tested individuals had
identical cutotypes (either M- or C-cutotype) in all three
facial sites (Table S5).
In order to test the robustness of this classifica-

tion, we analyzed publicly available raw data from
independent shotgun metagenomic studies, which
had been conducted in East Asians by sampling
non-facial skin sites. Accordingly, microbial samples
from the right antecubital fossae [13] or from the
neck/head region [15] also showed the existence of
the M- as well as C-cutotype in East Asian skin (Fig.
4b and Figure S8b). In contrast, when skin micro-
biome samples from North Americans [9, 12] or

Fig. 4 The skin microbial cutotypes and their phylogenetic differences. a PCoA using Jensen-Shannon distance and Bray-Cutis dissimilarity
presenting the clustering of 247 samples from the forehead. Box plots in the top right show the mean distance within the corresponding groups
in red or in blue. The red horizontal line indicates the average between-clusters distance. The PERMANOVA was calculated with adonis function
in the vegan package to determine dissimilarity between two clusters as shown in the top panel. b PCoA analysis depicting the clustering of
Singapore Chinese samples from a published dataset. Two principal components are plotted using the ade4 package in R with each sample
represented by a filled circle or filled triangle. AD-atopic dermatitis. c Relative abundances of the two species C. acnes (upper) and M. Osloensis
(lower). Based on PCoA results using Jensen-Shannon distances, the log10 of relative abundance in each sample was indicated by color. d Co-
occurrence networks of the two cutotypes. Species enriched in the M-cutotype are shown on the left side, while species enriched in the C-
cutotype are shown on the right side. Each node represents a species and the size of the node indicates the number of connections of the node
to other nodes. Connect lines in red or blue indicate negative or positive correlation respectively. e Box plot showing the gene-based α-diversity
(Shannon index) of the M-cutotype and the C-cutotype (** p < 0.01, Wilcoxon rank-sum test)
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Italians [14] were analyzed, these two cutotypes
could not be well-detected. In such samples, we did
observe, however, a tendency towards separation into
different microbial patterns. These tendencies were
driven either by Propionibacterium sp. or by a com-
bination of Staphylococcus sp. with other species
(Figure S8c, d).

Function and clinical relevance of the cutotypes
In order to better understand, the significance of these
two cutotypes present in Chinese skin, we next assessed
their functional module profiles. These studies revealed
an enormous degree of functional disparity between the
two cutotypes, which concerned functions related to me-
tabolism and drug resistance (Fig. 5a). As an example,

Fig. 5 Functional module and clinical differences between the two cutotypes. a PCoA analysis depicting the distribution of differential KEGG-
modules (Level-D) in terms of the relative abundance within the two cutotypes. Green and blue circles indicate the M-cutotype and C-cutotype
samples, respectively. Triangles represent KEGG-modules, and different colors represent different KEGG-modules. b Bar chart demonstrating
different enrichment of functional modules in the two cutotypes. c Reaction steps for the synthesis of five vitamins. KOs enriched in the M-
cutotype are shown in green whereas the KOs enriched in the C-cutotype are shown in blue. The color of the arrow indicates the general
enrichment of the KOs in the corresponding cutotype. d Box plots comparing the clinical parameters and the abundance of ARGs of the two
cutotypes (** p < 0.01, Wilcoxon rank-sum test). e Bar chart presenting the composition ratio of the two cutotypes in different age groups
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the two cutotypes were functionally diverse in vitamin
biosynthesis: in the C-cutotype genes involved in the
biosynthesis of menaquinone (vitamin K2), ascorbate
(vitamin C), ergocalciferol (vitamin D2), and thiamine
(vitamin B1) were enriched, whereas in the M-cutotype
genes involved in the synthesis of pyridoxal (vitamin
B6), biotin (vitamin B7 or H), cobalamin (vitamin B12),
and riboflavin (vitamin B2) were more abundant (Fig. 5c
and Table S6).
The two cutotypes also greatly differed for the enrich-

ment of genes relevant to nutrition. In the M-cutotype,
there was a substantial module enrichment in the me-
tabolism of sulfur, aromatic compounds, and all kinds of
amino acids (Fig. 5a, b, Figure S9 and Table S6). This
was in sharp contrast to the C-cutotype, for which mod-
ules relevant for fatty acid biosynthesis and metabolism
of carbohydrates and sterols were enriched. C-cutotype
microbiota seemingly favored carbohydrates as their car-
bon source, because 17 types of the phosphotransferase
system (PTS)-related functional modules, which are re-
sponsible for the translocation and phosphorylation of
carbohydrate in prokaryotes [28] (Table S6) were
enriched. This would be in contrast to M. osloensis, i.e.,
the dominant species in the M-cutotype, which previ-
ously has been described as a non-fastidious bacterium
which was able to grow in a mineral medium supple-
mented with a single organic carbon source [29, 30].
Notably, Moxarella sp. was shown to be incapable of
utilizing any carbohydrates or to possess any saccharoly-
tic activity, but to strictly depend on other carbon
sources such as acetic or lactic acid [29–32]. Our obser-
vations are thus consistent with the assumption that the
two cutotypes have different “nutrient requirements.”
The two cutotypes also displayed distinct ARG pat-

terns. Overall, the relative abundance of ARGs was
markedly higher in the M- than the C-cutotype (Fig.
5d). Specifically, the M-cutotype exhibited a significant
ARG enrichment conferring resistance to a broad
spectrum of antibiotics (Figure S10a). In contrast,
ARGs in the C-cutotype were enriched against only 3
classes: oxazolidinone, pleuromutilin, and lincosamide
(Figure S10a). In general, the abundance of ARGs in-
creased with age (Figure S5). After adjusting for age,
the cutotype-related ARG abundance was still present
(Figure S10b).
Finally, we asked if each of the two cutotypes would

be associated with a distinct pattern of skin properties of
the host. We found that C-cutotype skin was more hy-
drated and more oily. Accordingly, levels of skin surface
sebum, as well as its microbial metabolite porphyrin
[33], were increased. In contrast, M-cutotype skin was
dryer, i.e., less hydrated, skin surface sebum levels were
reduced, and the prevalence of the M-cutotype signifi-
cantly increased with age (Fig. 5d, e and Table S7).

Discussion
The iHSMGC is a comprehensive resource for further
investigations of the skin microbiome, covering strains
with a diverse range of population frequencies and abun-
dance in the human skin. The construction of iHSMGC
was similar to the method previously reported [6]. In
order to improve the computational efficiency, iHSMGC
was obtained through five-time clustering (Fig S1),
which may overestimate the similarity among gene seg-
ments and discard non-redundant genes. It should also
be noted that the average mapping rate of reads for sam-
ples (the USA and China) was 60.01%, and the average
mapping rate was the same in other samples including
diseases (psoriasis and dermatitis) and different age
groups (children and adolescents). Therefore, we believe
that iHSMGC is the most comprehensive gene catalog
for skin microbiome to date.
In recent years, the role of the human microbiota as a

reservoir of ARGs has received increasing attention. The
vast majority of previous studies have focused on the gut
[19–21] and a few on the lung microbiome [34]. Here,
we report the first comprehensive large sample size ana-
lysis of the human skin resistome. The gut resistome
mainly includes genes conferring resistance against tet-
racyclines, ß-lactams, aminoglycosides, and glycopep-
tides, followed by chloramphenicol and macrolides [34].
For the lung, the most abundant ARGs are ß-lactamases
[34]. According to previously published data and the
present study, ARGs in the skin mainly include fluoro-
quinolones, ß-lactamases, glycopeptides, aminoglyco-
sides, macrolides, and tetracyclines resistance genes [9,
12, 23, 35].
We newly observed that the abundance of ARGS in

Han Chinese was significantly higher than in North
Americans. This difference likely reflects a more preva-
lent usage of antibiotics in the Chinese population,
which might not be restricted to its use in clinics, but
also in animal husbandry and fisheries [36, 37]. This as-
sumption is supported by the present observation that
certain ARGs such as Carbapenems-resistant genes were
highly enriched in Chinese, but not in Americans. Ac-
cordingly, Carbapenems and other ß-lactam antibiotics
are well known to be overused/misused in China [38].
Of note, we are aware that the two studies differ with re-
gard to sampling and DNA purification protocols as well
as the sequencing platforms (Table S9). Based on
current literature [13, 39, 40], however, these technical
and methodological differences are unlikely to account
for the biological differences between Han Chinese and
North Americans that we have observed in the present
study.
In addition to ethnicity, the abundance of ARGs in

skin was also significantly affected by age. This is similar
to the age-dependent development of ARGs in the gut
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microbiome and likely reflects the fact that over a life-
time, exposure to antibiotics and thus the risk of devel-
oping resistance against antibiotics increases [41, 42].
We also newly observe that a history of regular applica-
tion of skincare products also significantly influenced
the abundance of ARGs. Many skincare products con-
tain plant-derived extracts and exhibit antimicrobial ac-
tivities [43], which may convey selection pressure for the
enrichment of antibiotic-resistant strains and thus ARGs
[20, 36]. This might also explain the present observation
that the foot region showed the highest abundance and
diversity for ARGs. It is exactly here where skincare
products from other skin sites are thought to drip down
along the body to concentrate and cause a high chemical
diversity [44].
The skin resistome results of our study support the

concept that the human skin microbiota constitutes a
significant reservoir of ARGs accessible to pathogens
[42]. The diversity of resistance genes in the human skin
microbiome is likely to contribute to the future emer-
gence of antibiotic resistance in human pathogens [34].
In this regard, the present discovery of superbugs being
part of the human skin resistome in both Han Chinese
and North American samples is of particular relevance.
The second most abundant species in Chinese samples

was M. osloensis. This is in sharp contrast to North
American samples, in which M. osloensis was detected
only at very low abundancy. The reason for this ethnic
difference might be the sample size. Surprisingly, Enhy-
drobacter aerosaccus, i.e., another species which has
been repeatedly identified in Chinese skin via 16s rRNA
microbial surveys [10, 45–47], was absent from our sam-
ples. By comparing the 16s rRNA sequence of the two
species, we realized, however, that M. osloensis and Eny-
hydrobacter aerosaccus were 99.45% identical in the
marker gene region. Considering the complete genome
sequencing of M. osloensis isolated from the human skin
was determined in 2018 [48], and former 16s rRNA se-
quence database [49] was absent from M. osloensis tax-
onomy, we, therefore, believe that it might have caused
mis-annotations in previously published marker gene-
based studies (Table S8). According to our data, M.
osloensis represents a signature species of one of two
cutotypes present in Chinese skin, with C. acnes indicat-
ing the other one. We found that each cutotype was as-
sociated with a distinct pattern of functional modules.
Our results are consistent with known differences in the
metabolism and nutritional requirements between the
two dominant strains. Accordingly, C. acnes mainly use
carbohydrates as their carbon source, which is reflected
by the present observation that 17 functional modules
(KEGG) in the phosphotransferase system (PTS) (Table
S6), that is known to be responsible for carbohydrate
translocation and phosphorylation in prokaryotes, were

exclusively enriched in the C-cutotype microbiome. The
phosphotransferase system is relevant for the capacity to
metabolize glucose, maltose, lactose, fructose, and cello-
biose and might thus reflect the dependence of the C-
cutotype microbiota on the availability of carbohydrates
[28]. In contrast, M. osloensis, the dominant species in
the M-cutotype, was reported to be incapable of utilizing
any carbohydrates, but strictly depend on other carbon
sources such as acetic or lactic acid [29–32]. The two
cutotypes also differed by functional annotation with re-
gard to vitamin biosynthesis. Genes involved in mena-
quinone, ascorbate, ergocalciferol, and thiamine synthesis
were more dominant in the C-cutotype, whereas genes in-
volved in the synthesis of pyridoxal, biotin, cobalamin, and
riboflavin appeared to be more relevant/abundant in the
M-cutotype (Fig. 5c, Table S6). Taken together, these
results indicate the existence of different microbial trophic
chains in the skin, which might be responsible for the
development of different communities of skin microor-
ganisms and thus cutotypes.
In a previous study on the skin microbiota in patients

with psoriasis the existence of two so-called “cutaneo-
types” was reported, which were dominated either by
Proteobacteria or Actinobacteria [50]. Given the fact
that the microbial resolution of the cutaneotypes with
16s rRNA data was at Phyla level, and thus limited
when compared to the species level with metage-
nomics data, which was used here to define the cuto-
types, we would like to point out that the two terms
have been defined differently and should not be used
synonymously. Of note, the two cutotype-indicator
species Cutibacterium acnes and M.osloensis belong to
Actinobacteria and Proteobacteria, respectively, which
have been used to define “cutanotypes.” Thus, the ex-
istence of cutaneotypes in psoriasis patients might be
a cross-confirmation of the existence of distinct skin
microbial communities within the human population,
as indicated by the identification of two cutotypes in
the present study.
Interestingly, the two cutotypes were also associated

with distinct clinical phenotypes. In individuals with the
C-cutotype, the facial skin showed a higher hydration
status and increased sebum production (Fig. 5d). Also,
microbial diversity was lower, which is consistent with
the observation that sebaceous skin sites harbor less bac-
terial species (Fig. 5e) [9]. In contrast, the M-cutotype
skin was less hydrated and less oily, but showed a higher
species richness and biodiversity (Fig. 5d), thereby re-
sembling older skin [51–54]. The M-cutotype was indeed
positively associated with age, whereas the C-cutotype
was more frequent in younger individuals (Fig. 5e, Table
S7). It should be noted, however, that both cutotypes
could be identified in any age group, i.e., the M-cutotype
was also detectable in young and middle-aged individuals,
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whereas the C-cutotype was also present in the elderly
(Fig. 5e, Table S7).
The design of the present study does not allow to de-

termine if the relationship between cutotypes and skin
properties/phenotypes is mono- or bidirectional. Ac-
cordingly, a specific skin phenotype might not only de-
fine a cutotype, e.g., by providing the nutritional
environment and thereby selection pressure for its devel-
opment, but it might also—at least in part—result from
the presence of a certain cutotype. The present observa-
tion that in M-cutotype skin, which phenotypically re-
sembled aged skin, isocitrate lyase (aceA), and malate
synthetase (aceB) genes were enriched, might indicate
this possibility (Figure S11a). These genes are function-
ally relevant for the ability of M. osloensis to convert
octylphenol polyethoxylates (OPEs) to alkylphenol
ethoxylates (APEs) [48]. This constitutes an estradiol
disrupting activity [55, 56], which might contribute to
skin aging.
In addition to the hydration and sebum status of the

skin, we also observed that individuals with the M-cuto-
type tended to have a more yellowish constitutive skin
color. This phenotypical association might be due to the
observed enrichment of functional modules relevant for
beta-carotene biosynthesis (Figure S11b), which might
reflect an increased production of ß-carotene by M-cuto-
type-associated species since increased ß-carotene levels
are well known to cause a yellowish skin color [57].
Different from the previous host physiology-driven

skin classification (sebaceous, moist or dry), we define
“cutotype” as a microbiome-driven classification, which
depicts the landscape characteristics of different micro-
bial ecological homeostasis reached on the skin. Based
on different types of microbe-networks and molecular
signatures, we speculate that the selection pressure for
the establishment of cutotypes is “nutrition,” which is
reminiscent of the proposed model for the establishment
of “enterotypes” [17, 58]. Whether the present cutotype-
based stratification is of clinical significance is currently
not known. It is, however, indicated by the present ob-
servation that ARGs are enriched in the M-cutotype skin.
Also, the skin microbiota can affect xenobiotic metabol-
ism, and this interaction might result in cutotype-
dependent differences in skin drug metabolism [59] and
thereby impact skin health.

Conclusions
In this study, we have used shotgun metagenomic se-
quencing of a large number of samples to develop an
iHSMGC. We believe that this catalog will prove to be a
valuable tool for future studies to better understand the
human skin microbiome. In the present study it allowed
us (i) to comprehensively analyze the human skin resis-
tome, (ii) to identify M. osloensis as a new dominant

bacterium on the skin of Han Chinese, and (iii) to dis-
cover that based on skin microbial signatures, two cuto-
types exist on the human skin.
We believed this classification of cutotypes would

largely facilitate our understanding of microbial signa-
tures from great interpersonal complexity without com-
promising the major influences from the microbiota,
such as variant adaptation to topically applied drugs,
cosmetics, and environmental noxae such as solar radi-
ation and air pollution; therefore, it can be instructive to
individualize measures towards the improvement of skin
health into practice.

Materials and methods
Study population and microbial sampling
Forty-six male and 248 female healthy volunteers, who
were 20 to 65 years old, were recruited from the general
population in Shanghai between April and May 2017.
Medical and medication history was obtained for each
individual by questionnaires. Subjects with any history of
skin diseases and intake of systemic or local antibiotics
in the past 6 months were excluded. To maximize mi-
crobial skin load, each subject was instructed to wash
the face only with tap water and to refrain from the ap-
plication of any skin-care or cosmetic products on the
sampling day before sampling.
Three skin sites (forehead, cheek, the back of the nose)

were sampled for each subject. Study personnel wore
sterile gloves for each sample collection. Samples were
collected in a temperature and humidity-controlled
room at 20 °C and 50% humidity. To obtain sufficient
DNA from the three anatomical skin sites, which were
low and variable in microbial biomass, and for the sake
of establishing uniform standards between samples, a
skin area of 4 cm2 was swabbed by sterile polyester
fiber-headed swabs moistened with a solution of 0.15M
NaCl and 0.1% Tween 20 [60]. The sampling regions
were swabbed 40 times each. Then, the swab head was
fractured, placed in a sterilized 1.5 mL centrifuge tube,
and stored at − 80 °C [9].

Skin physiology assessment and skincare habit survey
Skin physiological parameters were collected in a
temperature and humidity conditioned room (20 ± 1 °C,
50 ± 5% relative humidity) after an acclimatization
period of 30 min for each study subject. The investiga-
tors for each device were fixed to avoid any personnel
errors. Transepidermal water loss (TEWL) was mea-
sured employing a Vapometer® (Delfin Technologies Ltd,
Kuopio, Finland). Skin hydration levels in the stratum
corneum were determined with a MositurMeter D Com-
pact device (Delfin Technologies Ltd, Kuopio, Finland).
Sebum was determined by Sebumeter® SM815 (Courage
& Khazaka electronic GmbH, Cologne, Germany). The
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level of sebum was expressed as μg/cm2. Skin pH was
measured with Skin-pH-Meter PH 900 (Courage & Kha-
zaka electronic GmbH, Cologne, Germany). Skin color
(L*a*b) and pore were assessed by ImageJ software based
on photos obtained from the VISIA-CR (Canfield Scien-
tific Inc, Fairfield, NJ). The value increase for L*(light-
ness) represents from black to white; the value for a* is
from green to red; the values for b* indicate blue to yel-
low. Porphyrin was visually graded according to the ref-
erence image on a scale from “1” to “3” based on the
VISIA-CR photos. In this scale, “1” to “3” represent
mild/moderate/severe deposition of porphyrin under the
UV light source. The final score of the porphyrin, on a
3–9 scale, is the sum of scores from three trained per-
sons based on the above scoring criteria. The frequency
of skincare was obtained from volunteers by question-
naire; here, we mainly considered the frequency, whereas
the detailed skincare products were not taken into
consideration.

DNA extraction and metagenomic sequencing
DNA extraction and whole genome amplification
DNA was extracted following the MetaHIT protocol, as
previously described [40]. The extracted DNA from all
samples was amplified to reach the requirement for sub-
sequent library construction by PicoPLEX WGA Kit
(Rubicon) following the manufacturer’s protocol. The
DNA concentration was quantified by Qubit
(Invitrogen).

Library preparation and sequencing
A 500 ng of input DNA was fragmented ultrasonically
with Covaris E220 (Covaris, Brighton, UK), yielding 300
to 700 bp of fragments. Sheared DNA without size selec-
tion was purified with an AxygenTM AxyPrepTM Mag
PCR Clean-Up Kit. An equal volume of beads was added
to each sample, and DNA was eluted with 45 μL TE buf-
fer. Twenty nanograms of purified DNA was used for
end-repairing and A-tailing with a 2:2:1 mixture of T4
DNA polymerase (ENZYMATICSTM P708–1500), T4
polynucleotide kinase (ENZYMATICSTM Y904–1500),
and Taq DNA polymerase (TAKARATM R500Z) which
was heat-inactivated at 75 °C. Adaptors with specific bar-
codes (Ad153 2B) were ligated to the DNA fragments by
T4 DNA ligase (ENZYMATICSTM L603-HC-1500) at
23 °C. After the ligation, PCR amplification was carried
out. Fifty-five nanograms of purified PCR products was
denatured at 95 °C and ligated by T4 DNA ligase
(ENZYMATICSTM L603-HC-1500) at 37 °C to generate
a single-strand circular DNA library. Sequencing was
performed according to the BGISEQ-500 protocol (SOP
AO) employing the paired-end whole-metagenome se-
quencing (WMS) mode, as described previously [61].

Public data used
In addition to our sequencing data, we downloaded skin
metagenomic data from HMP [12] (SRA under bio-
project 46333) to construct the iHSMGC. The public
data from HMP comprised 539 skin metagenomic sam-
ples from 18 body sites of 12 healthy volunteers: Alar
crease (AI), Cheek (Ck), Forehead (Fh), External auditory
canal (Ea), Retroauricular crease (Ra), Occiput (Oc),
Back (Ba), Manubrium (Mb), Nare (Na), Antecubital
fossa (Ac), Interdigital web (Id), Popliteal fossa (Pc), In-
guinal crease (Ic), Tow webspace (Tw), Plantar heel (Ph),
Toenail (Tn), Plantar heel (Ph), Volar forearm (Vf), and
Hypothenar palm (Hp). The body sites were grouped
into four types: sebaceous (AI, Ck, Fh, Ea, Ra, Oc, Ba,
and Mb), moist (Na, Ac, Id, Pc, and Ic), foot (Tn, Tw,
and Ph), and dry (Vf and Hp). To validate the general
significance of iHSMGC and cutotypes, we also down-
loaded metagenomic data from studies in allergic derma-
titis (AD) [13], psoriasis [14], and children [15] from
NCBI with the accession no. PRJNA277905, no.
PRJNA281366, and no. PRJEB26427, respectively.

Gene catalog construction and gene annotation
Gene catalog construction
To construct the skin microbiome gene catalog, sequen-
cing reads from this study as well as from HMP were
processed (quality control, removal of human sequences,
assembling, gene prediction) using the pipeline shown in
Supplementary Fig. 1. SOAPnuke [62] was used for qual-
ity control. SOAPaligner2 [63] was for identifying and
removing human sequences if they shared > 95% similar-
ity with the human genome reference sequence (hg19)
[11]. Consistent with previous findings, on average 80%
reads were from human origin instead of microorgan-
isms (Supplementary Fig. 2b). High-quality reads were
used for de novo assembly via SPAdes (version 3.13.0)
[64], which generated the initial assembly results based
on different k-mer sizes (k = 21, 33, 55, 77,99). Ab initio
gene identification was performed for all assembled scaf-
folds by MetaGeneMark (version 3.26) [65]. These pre-
dicted genes were then clustered at the nucleotide level
by CD-HIT (version 4.5.4), CD-HIT parameters are as
follows: - G 0 - M 90000 - R 0 - t 0 - C 0.95 - as 0.90
[66], genes sharing greater than 90% overlap and greater
than 95% identity were treated as redundancies. Thus,
we obtained a two cohorts non-redundant gene catalog
(2CGC) including 13,324,649 genes. To further ensure
the integrity of the gene catalog, we did the following:
first, sequence alignment was carried out between 2CGC
and National Center for Biotechnology Information
non-redundant nucleotide (NCBI-NT, downloaded at
Aug. 2018): 931 genera genomes (including 2,761 pro-
karyotes, 112 fungi, 479 viruses)—were identified to be
existing in 2CGC (Table S2); we then downloaded the
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genomes or draft genomes of these microbes and used
MetaGeneMark to predict the coding regions; these pre-
dicted genes were later pooled, and the software CD-
HIT was used to remove the redundant genes. Thus, we
got 7,496,818 non-redundant genes, which we refer to as
the sequenced gene catalog (SGC). Finally, the gene cat-
alogs based on 2CGC and SGC were combined using
CD-HIT. Genes existing in at least ten samples were se-
lected to form the final iHSMGC, which comprised 10,
930,638 genes.

Assessment of iHSMGC genome integrity
To evaluate the genome integrity of a single microbe in
iHSMGC, we constructed draft microbial reference ge-
nomes of 5409 bacteria, 2023 viruses, and 158 fungi
(https://ftp.ncbi.nlm.nih.gov/genomes/) and sequenced
alignment iHSMGC with the database. The definite means
were as follows: (1) predicting the coding sequence (CDS)
of genomes and (2) map iHSMGC with genome CDS
using the BWA MEM method (default parameter). The
coverage of each genomic CDS region was obtained.

Taxonomic classification of genes
Taxonomic classification of genes was performed based
on the National Center for Biotechnology Information
non-redundant nucleotide (NCBI-NT, downloaded at
Aug. 2018) database. We aligned about 11 million genes
of iHSMGC onto the NCBI-NT using BLASTN (v2.7.1,
default parameters except that -evalue 1e-10 outfmt 6
-word_size 16). At least 70% alignment coverage of each
gene was required. For multiple best-hits (from NCBI-
NT database) mapping for the same gene with the same
%identity, e value and bit score, we have used the follow-
ing strategy:
We performed statistics on multiple best-hits (from

NCBI-NT database) mapping for the same gene, includ-
ing the number of annotated species present, the num-
ber of occurrences of each annotated species, and the
average similarity of the same species. After completion
of the statistics, the species annotation with the highest
frequency and the highest average similarity was defined
as the annotation of the gene. In case that different spe-
cies for a single gene ranked the same in the statistics,
we have chosen the species annotation that ordered first
(i.e., the order of blast hits and e value). Accordingly,
95% identity was used as the critical value for species as-
signment, 85% identity was used as the critical value for
genus assignment, and 65% for phylum assignment [6].
The 3.97 million genes of the gene catalog were anno-
tated taxonomically.

Functional annotation of genes
We aligned putative amino acid sequences, which trans-
lated from the iHSMGC, against the proteins or domains

in KEGG databases (release 84.0, genes from animals or
plants were excluded) using BLASTP (v2.7.1, default pa-
rameters except that -outfmt 6 -evalue 1e-6). At least
30% alignment coverage of each gene was required. Each
protein was assigned to a KEGG orthologue (KO) based
on the best-hit gene in the database. Using this ap-
proach, 6.42 million of the genes in the combined gene
catalog could be assigned a KO.

Quantification of genes
The high-quality reads from each sample were aligned
against the gene catalog by SOAP2.21 with the criterion
of identity > 90% [63]. In our sequence-based profiling
analysis, the alignments that met one of the following
criteria as previously described could be accepted [67]:
(i) an entire of a paired-end read can be mapped onto a
gene with the correct insert-size and (ii) only when the
one end of paired-read was mapped outside the genic re-
gion; the other end of reads can be mapped onto the
end of a gene. In both cases, the mapped read was
counted as one copy. The formula used in this study for
calculating gene relative abundance is similar to RPKM/
FPKM (reads per kilobase of exon model per million
mapped reads/fragments per kilobase of exon model per
million mapped fragments) value. Accordingly, for any
sample , we calculated the abundance as follows:
Step 1: Calculation of the copy number of each gene:

bi ¼ xi
Li

Step 2: Calculation of the relative abundance of gene i:

ai ¼ biP
jbi

¼
xi
LiP
j
xi
Li

ai: The relative abundance of gene i in sample S
Li: The length of gene i
xi: The times which gene i can be detected in sample S

(the number of mapped reads)
bi: The copy number of gene i in the sequenced data

from S.
j: The iHSMGC gene number.
The value of bi standardizes the effect of gene length

in Step 1. The value of biP
j
bi
standardizes the effect of se-

quencing depth in Step 2.

Construction of phyla, genera, species, and KO profiles
The relative abundances of phyla, genera, species, and
KOs were calculated from the relative abundance of
their respective genes using previously published
methods [68]. For the species profile, we used the phylo-
genetic assignment of each gene from the original gene
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catalog and summed the relative abundance of genes
from the same species to generate the abundance of that
species. The phyla, genera, and KO profile were con-
structed using the same methods.

Rarefaction curve analysis
We used a rarefaction curve to assess the gene richness
in our cohorts. For each given number of samples, we
performed random sampling 100 times in the cohort
with replacement. Moreover, we estimated the total
number of genes that could be identified from these
samples with the Chao2 index [69].

Determination and annotation of antibiotic resistance
genes
Antibiotic resistance genes (ARGs) were identified using
the Resistance Gene Identifier (RGI, v4.2.2) with default
parameters and the CARD database (The Comprehen-
sive Antibiotic Resistance Database, v3.0.7) [70]. DIA-
MOND was utilized for alignment [71]. In order to
identify the species origins of drug resistance genes, the
similarity of the predicted ARG segments to known spe-
cies was estimated by aligning the predicted ARGs to the
NCBI-NT using BLASTN (v2.7.1, default parameters ex-
cept that -evalue 1e-10 outfmt 6 -word_size 16), and iden-
tified genes had an alignment coverage greater than 70%.

Comparison of Moraxella osloensis and Enhydrobacter
aerosaccus
To assess if the previously reported Enhydrobacter aero-
saccus is, in fact, Moraxella osloensis, we used the fol-
lowing methods: (1) We downloaded 16S sequences of
Moraxella osloensis (NR_104936.1) and Enhydrobacter
aerosaccus (MH715214.1) from NCBI, the two se-
quences were aligned by BLASTN (v2.7.1, default pa-
rameters except that -evalue 1e-10 outfmt 6 -word_size
16), and found that the similarity between them can
reach 99.450%. (2) We aligned the sequences annotated
as Enhydrobacter in Greengene [49] with NCBI-NT
using BLASTN and found that 78.9% of the sequences
were annotated as Moraxella osloensis. (3) Using the
same method, we found that 99.4% of the sequences an-
notated as Enhydrobacter in the MetaPhlAn2 [72] data-
base were annotated as Moraxella osloensis.

Statistical analysis
Multivariate analysis
Multivariate statistical analyses (PCA, PCOA) were ap-
plied to assess the skin microbiome within individuals.
Principle component analysis (PCA) was performed on
the three facial sites as previously described, using the
ade4 package [73] in the R platform. Principle coordin-
ation analysis (PCOA) was performed based on the
Jensen-Shannon distance (JSD)/Bray Curtis distance on

the skin microbial composition and functional profile
using the ade4 package [73].

Hypothesis test and multiple test correction
Wilcoxon rank-sum tests were performed to detect dif-
ferences in the skin physiological and microbial charac-
teristics between the three facial sites, including clinical
parameters, gene count, Shannon index, and the relative
abundances of species, KOs, and modules. For a certain
phenotype feature (male/female), Fisher’s exact test was
used. Unless otherwise indicated, P values were adjusted
using the FDR correction by fdrtool package [74] in R.
Statistical significance was set as adjusted P value < 0.05.
Differentially enriched KEGG modules and KOs were
identified, according to FDR adjusted P values. We used
Wilcoxon rank-sum tests to obtain P values. FDR ad-
justed P values of less than 0.05 was used as the
detection threshold for significance.

Permutational multivariate analysis of variance
The permutational multivariate analysis of variance
(PERMANOVA) [75] was used to assess the effect of dif-
ferent covariates, such as cutotypes, age, sex, physico-
chemical index, and skin image information on all types
of profiles. We performed the analysis using the method
implemented in R package (vegan) [76], and 1000 times
permutations to obtain the permuted P value.

Biodiversity and richness analysis: α-diversity
The α-diversity (within-sample diversity) was calculated
to estimate the gene diversities of each sample using the
Shannon index [77]:

H
0 ¼ −

XS
i¼1

ailnai

where S is the number of genes and ai is the relative
abundance of gene i. A high α-diversity indicates a high
evenness or many types of genes present in the sample.

Cutotype: clustering and classification
To define a cutotype based on the skin microbiome,
samples from each facial site were clustered using
Jensen-Shannon distance (JSD) [78], respectively, which
was calculated by taking the square root of the Jensen-
Shannon divergence. The Jensen-Shannon divergence
was an effective measure of divergence between distribu-
tion accounting for both the presence and abundances
of microbes. Moreover, JSD was calculated according to
this formula:

D a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSD pa; pbð Þ

q
;

where
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JSD x; yð Þ ¼ 1
2
KLD x;

xþ y
2

� �
þ 1
2
KLD y;

xþ y
2

� �

KLD x; yð Þ ¼
X
i

xi log
xi
yi

In this formula, pa and pb are the abundance distribu-
tions of samples a and b, and KLD is the Kullback-
Leibler divergence.
As described in the enterotyping tutorial (http://

enterotype.embl.de/enterotypes.html), clustering was
performed via partitioning around medoid (PAM) by the
pam function in cluster package [79] in R. The optimal
number of clusters was determined by the Calinski-
Harabasz (CH) index:

CHk ¼ Bk= k − 1ð Þ
Wk= n − kð Þ ;

where k is the number of clusters, n is the number of
data points, Bk is the between-cluster sum of squares
(i.e., the squared distances between all points i and j, for
which i and j are not in the same cluster) and Wk is the
within-cluster sum of squares (i.e., the squared distances
between all points i and j, for which i and j are in the
same cluster). The CH index was calculated using clus-
terSim package [80] in R. Principal coordinates analysis
(PCoA) was used to show cutotype results by the cmdscale
function in R. The cutotype results were also verified
based on Bray-Curtis (BC) distance using vegan package
[76] in R. The JSD and BC of intra- and inter-cluster were
shown by boxplots. We used the same method to define
cutotype based on public data mentioned before for con-
firming the extensive existence of cutotype.
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tailed information about the cutotype classification. Table S6. Microbial
functions of significant difference between C-cutotype and M-cutotype.
Table S7. Detailed distribution of cutotypes in different age groups.
Table S8.. Detailed information on the comparison of Moraxella osloensis
and Enhydrobacter.

Additional file 2: Figure S1. Construction of the iHSMGC (integrated
Human Skin Microbial Gene Catalog). The metagenomic sequencing data
from the Chinese and North American cohorts were processed with an
in-house pipeline to generate their respective gene catalogs. The two
catalogs were merged to form a Two Cohorts nonredundant Gene Cata-
log (2CGC). Sequenced microbial genomes or draft genomes coverage
by 2CGC were regarded as potentially containing sequences of human
skin origin. Therefore, microbial genomes were filtered by 2CGC, and the
retained microbial genomes were then used to generate the SGC. Finally,
the 2CGC was merged with the skin gene catalog (SGC) to generate the
iHSMGC.

Additional file 3: Figure S2. Host information, coverage and
completeness of the iHSMGC. a, Box plot comparing the reads mapping
rate of the HMP dataset between HMP skin catalog and the iHSMGC. b,
The Bee swarm plot showing the percentage of sequenced reads
mapping to human hg19 of each sample. Different anatomical sites are
indicated by different colors. c, Rarefaction curve based on gene profiles
of 1,361 samples using the Chao2 estimator. d, Box plots demonstrating
the read mapping rate from the dataset of Singapore Chinese (NCBI No.
PRJNA277905), Italians (NCBI No. PRJNA281366) and another Singapore
Chinese (NCBI No. PRJEB26427) by using the iHSMGC. AD-atopic derma-
titis. Ea-External auditory canal, Ra-Retroarticular crease, Oc-Occiput, Ba-
Back, Mb-Manubrium, Na-Nare, Ac-Antecubital fossa, Id-Interdigital web,
Pc-Popliteal fossa, Ic-Inguinal crease, Vf-Volar forearm, Hp-Hypothenar
palm, Tw-Toe webspace, Tn-Toenail, Ph-Plantar heel.

Additional file 4: Figure S3. Evaluation of iHSMGC integrity. Genome
coverage of (a) Malassezia sp., (b) top 10 genera of fungi, (c) top 25
genera of viruses, (d) top 60 genera of prokaryotes, each dot in (b-d)
represents a species in the genera. Genome coverage of (e) Cutibacterium
sp. and Staphylococcus sp., (f) Moraxella sp. and (g) Streptococcus sp.

Additional file 5: Figure S4. Drug-resistant spectrum based on ARGs in
different skin sites. a, Sankey diagram depicting the distribution of the
top 15 types of antibiotics ranked by the corresponding ARG abundance.
The height of the rectangles indicates the ARGs relative abundance
against the corresponding drug resistance potential within the site. Each
site and drug resistance potential is indicated in distinct colors. Fh-
Forehead, Ck-Cheek, Ns-Nose, Ea-External auditory canal, Ra-Retroarticular
crease, Oc-Occiput, Ba-Back, Mb-Manubrium, Na-Nare, Ac-Antecubital
fossa, Id-Interdigital web, Pc-Popliteal fossa, Ic-Inguinal crease, Vf-Volar
forearm, Hp-Hypothenar palm, Tw-Toe webspace, Tn-Toenail, Ph-Plantar
heel. b-c, The pie chart showing the proportion of drug resistance (b)
and resistance mechanisms (c). d, Principal component analysis indicating
separation of drug-resistant spectrum within the different anatomical
sites.

Additional file 6: Figure S5. Factors correlated with drug resistance
potential in Chinese. a, Bar chart comparing the explained variance (R2)
of factors impacting the relative abundance of ARGs using the Adonis
test. The L-value represents skin color from dark to white, the b-value is
skin color from blue to yellow. b, Bar chart depicting the types of antibi-
otics corrected with age by the Spearman correlation. c, Bar chart show-
ing the correlation with skincare habit (p < 0.05).

Additional file 7: Figure S6. Differences in skin microbiota between
Singapore Chinese and North Americans. a, Principal component analysis
presenting the separation of skin microbiota of Singaporean Chinese
(NCBI No. PRJNA277905) versus North Americans (HMP SRA bio-project
46333). The microbes, which were the main contributors to the separ-
ation, are indicated by arrows. b, The boxplot showing the prominent
species that differ significantly in abundance between Singaporean Chin-
ese and North Americans.

Additional file 8: Figure S7. Intraindividual differences are smaller than
interindividual differences. Boxplots of Bray-Curtis distance depicts the
similarity between anatomical sites in the face of the same individuals
(intraindividual comparisons) or between the same/different sites of dif-
ferent individuals (interindividual comparisons). The left side of the dotted
line shows the intraindividual differences, the right side the interindivid-
ual differences. The significance levels in the Wilcoxon rank-sum test are:
+, p < 0.05; *, p < 0.01; **, p < 0.001.

Additional file 9: Figure S8. Microbial composition of the cutotypes
and further validation. a, Heat map depicting the species differentially
abundant within the two cutotypes (Wilcoxon rank-sum test, p < 0.01).
Each lattice represents the relative abundance of the microbe in a sam-
ple, yellow indicates high abundance and blue indicates lower abun-
dance. b-d, PCoA using Jensen-Shannon distance presenting the
clustering of (b) samples from the Singaporean dataset (NCBI No.
PRJEB26427), (c) Samples from the Italian (NCBI No. PRJNA281366) and (d)
Samples from the HMP (SRA bio-project 46333). e-f, PCoA using Jensen-
Shannon distance and Bray-Cutis dissimilarity presenting the clustering of
samples from the cheek (e) and the back of the nose (f) of Han Chinese.
Box plots in the top right show the mean distance within the
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corresponding groups in red or in blue. The red horizontal line indicates
the average between-clusters distance. The PERMANOVA test was used
to determine the significance between two clusters and is shown in the
top left.

Additional file 10: Figure S9. Microbial functional differences between
the two cutotypes. Using log10 (FDR adjusted p-value) bar-plot compar-
ing the abundance of module (amino acid metabolism, lipopolysacchar-
ide metabolism, cofactor biosynthesis, sulfur metabolism, glycan
metabolism, sterol biosynthesis, and fatty acid metabolism) KOs of the
two cutotypes present in the forehead areas. Green color indicates KO
enrichment in the M-cutotype and blue means the enrichment in the C-
cutotype. The color shade indicates the level of significance, i.e. dark
green or dark blue equal the FDR adjusted p-value < 0.05, which is the
threshold for a significant difference.

Additional file 11: Figure S10. Characteristics of different skin
microbial cutotypes a, Alterations in skin microbial ARGs antibiotics and
ARGs mechanism. b, The boxplot showing the differences in the
abundance of ARGs between different age groups. Blue, C-cutotype-
enriched; green, M-cutotype-enriched. The significance levels in the
Wilcoxon test are denoted as: **, p < 0.01.

Additional file 12: Figure S11. Octylphenol polyethoxylates
transformation and beta-carotene biosynthesis between the two skin
cutotypes. a, Reaction step for the conversion of octylphenol polyethoxy-
lates to alkylphenol ethoxylates. The histogram compares the abundance
of the genes encode for the two enzymes within the two cutotypes (*
p< 0.05, ** p < 0.01; Wilcoxon test). b, Reaction steps for the biosynthesis
of beta-carotene in microorganisms. The green box represents the enrich-
ment of the KOs in the M-cutotype, the white box represents no signifi-
cant difference.
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