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Abstract

Background: The gut microbiome changes in response to a range of environmental conditions, life events and
disease states. Pregnancy is a natural life event that involves major physiological adaptation yet studies of the
microbiome in pregnancy are limited and their findings inconsistent. Pregnancy with type 1 diabetes (T1D) is
associated with increased maternal and fetal risks but the gut microbiome in this context has not been
characterized. By whole metagenome sequencing (WMS), we defined the taxonomic composition and function of
the gut bacterial microbiome across 70 pregnancies, 36 in women with T1D.

Results: Women with and without T1D exhibited compositional and functional changes in the gut microbiome
across pregnancy. Profiles in women with T1D were distinct, with an increase in bacteria that produce lipopolysaccharides
and a decrease in those that produce short-chain fatty acids, especially in the third trimester. In addition, women with
T1D had elevated concentrations of fecal calprotectin, a marker of intestinal inflammation, and serum intestinal fatty acid-
binding protein (I-FABP), a marker of intestinal epithelial damage.

Conclusions: Women with T1D exhibit a shift towards a more pro-inflammatory gut microbiome during pregnancy,
associated with evidence of intestinal inflammation. These changes could contribute to the increased risk of pregnancy
complications in women with T1D and are potentially modifiable by dietary means.
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Background
The gut microbiome provides essential metabolites, vita-
mins, co-factors and hormones, protects against patho-
genic microorganisms and has a key role in the
development of the immune and other systems [1, 2].
Changes in the composition of the gut microbiome are
associated with ageing, environmental conditions, life
events and disease states [2–4]. In pregnancy, women
undergo significant physiological changes, but only re-
cently has the gut microbiome been studied in this con-
text [5, 6]. Koren et al. [5] sampled the gut microbiome
in the first and third trimesters and found that the taxo-
nomic composition in the first trimester was similar to
that of non-pregnant women but in the third trimester
the abundance of Actinobacteria and Proteobacteria
phyla increased along with an overall decrease in bacter-
ial richness (alpha diversity). In studies in germ-free
mice, they observed that inoculation with third com-
pared to first trimester feces led to greater weight gain,
insulin resistance and gut inflammation and suggested
this was an adaptive proinflammatory response to de-
fend the fetus from pathogens and provide it with nutri-
ents. In contrast, after analysing fecal samples weekly
across pregnancy, DiGiulio et al. [6] found no significant
temporal differences in diversity or composition of the
gut microbiome. These contrary findings and the dearth
of studies warrant further investigation of the gut micro-
biome in pregnancy.
Type 1 diabetes (T1D) is an autoimmune disease in

which insulin-producing β cells in the islets of the pan-
creas are destroyed by T lymphocytes leading to insulin
deficiency [7]. In pregnancy, T1D is associated with sys-
temic and intra-uterine markers of sub-clinical inflam-
mation and higher risks of complications for mother and
fetus [8–10]. Alterations in the bacterial gut microbiome
have been reported in T1D, mainly in children at high
risk and at diagnosis (reviewed in [11], [12–17]). They
include a decrease in alpha diversity (richness) [12–14]
and in the abundance of lactate- and butyrate-producing
and mucin-degrading bacteria [13–17], and an increase
in the abundance of the Bacteroides genus [13, 14].
Functionally, these compositional changes are reflected
by a decreased abundance of genes encoding related
metabolic pathways and enzymes, e.g. butyryl-coenzyme
A (CoA)-CoA transferase [15] and butyryl-CoA de-
hydrogenase for butyrate synthesis [16]. These changes
are not necessarily specific for T1D but nevertheless,
they may have clinical consequences, including in preg-
nancy. Gut butyrate is a key determinant of gut health
and regulator of gene expression and homeostatic im-
munity [18–20]. It is the major energy source for the co-
lonic mucosa, induces the synthesis of mucin and it
promotes gut epithelial integrity, preventing ‘gut leaki-
ness’. In the non-obese diabetic (NOD) mouse model of

T1D, dietary butyrate supplementation promoted an in-
crease in regulatory T cells and a decrease in the inci-
dence of spontaneous diabetes [20]. Increased gut
leakiness has been described in established T1D [21] and
recently by ourselves in association with gut microbiome
changes in children with islet autoimmunity who pro-
gressed to T1D [22]. Gut leakiness with translocation of
toxins and dietary antigens into the blood may result in
systemic inflammation, reported with T1D in pregnancy
complicated by pre-eclampsia [10]. Because a consensus
about the gut microbiome in pregnancy is lacking, even
in the absence of T1D, we applied shotgun whole meta-
genomic sequencing (WMS) to analyse the gut micro-
biome across pregnancy in women with and without
T1D participating in the Australia-wide Environmental
Determinants of Islet Autoimmunity (ENDIA) study.

Results
Study population
Fecal samples were collected between February 2013 and
October 2017 from women enrolled in the ENDIA
study, a prospective, pregnancy-birth cohort study that
follows 1500 Australian children who have a first-degree
relative with T1D [23]. Thirty-five women (36 pregnan-
cies) with T1D and 31 women (34 pregnancies) without
T1D had each provided from one to three fecal samples
across pregnancy (total 134 samples) for analysis by shot-
gun WMS (Fig. 1). Table 1 summarizes and compares
characteristics of the T1D and non-T1D pregnancies.

Whole metagenomic sequencing
The WMS dataset, 47,766,763 ± 10,956,057 (mean ±
SD) paired-end reads per sample, was obtained using an
Illumina NovaSeq 6000. Raw reads (SRA accession:
PRJNA604850) were pre-processed using KneadData
bioBakery tool [24] to eliminate human DNA sequences
and filter sequences with poor quality which on average
removed 6% of the reads. After quality control and read
filter steps, 44,940,628 ± 10,572,188 (mean ± SD) paired-
end reads per sample were obtained (Excel file E0).

Taxonomic diversity and composition of the gut
microbiome in women with and without T1D during
pregnancy
Sequences were analysed with MetaPhLan2 imple-
mented within the HUMAnN2 pipeline. Overall, 340
bacterial species were identified, with an average of 93 ±
13 (mean ± SD) species per sample. The top 25 most
abundant species accounted for more than 50% of the
gut microbiome composition of each subject in any
given trimester (Figure S1).
Alpha diversity (observed richness or number of spe-

cies) per sample was calculated and generalized estimat-
ing equations (GEE) were applied to test for differences
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between women without and with T1D, and between tri-
mesters, and to determine if there was an interaction be-
tween T1D status and trimester. No differences were
found in richness due to T1D status or time, or interac-
tions (Figure S2, Excel file E1).
For analysis of beta diversity, Bray-Curtis coefficients

were calculated between sample pairs, ordinated and
plotted by principal coordinate analysis (PCoA) for each
taxonomic level (Figs. 2, S3 and S4). To test for differ-
ences in beta diversity, a repeated-measure aware per-
mutational analysis of variance (RMA-PERMANOVA)
of the Bray-Curtis coefficients was performed on propor-
tional log transformed data. This revealed a significant
interaction between T1D status and time at all taxo-
nomic levels. Therefore, differences between women
with and without T1D were assessed within trimesters.
No significant differences were detected in trimesters 1
and 2. However, differences were significant at the strain
(P = 0.002), species (P = 0.001), genus (P = 0.070) and
family (P = 0.034) levels in trimester 3 (Excel file E2).
To rule out the possibility that these results were in-

fluenced by the difference in sample size between tri-
mesters 1 and 3, we performed a sensitivity analysis by
subsampling trimester 3 to the size of trimester 1 (n =
23), using samples of trimester 3 from the same women
in trimester 1, and repeated the beta diversity analysis.
Similar to the complete trimester 3 dataset, differences
were significant at the strain (P = 0.003), species (P =
0.003), genus (P = 0.043) and family (P = 0.047), but also
phylum (P = 0.09), taxonomic levels (Excel file E2).
Differences in beta diversity reflect differences in taxo-

nomic composition. To identify differences in specific
taxa between women with and without T1D in preg-
nancy, differential abundance was analysed in limma.

Only taxa for which the prevalence (i.e. proportion of
samples with those taxa) was above 50% in at least one
group and with a log2 fold-change (logFC) greater than
0.5 or less than − 0.5 were considered. Across all trimes-
ters, the species Bacteroides caccae (FDR 0.03) and its
unique strain (unclassified) in the dataset (FDR 0.03), as
well as the order Enterobacteriales (FDR 0.07) were in-
creased in women with T1D (Fig. 3; Excel file E3). On
the other hand, species Bacteroidales bacterium ph8
(FDR 0.034) and its strain (GCF000311925) (FDR 0.03),
the genus (FDR 0.08) and family (FDR 0.08) to which
Bacteroidales bacterium ph8 belongs, and the order Bifi-
dobacteriales (FDR 0.07), were decreased in women with
T1D (Figure 3; Excel file E3).
Differences between women with and without T1D

were also assessed within trimesters. In trimesters 1 and
2, taxa were not significantly different. However, several
differences were found in trimester 3, in which the
unique strain (unclassified) of Bacteroides caccae (FDR
0.004), the species Bacteroides caccae (FDR 0.004), the
species Bacteroides vulgatus (FDR 0.04) and its unique
strain (unclassified) (FDR 0.04) and Bacteroides unifor-
mis (FDR 0.04) were increased in women with T1D,
while the species Bacteroidales bacterium ph8 (FDR
0.01) and its strain (GCF000311925; FDR 0.005), and the
genus (FDR 0.08) and family (FDR 0.08) of Bacteroidales
bacterium ph8 and the order Bifidobacteriales (FDR
0.07), were decreased (Fig. 3; Excel file E3). A significant
Spearman correlation (R2 > 0.4) was found between B.
caccae and B. vulgatus (R2 = + 0.43; adj.P = 0.013).
A sensitivity analysis of differential abundance was also

applied to the subset of trimester 3 samples referred to
above: 13 species, 13 strains, 2 genera, 3 families, 2 or-
ders and 3 phyla were detected as differentially

Fig. 1 Fecal samples obtained in pregnancy. n: number of samples; T1: trimester 1; T2: trimester 2; T3: trimester 3; T1D: women with type 1
diabetes; Non-T1D: women without T1D
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Table 1 Summary of characteristics of non-T1D and T1D pregnancies

General Non-T1D T1D P value**

Overall number of samples: n (%) 66 (49.3) 68 (50.7)

Trimester 1 11 (16.7) 12 (17.6)

Trimester 2 21 (31.8) 22 (32.4)

Trimester 3 34 (51.5) 34 (50.0)

All three trimesters (% pregnancies) 12 (35.3) 12 (33.3)

All three trimesters (% samples) 12 (18.2) 12 (18.2)

Gestational age in days at fecal sample: mean (SD)

Trimester 1 75.4 (16.5) 75.3 (16.5)

Trimester 2 150.8 (26.6) 148.4 (26.6)

Trimester 3 247.6 (14.6) 234.7 (14.6) 0.001

Maternal

Overall number of pregnancies 34 36

Age in years at conception: mean (SD) 33 (4.1) 32.3 (4.0)

Paternal missing n (%) 1 (2.9) 2 (5.6)

Assisted conception: n (%) 3 (8.8) 4 (11.1)

Twin pregnancy: n (%) 0 (0.0) 0 (0.0)

Nulliparous: n (%) 14 (41.2) 18 (50.0)

Pre-eclampsia: n (%) 0 (0.0) 4 (11.1) 0.018

Group B Streptococcus positive: n (%) 7 (20.6) 1 (2.8)

Genito-urinary infections: n (%) 2 (5.9) 5 (13.9)

Pre-pregnancy BMI: mean (SD) 24.7 (4.8) 25.8 (4.7)

Underweight (< 18.5): n (%) 0 (0.0) 0 (0.0)

Normal weight (18.5–24.9): n (%) 21 (61.8) 18 (50.0)

Overweight weight (25–29.9): n (%) 6 (17.6) 10 (27.8)

Obese (> 30): n (%) 7 (20.6) 8 (22.2)

Gestational weight gain (kg): Mean (SD) 13 (5.0) 11.5 (4.9)

Gestational weight gain (kg): n (%) 2 (5.9) 2 (5.6)

Paternal

Age in years at conception: mean (SD) 34.8 (5.2) 32.7 (4.8) 0.093

Pre-pregnancy BMI: mean (SD) 28.6 (4.3) 27.6 (4.3)

Underweight (BMI < 18.5): n (%) 0 (0.0) 1 (2.8)

Normal weight (BMI18.5–24.9): n (%) 4 (11.8) 6 (16.7)

Overweight (BMI 25–29.9): n (%) 10 (29.4) 8 (22.2)

Obese (> 30): n (%) 6 (17.6) 9 (25.0)

Missing: n (%) 14 (41.2) 12 (33.3)

Maternal demographics

Born in Australia: n (%)

Yes 30 (88.2) 24 (66.7)

Unknown 0 (0.0) 1 (2.8)

Education beyond high school: n (%)

Yes 30 (88.2) 29 (80.6)

Unknown 0 (0.0) 0 (0.0)

Lives in a metro area: n (%) 31 (91.2) 35 (97.2)

Socio-Economic Indexes for Areas (SEIFA) Index of Relative Socio-Economic Disadvantage (IRSD)
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Table 1 Summary of characteristics of non-T1D and T1D pregnancies (Continued)

General Non-T1D T1D P value**

Quintile 1 n (%) 2 (5.9) 1 (2.8)

Quintile 2 n (%) 2 (5.9) 3 (8.3)

Quintile 3 n (%) 13 (38.2) 8 (22.2)

Quintile 4 n (%) 4 (11.8) 9 (25.0)

Quintile 5 n (%) 13 (38.2) 15 (41.7)

Smoking during pregnancy: n (%) 3 (8.8) 0 (0.0)

Household smoking during pregnancy: n (%) 5 (14.7) 6 (16.7)

Adults in house during pregnancy: n (%)

One 0 (0.0) 2 (5.6)

Two 31 (91.2) 29 (80.6)

More than two 3 (8.8) 5 (13.9)

Children in house during pregnancy: n (%)

None 14 (41.2) 18 (50.0)

One 8 (23.5) 10 (27.8)

Two 5 (14.7) 7 (19.4)

More than two 7 (20.6) 1 (2.8)

Furred pet ownership during pregnancy: n (%) 24 (70.6) 20 (55.6)

Diet and physical activity in pregnancy

Diet: mean (SD)

Energy/day (kJ) 6617.3 (2277.5) 6445.6 (2185.9)

Fat (g) 68.8 (27.0) 71.7 (26.8)

Protein (g) 77.1 (29.9) 80.3 (29.6)

Carbohydrate (g) 163.8 (57.9) 142.4 (52.6)

Fibre (g) 18.4 (6.1) 17.9 (5.9)

Diet: Missing: n (%) 0 (0.0) 2 (5.6)

Alcohol consumed: n (%)

Yes 6 (17.6) 7 (19.4)

Unknown 0 (0.0) 2 (5.6)

Metabolic equivalent of task (MET) (h/wk): mean (SD) 254.5 (100.9) 267.9 (102.2)

Biological data

HbA1c (%)

Trimester 1: median (IQR) – 6.8 (1.6)

Trimester 2: median (IQR) – 6.1 (1.3)

Trimester 3: median (IQR) – 6.1 (0.8)

Trimester 1: missing – 1 (8.3)

Trimester 2: missing – 3 (13.6)

Trimester 3: missing – 14 (41.2)

1,5-anhydroglucitol (AG) (μg/mL)

Trimester 1: median (IQR) 14.1 (13.1) 3.4 (1.5)

Trimester 2: median (IQR) 11.5 (4.9) 2.5 (2.3)

Trimester 3: median (IQR) 8.1 (6.3) 2.4 (1.3)

Trimester 1: mean (SD) 14.1 (5.9) 3.4 (2.9) < 0.001

Trimester 2: mean (SD) 11.2 (5.1) 2.3 (2.2) < 0.001

Trimester 3: mean (SD) 8.7 (3.8) 2.4 (2.0) < 0.001

Roth-Schulze et al. Microbiome           (2021) 9:167 Page 5 of 21



Table 1 Summary of characteristics of non-T1D and T1D pregnancies (Continued)

General Non-T1D T1D P value**

Trimester 2: missing n (%) 1 (4.8) 1 (4.5)

Trimester 3: missing n (%) 2 (5.9) 8 (23.5)

Serum vitamin D (nmol/L): mean (SD)

Trimester 1 83 (26.9) 76.7 (25.8)

Trimester 2 96.7 (27.0) 85.5 (24.5)

Trimester 3 92.9 (31.6) 96.4 (29.9)

Trimester 1: missing n (%) 0 (0.0) 1 (8.3)

Trimester 3: missing n (%) 2 (5.9) 3 (8.8)

Vitamin B6 (nmol/L): mean (SD)

Trimester 3 76 (75.8) 70 (102.4)

Vitamin B12 (nmol/L): mean (SD)

Trimester 3 84 (116) 154 (138)

Maternal HLA: n (%)

DR34 3 (8.8) 14 (38.9)

DR3 or DR4 20 (58.8) 19 (52.8)

DRXX 11 (32.4) 3 (8.3) 0.002

Known supplements in pregnancy

Antibiotics: n (%) 9 (26.5) 10 (27.8)

Anticoagulants: n (%) 3 (8.8) 6 (16.7)

Antihypertensive agents: n (%) 0 (0.0) 4 (11.1)

Known other supplements pre-pregnancy and pregnancy

Biotin: n (%) 12 (35.3) 9 (25.0)

29 (85.3) 30 (83.3)

Calcium: n (%) 13 (38.2) 10 (27.8)

30 (88.2) 33 (91.7)

Iron 14 (41.2) 9 (25.0)

32 (94.1) 35 (97.2)

Magnesium: n (%) 14 (41.2) 9 (25.0)

31 (91.2) 32 (88.9)

Selenium: n (%) 12 (35.3) 9 (25.0)

29 (85.3 30 (83.3)

Vitamin B1: n (%) 14 (41.2) 9 (25.0)

32 (94.1) 32 (88.9)

Vitamin B2: n (%) 14 (41.2) 9 (25.0)

31 (91.2) 32 (88.9)

Vitamin B3: n (%) 14 (41.2) 9 (25.0)

31 (91.2) 32 (88.9)

Vitamin B5: n (%) 9 (26.5) 6 (16.7)

18 (52.9) 16 (44.4)

Vitamin B6: n (%) 14 (41.2) 9 (25.0)

32 (94.1) 32 (88.9)

Vitamin B9 (folate): n (%) 14 (41.2) 15 (41.7)

32 (94.1) 36 (100.0)

Vitamin B12: n (%) 14 (41.2) 9 (25.0)
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abundant. From these, Bacteroides caccae and Bacter-
oides uniformis, an unclassified strain of Bacteroides cac-
cae and the order Bifidobacteriales were also detected in
the larger dataset of trimester 3 samples. Differential
abundance results are summarised in Excel file E3.

In order to identify the bacterial species that were
most abundant within the Enterobacteriales and Bifido-
bacteriales orders, we plotted the average relative abun-
dance in women with and without T1D (Figure S5A).
Escherichia coli was the most abundant species within

Table 1 Summary of characteristics of non-T1D and T1D pregnancies (Continued)

General Non-T1D T1D P value**

32 (94.1) 30 (83.3)

Vitamin D: n (%) 14 (41.2) 10 (27.8)

33 (97.1) 33 (91.7)

Vitamin E: n (%) 13 (38.2) 8 (22.2)

28 (82.4) 27 (75.0)

Other

Vaccine: n (%)

Yes (Flu only) 1 (2.9) 3 (8.3)

Yes (Pertussis only) 3 (8.8) 3 (8.3)

Yes (Flu and Pertussis) 11 (32.4) 10 (27.8)

Mode of delivery: n (%)

Vaginal 25 (73.5) 14 (38.9)

Caesarean (with labour) 1 (2.9) 4 (11.1)

Caesarean (without labour) 8 (23.5) 18 (50.0) 0.011

Log transformation was used for age at conception: Paternal
Square root transformation was used for all diet variables except carbohydrate and fibre
Square root transformation was used for 1,5-AG in all trimesters and for vitamin D in trimester 2
Hb1A-c, 1,5-AG and vitamin D are based on samples, not pregnancies
NM not measured
** Blank cells indicate P value non-significant. P values for HLA are determined against DRXX as baseline

Fig. 2 Beta diversity analysis by T1D status. PCoA ordination plots based on Bray-Curtis distances between samples at the strain and species
taxonomic levels separated by trimesters in pregnancy. T1D: women with type 1 diabetes (red); Non-T1D: women without T1D (blue)
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Enterobacteriales and, together with an unclassified spe-
cies of the genus Escherichia, accounted for almost the
complete abundance of this order. In addition, a signifi-
cant Spearman correlation was found between E. coli and
Coprococcus sp. ART55_1 (R2 = − 0.6, adj.P = 0.09). Bifido-
bacterium adolescentis and Bifidobacterium longum were
the most abundant species within Bifidobacteriales (Figure
S5A). A lmer test applied to test differences in the abun-
dance of these four species between women with and
without T1D revealed that the abundance of E. coli in tri-
mester 3 and of B. adolescentis in trimester 1 were signi-
ficantly different between women with and without T1D
(P = 0.01 for both; Figure S6).

Effect of gestation time and other factors on the gut
microbiome during pregnancy
No significant differences in alpha diversity were de-
tected in women with or without T1D according to time,
analysed either by days of gestation (P value 0.5) or by
trimester (P values > 0.6), i.e. as continuous or categor-
ical variables, respectively (Excel file E1). Due to the sig-
nificant interaction between T1D status and time,
differences in beta diversity across time (days or trimes-
ters) were assessed separately in women with and with-
out T1D (Excel file E2). Differences were detected only
at the strain (P value 0.03) and species (P value 0.06)
levels in women without T1D with time as continuous

variable (Excel file E2). However, in women with T1D,
differences in beta diversity across days of gestation and
between trimesters were significant at all taxonomic
levels except order and phylum (Excel file E2). These ob-
servations suggested that the microbial community
structure across pregnancy is less stable in women with
T1D. Therefore, we sought to identify differentially
abundant taxa across trimesters separately within each
group.
Throughout pregnancy, in women with T1D, the

abundance of an unclassified species of the family Pep-
tostreptococcaceae (FDR 0.02), the species Odoribacter
splanchnicus (FDR 0.098), the genus Prevotella (FDR
0.066) dominated by the species Prevotella copri (Figure
S5B) and the phylum Verrucomicrobia (FDR 0.043) de-
creased, while an unclassified strain of species Strepto-
coccus thermophilus (FDR 0.099) and the species
Streptococcus thermophilus (FDR 0.04) and family Por-
phyromonadaceae (FDR 0.092) increased (Excel file E4;
Figure S7). In women without T1D, an Anaerostipes
hadrus GCF000332875 strain (FDR 0.038) and species
Anaerostipes hadrus (FDR 0.059), an unclassified strain
of Haemophilus parainfluenzae (FDR 0.001) and species
Haemophilus parainfluenzae (FDR 0.003), genus Hae-
mophilus (FDR 0.004), family Pasteurellaceae (FDR
0.002), strain (GCF000218445 [FDR 0.04]) and species of
Lachnospiraceae bacterium 1157FAA (FDR 0.055) and

Fig. 3 Means and standard errors of the log2-transformed fitted values shown as a point in each trimester for differentially abundant taxa in
women with (red) and without (blue) T1D. * in the top right corner denotes a significant difference (FDR < 0.1) between groups throughout
pregnancy; * between points denotes a significant difference (FDR < 0.1) between groups in that trimester
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an unclassified species of Veillonella genus (FDR 0.083)
decreased during pregnancy (Excel file E4; Figure S7).
Furthermore, in women without T1D strains Rumino-
coccus sp. 5139BFAA GCF000159975 and Lachnospira-
ceae bacterium 3157FAACT1 GCF000218405 (FDR
0.063 and 0.075, respectively) and their corresponding
species (FDR 0.065 and 0.075), unclassified strains of
Streptococcus thermophilus (FDR 0.06) and Bifidobacter-
ium_animalis (FDR = 0.06) and their corresponding spe-
cies (FDR 0.06 for both) increased throughout
pregnancy (Excel file E4; Figure S7).
As expected, women with and without T1D differed in

serum 1,5-anhydroglucitrol (1,5-AG), a marker of short-
term glycemic control [25] (Table 1), but in women with
T1D, serum 1,5-AG was related to beta diversity only at
the phylum level (Excel file E2). Mode of delivery had an
effect on the beta diversity only at the family level (Excel
file E2). No significant associations were found between
beta diversity and age at conception, body mass index
(BMI), parity, carbohydrate or fibre intake (Excel file
E2). However, a difference was observed in the micro-
biome composition at the strain and species levels ac-
cording to the human leukocyte antigen (HLA) class II
type (Excel file E2). The model used to test for differ-
ences in beta diversity between women with and without
T1D was adjusted for HLA type. HLA type accounted
for 3.2% of the variation [R2] in beta diversity in trimes-
ter 3 (Excel file E2). After controlling for this effect, T1D
status explained 2.9% of the variation and the difference
in beta diversity between women with and without T1D
women was statistically significant (P = 0.004) (Excel file
E2). Finally, even though for the differential abundance
analysis an adjustment for HLA type was included in the
model, an additional analysis was performed to detect
differences in the abundance of specific taxa due to HLA
type and to verify that the taxa that were detected as dif-
ferentially abundant due to T1D status were not affected
by HLA type. Differences due to HLA type were de-
tected only between HLADR34 and HLADR3X and
DR4X for the abundance of strain Eubacterium ramulus
GCF000469345 and species Eubacterium ramulus in tri-
mester 1 and an unclassified strain of species Eubacter-
ium rectale and species Eubacterium rectale in trimester
3, which were decreased in women with HLA DR34
Excel file E3. None of the taxa identified as differentially
abundant due to T1D status were significantly affected
by HLA type.

Validation of differentially abundant species by qPCR
To validate the findings from metagenomic sequencing, we
analysed the relative abundance of two of the top-ranked
differentially abundant bacteria, Bacteroides caccae and
Bacteroides vulgatus, in the same cohort of T1D and non-
T1D mothers in trimester 3. Relative abundances obtained

by metagenomic sequencing and qPCR were strongly cor-
related (Spearman R = + 0.91 and + 0.74 for B. caccae and
B. vulgatus, respectively). By fitting linear models in lmer
with conception age, BMI, parity and HLA type introduced
as fixed effects, and ‘woman ID’ and processing batches as
random effects, qPCR confirmed the increase in relative
abundance of B. caccae (P = 0.00005) and B. vulgatus (P =
0.04) in women with T1D (Figure S8).

Functional annotation of gut microbiome taxa
Sequences processed with HUMAnN2 were annotated,
complete metabolic pathways quantified, gene abundances
calculated and regrouped into KO (Kegg Orthology) and
MetaCyc reaction functional categories. A total of 451
complete pathways, 5628 KO and 3204 MetaCyc reaction
categories were obtained. No significant interaction in
richness was detected between factors T1D status and
time. In the model in which time was considered as a con-
tinuous variable, richness was significantly higher in
women with T1D for all three functional categories (Fig-
ure S9, Excel file E1). For beta diversity, the interaction be-
tween T1D status and time was significant. Therefore,
differences between groups were assessed within each tri-
mester, but were significant for the three functional cat-
egories only in trimester 3 (Fig. 4; Excel file E2).
Women with and without T1D displayed significant

differences in the abundance of a number of features iden-
tified in pathways, KO and MetaCyc categories; these are
comprehensively listed in Supplementary Excel files E5-
10. Selected functions, namely LPS production, vitamin
K2 synthesis, vitamin B6 synthesis, vitamin B12 synthesis,
short-chain fatty acid (SCFA) synthesis and mucin degrad-
ation, and the principal bacterial species contributing to
these functions, are summarised in Table 2. Examples of
bacteria contributing to a functional feature are shown in
Figures S10 and S11. Of interest, a pathway (PWY1269:
CMP-3-deoxy-D-manno-octulosonate biosynthesis I), 17
KO gene categories and two MetaCyc reactions (DAR-
AB5PISOM-RXN and UDPGLCNACEPIM-RXN) in-
volved in the synthesis of bacterial lipopolysaccharides
(LPSs) were enriched in women with T1D (Excel file E5-
E7; Table 2; Fig. 5, Figure S10A). Seven pathways and 6
KO categories involved in vitamin K2 synthesis were also
increased in women with T1D (Excel files E5-E6; Table 2;
Fig. 5; Figure S10B). In addition, two KO categories in-
creased in women with T1D in trimester 3 were involved
in antibiotic tolerance (K03771) and biofilm formation
and (K18831) (Excel file E6).
The enzyme pyridoxal 5′-phosphate synthase (K06215)

involved in the deoxyxylulose 5-phosphate (DXP)-inde-
pendent pathway for vitamin B6 synthesis, one pathway,
five KO categories and six metaCyc reactions related to
vitamin B12 (cobalamin) synthesis and five pathways, 11
KO categories and 13 MetaCyc reactions involved in
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SCFA synthesis, including pyruvate and acetyl-CoA pro-
duction and butyrate synthesis from acetate or lactate,
were decreased in women with T1D (Excel file E5-E7;
Table 2; Fig. 5; Figure S11). The abundance of beta-N-
acetylhexosaminidase (K01207) involved in the degrad-
ation of mucin was also significantly reduced in women
with T1D, but again only in trimester 2 (Table 2; Excel file
E6; Fig. 5; Figure S11).

Identification of bacterial clusters based on differentially
abundant functional features
Differentially abundant functional features derived from
HUMAnN2 were contributed not by a single species but
rather a combination of species. Therefore, relative
abundances of the principal contributing species in each
of the six selected functions could be grouped into
clusters (Table 2). For functions with three or more
features, only principal contributors to at least three
features were considered. For each cluster, a linear
model was fitted with lmer using the same design as
for the differential abundance analysis. This confirmed
that women with T1D had an increased abundance of
bacterial clusters contributing to production of LPS
and synthesis of vitamin K2 and a decreased abun-
dance of bacterial clusters contributing to synthesis of
vitamins B6 and B12, production of SCFA and deg-
radation of mucin (Figure S12).

Markers of gut pathology
Because the composition and function of the gut micro-
biome of women with T1D was suggestive of a pro-
inflammatory state, we sought evidence for gut inflam-
mation in women with T1D. Fecal calprotectin, released
from neutrophils and monocytes, is a marker of intes-
tinal inflammation that may result in increased epithelial
permeability [26]. Serum intestinal fatty acid-binding
protein (I-FABP) is a marker of intestinal epithelial dam-
age [27]. Fecal calprotectin and serum I-FABP were
measured in trimester 3 in 61 women (32 with T1D)
and 55 women (27 with T1D), respectively. Fecal calpro-
tectin was increased in women with T1D compared to
those without T1D (112 ± 148 vs. 36 ± 28 [mean ± SD]
mg/kg: P value 0.04; Mann-Whitney test). Serum I-
FABP was also increased in women with T1D compared
to women without T1D (587 ± 235 vs. 314 ± 185 [mean
± SD] pg/mL: P value 0.0003; Mann-Whitney test) (Fig-
ure S13). However, these markers did not significantly
correlate (Spearman R > 0.4) with any of the individual
taxa that were differentially abundant between T1D and
non-T1D women.

Discussion
The gut microbiome in pregnancy has previously been
analysed in two studies, by Koren et al. [5] and DiGiulio
et al. [6], who pyrosequenced the 16S rRNA gene V1–
V2 and V3–V5 regions, respectively, but with different

Fig. 4 Beta diversity analysis by type 1 diabetes (T1D) status. PCoA ordination plots based on Bray-Curtis distances between samples for a
pathways, b KOs and c MetaCyc reactions in trimester 3. T1D: women with type 1 diabetes (red); women without T1D (blue)
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Table 2 Pathways and enzymes differentially abundant in T1D women

Function (Change ref. T1D) Function IDs Principal bacterial contributors a (bacterial clusters are in bold)

LPS production (↑) PWY-1269
K00748
K00912
K00979
K01447
K01627
K01791
K02517
K02536
K02852
K03270
K03771
K05807
K06041
K06142
K07091
K11720
K11934
DARAB5PISOM-RXN
UDPGLCNACEPIM-RXN

Escherichia coli, Akkermansia muciniphila, Bacteroides caccae,
Alistipes finegoldii, Bacteroides dorei, Odoribacter splanchnicus,
Alistipes shahii, Bacteroides fragilis, Bacteroides vulgatus,
Bacteroides faecis, Bacteroides finegoldii, Bacteroides ovatus,
Bacteroides sp. 2 1 22, Bacteroides sp. 4 3 47FAA, Bacteroides
thetaiotaomicron, Bacteroides xylanisolvens, Alistipes
onderdonkii, Bacteroides stercoris, Bacteroides uniformis,
Comamonas testosteroni, Enterobacter cloacae, Escherichia sp.
TW09276, Achromobacter xylosoxidans, Aggregatibacter aphrophilus,
Azospira oryzae, Bacteroides cellulosilyticus, Bacteroides sp. 1 1 6,
Bacteroides sp. 3 2 5, Campylobacter concisus, Campylobacter curvus,
Campylobacter hominis, Chryseobacterium taeanense, Citrobacter
freundii, Citrobacter koseri, Cronobacter sakazakii, Delftia acidovorans,
Desulfovibrio desulfuricans, Escherichia fergusonii, Eubacterium
siraeum, Haemophilus influenzae, Neisseria flavescens, Neisseria
meningitidis, Neisseria subflava, Parabacteroides goldsteinii,
Parabacteroides merdae, Porphyromonas asaccharolytica, Prevotella
denticola, Prevotella melaninogenica, Pseudomonas nitroreducens,
Pseudomonas putida, Salmonella enterica, Serratia liquefaciens,
Shigella flexneri, Shigella sonnei

Vitamin K2 synthesis (↑) PWY-5838
PWY-5845
PWY-5850
PWY-5860
PWY-5861
PWY-5862
PWY-5896
K00330
K00334
K00338
K00340
K00343
K02523
K02548

Escherichia coli, Akkermansia muciniphila, Bacteroides sp. 4 3
47FAA, Bacteroides dorei, Bacteroides fragilis, Alistipes finegoldii,
Bacteroides vulgatus, Bacteroides salyersiae, Bacteroides sp. 1 1 6,
Bacteroides thetaiotaomicron, Odoribacter splanchnicus, Alistipes
onderdonkii, Alistipes shahii, Bacteroides caccae, Bacteroides ovatus,
Bifidobacterium longum, Enterobacter cloacae, Klebsiella pneumoniae,
Porphyromonas asaccharolytica

Vitamin B6 synthesis (↓) K06215 Eubacterium rectale, Desulfovibrio piger

Vitamin B12 synthesis (↓) COBALSYN-PWY
K02189
K03394
K05934
K05936
K06042
RIBAZOLEPHOSPHAT-RXN
RXN-8770
2.7.1.156-RXN
COBINAMIDEKIN-RXN
COBINPGUANYLYLTRANS-RXN
RXN-14063

Eubacterium rectale, Faecalibacterium prausnitzii, Roseburia
intestinalis, Desulfovibrio piger, Ruminococcus torques,
Ruminococcus obeum, Citrobacter freundii, Citrobacter koseri,
Collinsella aerofaciens, Coprococcus catus, Fusobacterium nucleatum,
Fusobacterium periodonticum, Klebsiella sp. MS 92 3, Lactobacillus
reuteri, Megamonas funiformis, Megamonas hypermegale,
Megamonas rupellensis, Methanosphaera stadtmanae, Morganella
morganii, Roseburia hominis, Salmonella enterica, Streptococcus
australis, Streptococcus parasanguinis, Streptococcus sanguinis,
Veillonella dispar, Veillonella parvula, Veillonella sp. oral taxon 158

SCFA production (↓) GLUCUROCAT-PWY
P42-PWY
PWY-5177
PWY-6507
PWY-7242
K00016
K00074
K00248
K00626
K01571
K01625
K01715
K03856
K04070
K03785
K15634
METHYLACETOACETYLCOATHI
OL-RXN
RXN-12561

Faecalibacterium prausnitzii, Ruminococcus torques,
Eubacterium rectale, Roseburia intestinalis, Anaerostipes hadrus,
Lachnospiraceae bacterium 5 1 63FAA, Roseburia inulinivorans,
Roseburia hominis, Ruminococcus champanellensis, Bacteroides sp. 3 1
19, Bifidobacterium adolescentis, Bifidobacterium animalis, Eggerthella
lenta, Eubacterium eligens, Eubacterium ventriosum, Ruminococcus
bromii, Ruminococcus obeum, Treponema succinifaciens
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conclusions. To our knowledge, the current study is the
first to also include women with T1D, who have a higher
frequency of complications and evidence of systemic and
intra-uterine inflammation in pregnancy [8, 11, 12] that
could conceivably be related to the gut microbiome.
Koren et al. [5] compared single samples from trimesters
1 and 3 from 91 pregnancies and reported a decrease in
alpha diversity and ‘remodelling of the gut microbiome’

by the third trimester, specifically a decrease in the
abundance of taxa in the genus Faecalibacterium that
generate the anti-inflammatory SCFA butyrate [18] and
an increase in taxa in the phylum Proteobacteria recog-
nised to be pro-inflammatory [28]. On the other hand,
DiGiulio et al. [6] by weekly sampling of 49 women
found no significant changes in diversity or composition
across pregnancy. Similar to DiGiulio et al. [6], we

Table 2 Pathways and enzymes differentially abundant in T1D women (Continued)

Function (Change ref. T1D) Function IDs Principal bacterial contributors a (bacterial clusters are in bold)

RXN0-2044
RXN-11245
RXN-16133
RXN-12705
RXN-14275
RXN-12750
RXN-12490
RXN-11662
RXN-12570
ACETYL-COA-
ACETYLTRANSFER-RXN
OHACYL-COA-DEHYDROG-RXN

Mucin degradation (↓) K01207 Eubacterium rectale, Bifidobacterium adolescentis, Eubacterium
siraeum, Ruminococcus bromii, Adlercreutzia equolifaciens,
Roseburia intestinalis, Bifidobacterium bifidum, Streptococcus
parasanguinis, Megamonas hypermegale

a On average more abundant in the group with increased abundance of a given function

Fig. 5 Means and standard errors of the log2-transformed fitted values shown as a point in each trimester for differentially abundant functional
features in women with (red) and without (blue) T1D. One example for each of six broad categories is shown: lipopolysaccharide (LPS)
production (CMP–3–deoxy–D–manno–octulosonate synthesis [PWY–1269]), vitamin K2 synthesis (superpathway of menaquinol–8 synthesis [PWY–
5838]), vitamin B6 synthesis (pyridoxal 5′–phosphate synthase [K06215]), vitamin B12 synthesis (adenosylcobalamin salvage from cobinamide
[COBALSYN–PWY]), short-chain fatty acid (SCFA) production (3–hydroxybutyryl–CoA dehydrogenase [K00074]) and mucin degradation (beta–N–
acetylhexosaminidase [K01207]). * in the top right corner denotes a significant difference (FDR < 0.1) between groups throughout pregnancy; *
between points denotes a significant difference (FDR < 0.1) between groups in that trimester

Roth-Schulze et al. Microbiome           (2021) 9:167 Page 12 of 21



observed no differences across pregnancy in alpha diver-
sity but found differences in beta diversity at the strain
and species levels in women without T1D and at all
taxonomic levels in women with T1D. In addition, par-
ticularly in women with T1D, we saw changes in the
relative abundance of specific taxa across pregnancy with
progression to a more pro-inflammatory microbiome,
similar to Koren et al. [5]. The taxonomic differences be-
tween women with and without T1D were reinforced by
functional annotation, revealing differential abundance
in enzymes and pathways as pregnancy progressed.
These differences could not be attributed to demo-
graphic or other factors, including diet. It is important,
however, to keep in mind that our findings are based on
DNA analysis and they might not necessarily reflect
changes at the RNA or protein level.
In examining differential abundance, we observed two

main patterns: (1) taxa that were differentially abundant
between women with and without T1D across all trimes-
ters and (2) taxa that were similar in abundance in
women with and without T1D in the first trimester but
decreased or increased to be differentially abundant in
trimester 3. In the first category, B. caccae and the order
Enterobacteriales were increased in women with T1D
across all trimesters. Within Enterobacteriales, Escheri-
chia coli was the most abundant species and was
enriched in women with T1D. Products of E. coli includ-
ing lipopolysaccharide [29] and microcin [30] promote
intestinal inflammation, intestinal permeability and low-
grade systemic inflammation, and are implicated espe-
cially in the pathogenesis of inflammatory bowel disease
[31, 32]. Moreover, an increase in these facultative an-
aerobes may displace obligate anaerobic bacteria that
produce SCFAs [32], supported by the negative correl-
ation between the abundance of E. coli and Coprococcus
sp. ART55_1, further accentuating inflammation. In
women with T1D, this may contribute to the decrease in
abundance of the genus Prevotella comprising almost
entirely Prevotella copri, a species that produces succin-
ate and the SCFAs propionate and acetate known to be
associated with improved glucose metabolism [19, 33].
Furthermore, in women with T1D, E. coli contributed to
an increased abundance of enzymes involved in anti-
biotic tolerance (K18831) and biofilm formation
(K03771). Bacterial biofilms confer increased tolerance
to antibiotics and host immune responses [34] and may
provide E. coli with a protective advantage over other
more sensitive bacteria that compete for the same re-
sources in the gut including SCFA-producers, which
were less abundant in women with T1D.
In the second category (taxa that became differentially

abundant by trimester 3), we observed that three species
from the Bacteroidales order, B. caccae, B. uniformis and
B. vulgatus, were increased in women with T1D. The

genus Bacteroides was reported to be more abundant in
children with islet autoimmunity compared to healthy
controls [11, 12]. Bacteria from the Bacteroides (B. cac-
cae, B. vulgatus, B. uniformis, B. dorei, B. fragilis, B. fae-
cis, B. finegoldii, B. thetaiotaomicron, B. xylanisolvens, B.
stercoris and B. ovatus) and Alistipes (A. finegoldii, A.
onderdonkii and A. shahii) genera, all belonging to the
Bacteriodales order, formed part of the LPS bacterial
cluster which was enriched in women with T1D espe-
cially by trimester 3.
Twenty-nine functional features related to the produc-

tion of SCFAs were decreased in women with T1D. The
SCFAs bacterial cluster was composed of Faecalibacter-
ium prausnitzii, Eubacterium rectale, Anaerostipes
hadrus, Lachnospiraceae_bacterium 5 1 63FAA, Rumino-
coccus torques, Roseburia intestinalis and Roseburia inu-
linivorans all of which belong to the class Clostridia and
are major butyrate producers [35]. Butyrate prevents gut
inflammation and promotes gut barrier function [19]. In
addition, the enzyme beta-N-acetylhexosaminidase
(K01207), which degrades mucin [36], contributed by
Eubacterium rectale, E. siraeum, Ruminococcus bromii,
Bifidobacterium adolescentis, B. bifidum and Roseburia
intestinalis, was decreased in women with T1D, but only
in trimester 2. Degradation of mucins produces oligosac-
charides, and acetate and propionate, which together
then stimulate mucus production and enhance epithelial
integrity [37], preventing ‘gut leakiness’ and transloca-
tion of toxins and dietary antigens into the systemic cir-
culation. Because mucin degradation was lower in
women with T1D, the stimulus to mucin production
would be less. This would also be contributed to by the
lower abundance of butyrate-producing bacteria ob-
served in women with T1D. Thus, the gut microbiome
in women with T1D exhibits pro-inflammatory features
likely to be associated with low-grade systemic
inflammation.
Women with T1D bacterial functions associated with

vitamin K2 (menaquinone; MK-7) synthesis were in-
creased and those associated with synthesis of the B-
group vitamins B6 (pyridoxine) and B12 (cobalamine)
were decreased. Mammals cannot synthesize these vita-
mins and must acquire them from the diet or gut micro-
organisms [38]. A small study based on metagenomic
sequencing of the gut microbiome [39] observed a simi-
lar increase in the vitamin K2 superpathway (PWY-
5838) in people with type 2 diabetes. Vitamin K2 is re-
quired for blood clotting and bone health [40] but why
its synthesis by gut bacteria is increased in diabetes is
unclear. All B-group vitamins contribute to regulation of
immunity-inflammation and their deficiency has been
associated with inflammatory disorders [41]. Vitamin B6
deficiency has been associated with inflammatory
markers in population-based studies [42] and is reported
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to be common in T1D [43, 44]. Of interest therefore, we
found that the key enzyme in B6 synthesis, pyridoxal 5′-
phosphate synthase (K06215), was decreased across
pregnancy in women with T1D. Vitamin B12 has several
anti-oxidant properties [45] and is required for conver-
sion of succinate to propionate by Prevotella [46]. The
majority of women with and without T1D reported tak-
ing multi-B group vitamins from early pregnancy (Table
1) and in the third trimester plasma B6 and serum B12
did not differ significantly between women with and
without T1D (Table 1). Nevertheless, the relative defi-
ciency of these vitamin-synthesizing gut bacteria in
women with T1D could contribute to other alterations
in the gut microbiome, underscoring the importance of
dietary supplementation in this group of women.
Our findings reveal that the composition of the gut

microbiome not only changes across pregnancy but in a
distinct way in women with T1D. By the third trimester,
women with T1D exhibited a more pro-inflammatory and
catabolic gut microbiome profile, reflected by an increase
in LPS-producing bacteria and a decrease in SCFA-
producing bacteria. These changes may account for the
increase in calprotectin (marker of gut inflammation) and
I-FABP (marker of gut epithelial integrity) we observed in
women with T1D, known to be associated with impaired
epithelial barrier function and leakage of LPS and other
bacterial products leading to low-grade systemic inflam-
mation. We suggest that systemic inflammation secondary
to changes in the gut microbiome in T1D may contribute
to the increased risk of pregnancy complications in T1D.
Furthermore, a pro-inflammatory gut microbiome in the
mother may impact the infant postnatally. In an elegant
study in mice, Aguero et al. [47] found that transient ex-
posure to an auxotrophic E. coli mutant in the intestine of
germ-free mothers in pregnancy accentuated innate im-
mune development in the intestine of their germ-free off-
spring. This effect was mediated by the transfer, in part
via maternal antibodies, of a range of E. coli products
across the placenta and in the mother’s serum and milk.
Thus, with a single gut bacterium, the mother primed the
immune system of her offspring, before their exposure to
the external environment [47]. If T1D mothers with an in-
creased abundance of E. coli and other LPS-producing gut
bacteria better prime innate immunity in their offspring,
this could protect against potentially diabetogenic infec-
tions in early life [48] and account for the lower risk of
T1D in infants with a maternal compared to paternal
proband [49].

Conclusions
The gut microbiome changes across pregnancy but these
changes are distinct in women with T1D. They include an
increase in bacteria with pro-inflammatory properties, a
decrease in bacteria with anti-inflammatory properties

and a decrease in bacteria that synthesize essential vita-
mins, which together may lead to low-grade gut inflam-
mation, epithelial barrier dysfunction, increased epithelial
permeability and low-grade systemic inflammation. These
are features of the gut microbiome ‘dysbiosis’ observed in
a wide range of diseases [50], some of which have shown
clinical benefit in response to probiotic and other dietary
interventions. The relationship of these changes to the in-
creased risk to mother and fetus in the T1D pregnancy re-
quires further investigation. Intervention by dietary means
to promote a less pro-inflammatory gut microbiome could
potentially benefit both mother and fetus.

Methods
Participants and study design
This study involved 70 pregnancies in women participat-
ing in the ENDIA pregnancy-birth cohort study [23], 36
in women with established T1D on daily insulin treat-
ment and 34 in healthy women with no history of gesta-
tional diabetes. The main criterion for participation in
ENDIA was an unborn child with a first-degree relative
with T1D. Table 1 provides summary statistics for par-
ticipants, on 66 women with 70 pregnancies (four sibling
pairs). Therefore, four women were included twice in
the study population (each with two pregnancies). The
unit of observation is the pregnancy, and therefore ob-
servations from the same mother but different pregnan-
cies have been included as separate observations, as
characteristics might change between pregnancies. Tri-
mesters were categorised according to gestational age:
T1 0–99 days; T2 100–196; T3 197–274.
Women provided written informed consent and were

enrolled into the study between 2013 and 2016 at one of
eight clinical sites. Up to three study visits occurred dur-
ing pregnancy, ideally one in each trimester. The study
was approved by a Human Research Ethics Committee
(HREC) at each clinical site, with the Women’s and
Children’s Health Network HREC in Adelaide acting as
the lead HREC under the Australian National Mutual
Acceptance Scheme (reference number HREC/16/
WCHN/066). ENDIA is an observational study regis-
tered on the Australia New Zealand Clinical Trials
Registry (ACTRN1261300794707).
Maternal and paternal demographics, medical history,

past-pregnancy history, pre-pregnancy weight, assisted
conception status and plurality of pregnancy were re-
corded at the first opportunity. Standardized question-
naires were offered at each pregnancy visit to record
pregnancy complications, antibiotic and supplement
usage, maternal and household smoking, household
composition and pet ownership. Maternal diet during
pregnancy was measured at the third trimester visit
using a validated 74 item food frequency questionnaire,
Dietary Questionnaire for Epidemiological Studies
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version 2 (DQESv2) [51]. Even though this was adminis-
tered only in the third trimester, evidence for stability of
dietary intake over the course of the pregnancy was ob-
tained from a separate, purpose-built ENDIA Pregnancy
Lifestyle Questionnaire administered before each of the
three study visits during pregnancy. This assessed con-
sumption of milk (dairy and non-dairy), caffeinated and
decaffeinated tea and coffee, caffeine-containing soft
drinks, dairy products, soy, gluten containing cereals
(wheat, barley and rye) and non-gluten containing ce-
reals (rice, corn and oats). Analysis across the study
visits revealed that on 86% of occasions respondents re-
ported either the same unit or within one-unit difference
between visits 1–2, visits 1–3 and visits 2–3. Magnitude
changes of four or five units were reported on < 2% of
occasions. This supports the DQESv2 as being reflective
of the whole pregnancy period. Women were advised to
take multi B-group vitamin supplements from as early as
possible in pregnancy.

Sample collections and analyses
Serum 1,5-AG, a measure of glucose control in preg-
nancy [25], was measured by GlycoMark (Nippon
Kayaku Co. Ltd., New York, NY, USA) in a single batch.
Serum vitamin D3 was measured with a Liaison Analyser
by the DiaSorin method (DiaSorin, Turin, Italy). Plasma
vitamin B6 was measured by the Chromsystems HPLC-
based assay (Chromsystems Instruments & Chemicals,
Gräfelfing, Germany). Serum vitamin B12 was measured
by the Abbot Architect Chemiluminescent Microparticle
Immunoassay.
Fecal samples were collected in accordance with our

validated collection-processing-storage method [52].
Briefly, samples were captured in a toilet using the Easy
Sampler device (Co-Vertec Ltd, Waterlooville, UK) then
transferred into a sterile 70 mL collection jar. Partici-
pants were instructed to store the sample in the refriger-
ator prior to transport to the laboratory in an insulated
bag within 24 h. Samples were divided into aliquots with
a sterile spatula in a Biosafety Level 2 cabinet, then
stored at − 80°C. A total of 134 fecal samples were col-
lected from the 70 pregnancies with either two or three
samples collected longitudinally in each pregnancy (Fig.
1). DNA was extracted from fecal samples at the Walter
and Eliza Hall Institute of Medical Research (WEHI)
with the MoBio PowerSoil kit (MoBio Laboratories,
Carlsbad, CA) as per manufacturer’s instructions.
Fecal calprotectin (micrograms per kg) was measured

in 31 and 26 samples collected in the third trimester
from women with and without T1D, respectively, by
quantitative, enzyme-linked immunoassay (CALPROT-
MOslo, Norway) according to the manufacturer’s in-
structions. Human serum intestinal fatty acid binding
protein (I-FABP) (picograms/mL) was measured in 26

and 26 samples collected in the third trimester from
women with and without T1D, respectively, by a com-
mercial ELISA kit (Enzyme-Linked Immunosorbent
Assay; Hycult Biotech, the Netherlands) according to the
manufacturer’s instructions.
HLA DR typing was performed on DNA in saliva col-

lected with OG-500 Oragene DNA tubes (DNA Geno-
tek, Ontario, Canada) by TaqMan-based PCR-typing and
imputation from three single-nucleotide polymorphisms
(rs3104413, rs2187668 and rs9275495), as described pre-
viously [53].

Whole metagenome sequencing and generation of
taxonomic and functional profiles
Whole metagenome sequencing (WMS) libraries were
generated and sequenced with the 2 × 150 bp paired-
end chemistry on two separate runs of an Illumina
NovaSeq 6000 (Illumina, San Diego, California, USA) se-
quencer at the Ramaciotti Centre for Genomics (UNSW,
Sydney, Australia. www.ramaciotti.unsw.edu.au). Se-
quencing data were quality controlled, and reads align-
ing to the human genome were removed using
KneadData (v0.6.1) [24]. For the functional analysis, fil-
tered reads classified using Kraken2 with the standard
database [54], were further processed using HUMAnN2
(v0.11.1) [55] with the UniRef90 database to generate
functional annotations (i.e. genes and metabolic path-
ways) and define the metabolic potential of the microbial
communities. A functional profile (i.e. function-per-
sample counts matrix) for metaCyc [56] complete meta-
bolic pathways was obtained. In addition, two functional
profiles were generated by grouping genes into KO [57]
and MetaCyc-reactions functional categories using the
humann2_regroup_table command. As part of the
HUMAnN2 pipeline, MetaPhLan2 (v 2.7.5) [58] was
used on the reads filtered with KneadData, to detect and
quantify individual species with a library of clade-
specific markers (ChocoPhlAn database) and generate
whole-metagenome-based profiles at strain, species,
genus, family, order and phylum taxonomic levels. Taxo-
nomic and functional profiles were imported into the
phyloseq [59] package in R [60]. An abundance filter
was applied to remove all taxa and functional categories
with a relative abundance across all samples of < 0.01%.
Alpha diversity (diversity within microbial communi-

ties) was obtained from the number of observed taxa
(richness) using the function estimate richness from the
R package phyloseq.
Beta diversity (diversity between microbial communi-

ties) was determined with phyloseq (function distance,
method=‘bray’) on proportional log transformed data.
This function calculates Bray-Curtis coefficients, which
measure the distance between communities based on
the taxa/functions that they contain and their
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abundances. The data were visualised using principal co-
ordinates analysis (PCoA) plots in phyloseq.

Statistical analyses
For continuous responses, where appropriate, the sum-
mary tables present mean and standard deviation de-
rived from fitting a linear mixed model. The model fit
for each continuous response adjusts for the fact that
the observations from women with more than one preg-
nancy are not fully independent but may be correlated.
For some response variables, the assumption of normally
distributed residuals was not met. In these analyses, the
response variable was transformed using a square root
or log transformation, as appropriate. For transformed
responses, the back transformed means and approxi-
mated standard deviations are presented. A Wald’s test
is used to determine whether the groups are significantly
different.
For categorical responses, summary tables show num-

bers and percentages. The percentage was calculated
using the total number of pregnancies or samples as the
denominator. To determine whether the distribution of
observations between groups for categorical data were
similar or not, a generalized linear mixed model was fit-
ted, with a random effect for woman (i.e. subject). Such
models adjust for correlated women observations. To
determine whether groups were significantly different,
the change in deviation of the final mode (i.e. a likeli-
hood ratio test), which includes and excludes the treat-
ment term, was examined. A pre-set P value of 0.05 was
used as a cut-off for determining statistical significance
for all models. Data analysis was performed in R (R Core
Team, 2018 [61];), with the R packages lme4 v1.1.21
[62], car v3.0.3 [63], predictmeans v1.0.4 [64] and nnet
v7.3.12 [65].
For testing differences in alpha diversity between

groups of interest, GEEs [66] were applied using the R
function geeglm from package geepack v1.2-1 ([67]; par-
ameter family set to default ‘Gaussian’) to account for
possible correlation of multiple measurements within a
woman over time. The default empirical (robust or
‘sandwich’) estimator was used to ensure that estimates
are robust to misspecification of the correlation struc-
ture. The model used for the regression included T1D
status and time (i.e. two models were tested considering
time as a continuous [gestational days] or categorical
[trimesters] variable) as well as their interaction term
(T1D × days or trimester; to test if differences in alpha
diversity between women with and without T1D change
across days or trimesters) and was adjusted for sample
processing batches (which includes sequencing run),
conception age, BMI, parity and HLA type. Mean-
centred values were used for gestational days,

conception age and BMI to ensure that the model coeffi-
cients are meaningful.
Differences in beta diversity were evaluated by PER-

MANOVA using Bray-Curtis dissimilarities with the
Adonis function from the vegan [68] R package. For
tests that included multiple samples across trimesters
from the same participant (i.e. longitudinal analysis), a
modified version of Adonis, which performs a RMA-
PERMANOVA test [32], was employed. This statistical
model included T1D status and time with their inter-
action adjusted as in the alpha diversity model (i.e.
adjusting for sequencing run, conception age, BMI, par-
ity and HLA type). In addition, interactions between
time and other factors were also tested as described in
the results section. When an interaction was significant
(i.e. FDR < 0.1), statistical analysis was performed within
trimester (i.e. when testing for differences between
women with and without T1D) or by separating data
from women with and without T1D (i.e. when testing
for differences in time).
Differential abundance of taxa from MetaPhlan2 and

gene categories and metabolic pathways from
HUMAnN2 was analysed with the R package limma
[69]. First, taxonomic relative abundances from MetaPh-
lan were multiplied by the library size of each sample,
whereas for the functional analysis of data generated
with HUMAnN2 counts (CPM) were used. Taxonomic
and functional data were filtered using the filterByExpr
function with default parameters with an additional gen-
eral abundance filter that removed all those taxa or
functions with a relative abundance across all samples of
< 0.01% and a prevalence filter that removed those taxa
present in less than 33 samples (i.e. ~ 25% of the sam-
ples). Library sizes were normalized using the trimmed
mean of log expression ratios with singleton pairing
(TMMwsp) method [70] in edgeR which is expected to
perform better for data with a high proportion of zeros.
Counts were transformed to log2-counts per million
(logCPM), voom precision weights were calculated and
limma linear models were fitted while allowing for loss
of residual degrees of freedom due to exact zeros using
the voomLmFit function [71] [72]. Here, ‘women IDs’
were considered as blocks to calculate the consensus
correlation and account for multiple measurements
while estimating contrasts statistics using the contras-
ts.fit function and empirical Bayes moderated t statistics.
Since we have samples for all possible combinations of
T1D status and trimester, this is a factorial design.
Therefore, in order to build our model, factors T1D sta-
tus and trimester were combined into a single factor with
six levels and the comparisons of interests were defined as
contrasts. In addition, the model design included an ad-
justment for sample processing batches, conception age,
BMI, parity and HLA type. For this, groups means were
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computed by mean-correcting covariates and factors be-
fore performing the test: for numerical covariates, the
mean was subtracted and for factors the contr.sum func-
tion was used (e.g. contrasts(ExtractionBatch) <- con-
tr.sum(levels(ExtractionBatch). The mean abundance of
each taxon in each group is computed by limma when fit-
ting the model and are contained in the coefficients com-
ponent (fit$coef). The standard errors are obtained as
following: fit$stdev.unscaled[,] * sqrt(fitc$s2.post). Note
that after normalization, the data are on the log2 scale.
For testing for differences in specific taxa due to HLA
type, the limma model included, similarly to the previous
model, ‘women IDs’ as blocks and adjustments for sample
processing batches, conception age, BMI and parity. Four
contrasts were fitted: (1) High (DR34) vs. low (DRXX,
DR3X and DR4X) risk HLA types, (2) DR34 vs. DR3X and
DR4X grouped into a factor, (3) DRXX vs. DR3X and
DR4X grouped into a factor and (4) DR34 vs. DRXX. P
values were adjusted with the Benjamini and Hochberg
method to control the FDR. FDR < 0.1 were considered
significant. Taxa or functions significantly different with
an abundance logFC greater than 0.5 or less than − 0.5
and present in at least 50% of the samples in either of the
groups being compared were regarded as biologically sig-
nificant. For identifying the ‘principal bacterial contribu-
tors’ to each differentially abundant function, first, the
HUMAnN2-generated files with functions (Kegg orthol-
ogy, MetaCyc reaction and complete pathways) stratified
by contributing species were obtained. Next, the functions
of interest with contributing species were disaggregated
into individual files using grep. Finally, limma was applied
as explained above to each subset of function with con-
tributing species and only species with a larger log2-FC in
the group of interest for the specific function were consid-
ered principal contributors belonging to the same bacter-
ial cluster. The significance of the difference between
measurements of serum markers was tested with a Wil-
coxon rank sum test equivalent to the Mann-Whitney test
using the wilcox.test function from the stats R package
with parameter paired set to FALSE.

Real-time quantitative PCR analysis
The qPCR reaction comprised 10 μL Sybr Green GoTaq
qPCR Master Mix (2×) (Promega), 0.3 mM of each pri-
mer, 8.4 μL of water and 1 ng of DNA in 20 μL. Assays
were performed in triplicate using the QuantStudio 12K
Flex Real-Time PCR System (Thermofisher) with the fol-
lowing protocol: one cycle at 95 °C for 10 min, followed
by 40 cycles of a two-stage temperature profile at 95 °C
for 15 s and 60 °C for 1 min. Primers were Bacteroides
vulgatus (BV-1) 5′-GCATCATGAGTCCGCATGTTC-
3′, BV-2 5′-TCCATACCCGACTTTATTCCTT-3′; Bac-
teroides caccae (BaCA-1) 5′-GGGCATCAGTTTGTTT
GCTT-3′, BaCA-2 5′-GAACGCATCCCCATCTCATA-

3′; universal 16S V4 primers Univ-1 5′-GTGYCAGC
MGCCGCGGTAA-3′, Univ-2 5′-GGACTACNVGGG
TWTCTAAT-3′. Standard curves were generated by 2-
fold dilutions ranging from 10 to 0.02 ng of a pooled hu-
man fecal DNA.
Data from each triplicate fell within a 0.5 threshold

cycle (Ct); outliers (> 1 standard deviation) were re-
moved before calculating the average Ct of each sample.
Amplification efficiency (E) was determined from the
slope of the standard curves for each primer pair using
the formula E = (10−1/slope)-1. Efficiencies ranged from
97 to 102%. The abundances (N) for Bacteroides vulga-
tus and Bacteroides caccae were determined relative to
the total bacterial load measured with the universal 16S
primers, where N (B. vulgatus) = (Efficiency_B. vulgatus
+ 1)Ct_B.vulgatus, N (B. caccae) = (Efficiency_B. caccae +
1)Ct_B.caccae, N universal = (Efficiency_16S universal +
1)Ct_Universal, B. vulgatus relative abundance = N (B. vul-
gatus)/ N Universal, B. caccae_relative abundance = N
(B. caccae)/ N Universal.
Relative abundances were log10-transformed and used

as input for the regression models. The association be-
tween the relative abundance of Bacteroides caccae and
Bacteroides vulgatus and T1D status was determined
using a linear mixed effects model (lmer) with concep-
tion age, BMI, parity and HLA type as fixed effects, and
‘woman ID’ and processing batches as random effects.
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Additional file 1: Figure S1. Taxonomic composition of the 25 most
abundant species as measured by WMS in fecal samples collected in
trimesters 1, 2 and 3 of 70 pregnancies from 66 women (35 with T1D). X-
axis depicts the non-informative study ID in the format womanID_preg-
nancy number_trimester. LCBD: local contribution to beta diversity (a
measure of the uniqueness of communities). T1D: women with type 1
diabetes, non-T1D: women without T1D. Figure S2. Alpha diversity (Rich-
ness), by T1D status of women across trimesters. Figure S3. Beta diversity
analysis by T1D status of women. PCoA ordination plots based on Bray-
Curtis distances between samples at the Genus and Family taxonomic
levels separated by trimesters in pregnancy. Figure S4. Beta diversity
analysis by T1D status of women. PCoA ordination plots based on Bray-
Curtis distances between samples at the Order and Phylum taxonomic
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levels separated by trimesters in pregnancy. Figure S5. Relative abun-
dance and species composition of A) two orders differentially abundant
between women with and without T1D, and B) one genus differentially
abundant between trimesters in women with T1D. Figure S6. Log2
transformation of the relative abundance (1000 + 0.01) of bacterial spe-
cies within the Enterobacteriales and Bifidobacteriales orders in women
with and without T1D (mean ± SEM). P: P-value. Figure S7. Taxa differen-
tially abundant between trimesters in women with and without T1D
(mean ± SEM). Transformed data are on a log2 scale with the mean from
fitted abundances shown as a point in each trimester for each group of
women. The between trimesters denotes a significant difference between
those trimesters while the after the trend line denotes significant differ-
ence between trimesters 1 and 3. The color denotes if differences be-
tween trimesters are within women with or without T1D. Figure S8.
Boxplots representing the abundance distribution obtained by real-time
quantitative PCR (qPCR) in women and with without T1D. P: P-value. Fig-
ure S9. Boxplots representing the functional alpha diversity distribution
in women with and without T1D). P: P-value. Figure S10. Taxa contribut-
ing to pathways that are differentially more abundant in women with
compared to women without T1D and non-T1D. A) PWY1269: CMP-3-
deoxy-D-manno-octulosonate pathway I involved in LPS biosynthesis,
and B) PWY−5838: Superpathway of menaquinol−8 synthesis involved in
vitamin K2 synthesis. Y-axis: log2 of CPM (counts per million). Figure
S11. Taxa contributing to functional features that are differentially more
abundant in women with compared to women without T1D. A) Pyridoxal
5'-phosphate synthase (K06215) involved in vitamin B6 synthesis, B)
COBALSYN−PWY: Adenosylcobalamin salvage from cobinamide involved
in vitamin B12 synthesis, C) 3−hydroxybutyryl−CoA dehydrogenase
(K00074) involved in short chain fatty acid (SCFA) production, and D)
beta−N−acetylhexosaminidase (K01207), only differentially abundant in
trimester 2, involved in mucin degradation. Y-axis: log2 of CPM (counts
per million). Figure S12. Log2 transformed relative abundance (+ 0.01)
of bacterial clusters based on broader functions in women with and with-
out T1D across trimesters. P: P-value. Figure S13. Boxplots representing
the distribution of measures for calprotectin and I-FABP in women with
and without T1D. P: P-value.
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