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Abstract 

Background:  Probiotics have been used to regulate the gut microbiota and physiology in various contexts, but their 
precise mechanisms of action remain unclear.

Results:  By population genomic analysis of 418 Bifidobacterium longum strains, including 143 newly sequenced 
in this study, three geographically distinct gene pools/populations, BLAsia1, BLAsia2, and BLothers, were identified. 
Genes involved in cell wall biosynthesis, particularly peptidoglycan biosynthesis, varied considerably among the core 
genomes of the different populations, but accessory genes that contributed to the carbohydrate metabolism were 
significantly distinct. Although active transmission was observed inter-host, inter-country, inter-city, intra-community, 
and intra-family, a single B. longum clone seemed to reside within each individual. A significant negative association 
was observed between host age and relative abundance of B. longum, while there was a strong positive association 
between host age and strain genotype [e.g., single nucleotide polymorphisms in the arginine biosynthesis pathway]. 
Further animal experiments performed with the B. longum isolates via using a d-galactose-induced aging mouse 
model supported these associations, in which B. longum strains with different genotypes in arginine biosynthesis 
pathway showed divergent abilities on protecting against host aging possibly via their different abilities to modify the 
metabolism of gut microbes.

Conclusions:  This is the first known example of research on the evolutionary history and transmission of this pro-
biotic species. Our results propose a new mechanistic insight for promoting host longevity via the informed use of 
specific probiotics or molecules.
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Background
Intestinal commensal microbes make critical contribu-
tions to human health, and many elicit beneficial effects 
on the host. Bifidobacterium species are pioneer colo-
nizers of the gut and have been associated with vari-
ous health-promoting effects [1], although the precise 
modes of action remain largely unknown. The abun-
dances of various Bifidobacterium species in the gut 
vary widely among individuals according to dietary hab-
its [2, 3], age [4, 5], and physiological status [6, 7]. One 
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exception is Bifidobacterium longum (B. longum subsp. 
longum), which belongs to the human core microbi-
ome [8]. This species accounts for a higher proportion 
of Bifidobacterium species in the gut regardless of host 
age [1], is distributed broadly across the human lifespan 
[9], and is among a small subset of gut commensals that 
can colonize the gut for years [10]. B. longum is a poten-
tially important organism with which to evaluate host–
microbe coevolution in the gut.

Although extensive probiotic genomics research has 
been conducted over the past two decades [11–17], most 
studies have focused on phylogenetic reconstruction and 
metabolic functions but rarely explored their evolution. 
Ecological and evolutionary studies of pathogens and gut 
bacterial commensals have provided tremendous insights 
into bacterial transmission patterns and drivers of their 
population differentiation [18–23]. This has provided 
a framework with which to study and understand the 
spread and evolutionary mechanisms of probiotic bacte-
ria and could represent a key step toward the informed 
use of probiotics for the resolution of many health issues.

Increasingly, evidence indicates that specific micro-
biota-associated health outcomes can be attributed to 
individual microbial strains [24–26]. The underlying 
mechanisms may well involve structural variants in the 
conserved probiotic surface molecules (e.g., biochemical 
complexity and variability of microbial-associated molec-
ular patterns) on individual strains [27], the presence or 
absence of phenotype-specific gene elements [28, 29], or 
currently unexplained factors. Host phenotype or life-
style may also exert selective pressure on the genotypes 
of indigenous microbes, as indicated by the host specific-
ity of genes that encode components of vitamin B5 bio-
synthesis in Campylobacter [30], the exclusive presence 
of porphyran degradation pathways in the gut microbiota 
of populations that consume seaweed (mostly Japanese) 
[31], the strong selective pressure on the commensal 
gastrointestinal species Bacteroides plebeius to acquire 
porphyran degradation capabilities from a marine bac-
terium via horizontal transfer [32], and the acquisi-
tion of antibiotic resistance genes of A. muciniphila via 
recent lateral gene transfer to adapt to the high level of 
antibacterial gastrointestinal environment in modern 
lifestyle [33]. Overall, strain-specific genotypes of spe-
cific microbes have readily discernible effects associated 
with the host metabolism and immunity via protective 
or pathogenic mechanisms. Accordingly, research inter-
ests have recently focused on harnessing the cross-talk 
between the host phenotype and intestinal microbial 
genotype for therapeutic purposes. Genome-wide associ-
ation studies (GWAS) have recently been applied to bac-
terial genomics analyses [30], but few associations have 
been established between host phenotypes and probiotic 

bacterial genotypes. We hypothesize that the coevolution 
of the intestinal microbiota and hosts over millennia has 
resulted in bacterial-host cross-talk, and this relation-
ship can exert selective pressure on microbial genotypes, 
while enabling the host to benefit from this microbial 
genomic adaptation.

Here, we investigate the evolutionary modes and phe-
notypic associations of health-associated bacteria via 
a population genomics analysis in which we applied a 
framework based on ecological theory developed for 
pathogens or other gut symbionts. We selected B. longum 
as an exemplary representative of host–microbe coevo-
lution in the gut, and because it has been linked to host 
aging or longevity [34–37]. We conducted a population 
genomics analysis of B. longum with the aim of (1) deter-
mining the distribution and transmission of this species 
both domestically and globally; (2) analyzing and defin-
ing the population structure of this bacterium through 
examining vertical genetic signals disturbed by recombi-
nation and identifying population-specific genomics vari-
ations; (3) determining associations between host factors 
(e.g., age, sex, and location) and strain genotypes; and (4) 
exploring the effects of B. longum and its key molecules/
pathways on host aging in vivo.

Methods
Bacterial strains
In total, 461 B. longum strains [147 newly sequenced and 
314 publicly available in the National Center for Biotech-
nology Information (NCBI) database] were preliminarily 
used in this study. After taxonomic identification via phy-
logeny reconstruction, only 418 B. longum subsp. longum 
strains (143 newly sequenced and 275 publicly available) 
were used for further analysis (Tables  S1 and S2). Ten 
phylogenetically distant B. longum subsp. longum strains 
that were with different single nucleotide polymorphism 
(SNP) statuses in genes of arginine biosynthesis path-
way [five positive strains (with AGT allele at genomic 
loci 891,726, 891,804, and 891,054): 278(O1), RG4-1 
(O2), FJSWXJ10M2 (O3), ZCC2 (O4), and ZCC5 (O5); 
and five negative strains (with GTC allele): FGSZY16M3 
(Y1), FHaNCM25GMM1 (Y2), FSDLZ59M1 (Y3), 
ZCC12 (Y4), and CCFM752 (Y5)] were chosen for fur-
ther in vitro assays. Six out of these 10 strains [three posi-
tive strains with higher ability to increase arginine level 
in vitro: O1, O2, and O3; and three negative strains with 
lower ability to increase arginine level: Y1, Y2, and Y3] 
were selected for further in  vivo animal experiments. 
The detailed metadata of these 10 strains are highlighted 
in Table  S1. The 6 strains used in the mice have been 
deposited publicly at the China General Microbiological 
Culture Collection Center (CGMCC) with respective col-
lection numbers as follows: 278 (CGMCC No. 1.19101), 
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RG4-1 (CGMCC No. 1.19102), FJSWXJ10M2 (CGMCC 
No.1.18899), FGSZY16M3 (CGMCC No.1.18898), 
HaNCM25GMM1 (CGMCC No.1.19104), and 
FSDLZ59M1 (CGMCC No.1.18900). All the other strains 
obtained in the project will be available upon request. 
The flow chart of the approaches used for all the included 
analyses is shown in Figure S1.

Microbiota analysis
In total, 109 human fecal samples (Table  S3 and Fig-
ure  S2A) were collected in China and stored at − 80  °C 
until microbiota analysis. Fecal DNA was extracted 
by using a FastDNA Spin Kit for Soil (catalog number: 
116570200, MP Biomedicals, USA) according to the 
manufacturer’s instructions. For lysis, a repeated bead 
beating method was used. Samples were placed in Lys-
ing Matrix E tubes (MP Biomedicals) and extracted 
twice in lysis buffer (4% wt/vol SDS; 500 mmol/L NaCl; 
50 mmol/L EDTA; 50 mmol/L Tris·HCl; pH 8) with bead 
beating at 6.0  m/s for 40  s in a FastPrep-24 instrument 
(MP Biomedicals). The microbiota analysis pipeline 
including wet experiments and bioinformatics analysis 
was conducted according to our previous report [38]. To 
analyze the genus-level composition of fecal microbiota, 
the V3–V4 region of the 16S rRNA gene was amplified by 
PCR with the isolated fecal bacterial genome as the tem-
plate. The primers were as follows: forward primer 341F: 
5′-CCT​AYG​GGRBGCASCAG-3′, and reverse primer: 
5′-GGA​CTA​CNNGGG​TAT​CTAAT-3′. The PCR condi-
tions consisted of an initial denaturalization step of 95℃ 
for 5 min, followed by 30 cycles of denaturation at 95℃ 
for 30  s, annealing for 30  s at 52℃, and extension stage 
at 72℃ for 30 s. At the end of cycling, the reaction was 
maintained at 72℃ for 10  min. Negative controls using 
deionized sterile water as the template were included.

Considering our emphasis on the bifidobacterial com-
position rather than all the analyzable species, sequenc-
ing cost, and the weakness of ITS bifidobacterial profiling 
[39, 40], the 60 kDa chaperonin (groEL) gene-based bifi-
dobacterial profiling approach [41], that is cost-effective, 
accurate in qualification, and evidenced to be effective 
by multiple studies [38, 42–44], instead of other species-
level sequencing methods, was adopted. To distinguish 
the species within the genus Bifidobacterium, groEL gene 
was amplified using the primers Bif-groEL-F (5′-TCC​
GAT​TAC​GAY​CGY​GAG​AAGCT-3′)/Bif-groEL-R (5′- 
CSGCY​TCG​GTSGTC​AGG​AACAG-3′), as previously 
described [41]. The extracted fecal bacterial genome was 
set as the template. For the PCR conditions, initial dena-
turation was at 95℃ for 5 min, with a further 35 cycles at 
95℃ for 45 s, 60℃ for 45 s, and 72℃ for 1 min, and then, 
the reaction was maintained at 72℃ for 10 min. Negative 

controls using deionized sterile water as the template 
were included.

The samples were distinguished by a barcode consist-
ing of seven bases that were added to the forward primer 
341F or Bif-groEL-F, respectively. For quantification and 
sequencing, the PCR products (465  bp for the V3-V4 
region of the 16S rRNA gene and 480  bp for the groEL 
gene) were excised from a 1.5% agarose gel and purified 
using the QIAquick Gel Extraction Kit and quantified 
using the QubitTM dsDNA BR Assay Kit according to 
the manufacturer’s instructions. Libraries were gener-
ated using the TruSeq DNA LT Sample Preparation Kit 
and sequenced on a Miseq™ sequencer using the MiSeq 
v3 Reagent Kit (600 cycles-PE) according to the manufac-
turer’s instructions.

The sequenced reads were analyzed with the QIIME 
package (Quantitative Insights Into Microbial Ecology). 
The raw reads were screened following the threshold 
parameters reported by Mao et  al. [45]. Pair-end reads 
with an overlap of > 10 bp were adopted for assembling. 
Barcodes and sequencing primers were trimmed from 
the assembled sequences. The operational taxonomic 
unit (OTU) was established de novo using uclust with 
97% sequence identity cutoff. Any OTUs present in the 
negative controls were removed from the analysis. The 
OTUs whose relative abundance was less than 0.005% 
were removed to decrease the disturbance of the low 
abundance spurious OTUs. The OTUs of Bif-groEL 
sequences were taxonomically assigned using the self-
built local nucleotide database, and the OTUs of the 
V3–V4 region were taxonomically assigned using the 
Ribosomal Database Project (RDP) Naive Bayes classifier 
[46]. The first sequence in each OTU cluster was selected 
as the representative sequence. We merged relative abun-
dances of subspecies into a value of species-level relative 
abundance for B. catenulatum, B. animalis, B. longum, 
and B. pseudolongum, separately. The 16S rRNA gene 
sequencing data and Bifidobacterium composition data 
were submitted to the Sequence Read Archive (SRA) 
under BioProjects PRJNA665348 and PRJNA665364, 
respectively.

To determine the contribution of host phenotypes to 
variations in microbiota profiles, transformation‐based 
redundancy analysis (tb-RDA) was performed using the 
vegan package of the R software. Detrended correspond-
ence analysis (DCA) was conducted to predetermine the 
data distribution. The relative abundance of each taxon 
(genus or bifidobacterial species) was under Hellinger 
transformation in order to produce valid results in RDA 
[47], considering that this transformation can accom-
modate the discrete zero inflated data with many zeros, 
ensure that the results are comparable across all analy-
ses, produce much more accurate model estimates, and 
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overcome the problems that arise when Euclidean dis-
tances are applied to ecological community data with-
out data pre-transformations. Statistical significance 
was assessed by a permutation test with 1000 random 
permutations under the full model, which means taking 
the contributions of all the host phenotypes/factors and 
the interactions between them into consideration, and by 
each host phenotype. Permutational multivariate analy-
sis of variance (PERMANOVA) based on Euclidean dis-
tance in the vegan package was used to compare group 
differences in microbiota. Permutation tests using 1000 
independent randomizations were used to test for statis-
tically significant differences. Kruskal–Wallis test and/or 
Mann–Whitney U test was performed to compare rela-
tive abundances of bacterial taxa by host phenotype.

B. longum isolation and genome sequencing
In total, 148 samples (including the above 109 sequenced 
samples and additional 39 samples, please see Tables S1 
and S3 for detailed information) were used to isolate 
bifidobacteria by cultivation on deMan, Rogosa, and 
Sharpe (MRS) agar supplemented with 50  mg/l mupi-
rocin and 0.1% l-cysteine HCl. After incubation at 37 °C 
for 48 h in an anaerobic chamber (80% N2, 10% H2, 10% 
CO2), 10 colonies from each sample were picked and 
subjected to colony-based PCR using species-specific 
primers [48]. Each identified B. longum strain was cul-
tured in MRS broth (with 0.1% l-cysteine HCl) at 37 °C 
under strictly anaerobic conditions for 16 h before DNA 
extraction. In total, 147 B. longum strains were success-
fully isolated from 139 samples and used for the follow-
ing genome sequencing (Table S1). The genomic DNA of 
each B. longum strain was extracted using a rapid bacte-
rial genomic DNA isolation kit (Sangon Biotech Co., Ltd., 
China). Genome sequencing was performed by using 
an Illumina HiSeq 2000 sequencer, and a paired-end 
sequencing library with an average insert size of 350 bp 
was constructed following the manufacturer’s instruc-
tions (Illumina Inc., USA). The maximum read length 
was set to 150 bp. On average, three GB paired-end raw 
reads were yielded for each sample. After filtering adap-
tors and low-quality reads, the obtained clean reads were 
assembled using SOAPdenovo v2.04 [49], as described 
previously [50]. The genome data of the newly sequenced 
strains were submitted to the SRA under BioProject 
PRJNA665750.

Single nucleotide polymorphism (SNP) detection, 
phylogeny, and annotation
The SNPs were recalled for 461 B. longum genomes 
(including 147 newly sequenced strains and 314 publicly 
available genomes, as shown in Tables  S1 and S2 sepa-
rately) by mapping the assemblies against the reference 

genome (B. longum NCC 2705) using MUMmer [51], 
as previously described [50], and only bi-allelic SNPs in 
the core genome were included in the following analy-
sis. After the phylogeny reconstruction (Figure  S3), 418 
out of these 461 strains were evidenced to belong to B. 
longum subsp. longum, 29 belong to B. longum subsp. 
infantis, 3 belong to B. longum subsp. suillum, and 11 
belong to B. longum subsp. suis (Tables  S1 and S2). 
Therefore, the collection of 418 B. longum subsp. longum 
strains and its subsets was thus included for the follow-
ing analyses. Because the number of used assemblies 
can affect the size of the core genome and the number of 
detected SNPs [16, 20], different core genome alignments 
that are constructed by mapping corresponding numbers 
of assemblies against the reference genome (B. longum 
NCC 2705) were built for analyzing subsets of the data. 
For example, for phylogenetic reconstruction of all the B. 
longum subsp. longum strains, we built core genome of all 
the 418 strains, and then called SNPs; for GWAS analysis 
between host factors and B. longum genotypes in local 
panel (only Chinese strains), we built core genome of 144 
strains (143 Chinese isolates and reference genome NCC 
2705). The sequences of concatenated SNPs were used to 
construct a phylogenetic tree (neighbor-joining method) 
using TreeBeST (http://​trees​oft.​sourc​eforge.​net/​treeb​
est.​shtml), and the tree was visualized by iTOL (https://​
itol.​embl.​de/). All of the assemblies were re-annotated 
using Prokka [52], and then, the Roary software [53] was 
employed, which takes the annotated results as inputs to 
identify the pan-genome and the presence or absence of 
genes for the species (with a minimum BLASTP percent-
age identity of 90%).

Recombination rate, population structure, and fixation 
index (Fst)
The overall r/m value (i.e., the ratio between the numbers 
of SNPs inside and outside the recombination site) of the 
418 B. longum subsp. longum strains was analyzed by 
ClonalFrameML [54], taking the RAxML-NG [55] gen-
erated maximum likelihood (ML) tree as the input. The 
phylogenetic tree of 418 strains revealed a radial popula-
tion structure (Figure  S4A) without obvious monophyl-
etic clades, and the bootstrap values of deep branches 
were often 0, indicating that considerable recombination 
had occurred. The average r/m value was 4.38. Therefore, 
we could not infer the population structure and trans-
mission with respect to phylogenetics because recombi-
nation had heavily disturbed the vertical genetic signals. 
Instead, we used fineSTRU​CTU​RE and the output of 
ChromoPainter to assign individuals to populations with 
distinct ancestry profiles.

http://treesoft.sourceforge.net/treebest.shtml
http://treesoft.sourceforge.net/treebest.shtml
https://itol.embl.de/
https://itol.embl.de/
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The flow chart of approaches used for population 
structure analysis is shown in Figure  S5. The fineSTRU​
CTU​RE software was used to elucidate the population 
structure of B. longum subsp. longum based on genome-
wide SNPs. We prepared a recombination map file, which 
is a co-ancestry matrix that contains the number of 
recombination-derived DNA chunks donated from each 
donor to each recipient, by specifying a uniform recom-
bination rate per site. fineSTRU​CTU​RE v2 [56] was then 
run based on the co-ancestry matrix by setting the “-go” 
parameter for enough iterations of both the burn-in and 
Markov chain Monte Carlo chain to identify statistically 
indistinguishable individuals and cluster them. Taking 
the effects of clonality into consideration, an iterative 
algorithm was used to successively discard strains with 
signals of clonal relationship. First, strains with a SNP 
distance of less than 300 SNPs were randomly removed, 
and only one representative strain was retained for each 
clonal group to finally generate a non-redundant genome 
set of 339 strains (SNP distance of any two strains in the 
dataset was > 300 SNPs). It should be mentioned that this 
set of non-redundant genomes was only a transitional 
data set specifically for population structure analysis. We 
then ran fineSTRU​CTU​RE using this subset. Forty-three 
populations were identified in this initial analysis; how-
ever, most comprised only two or three strains. These 
smaller populations disturbed the overall population 
structure of the species (Figure S6). It has been reported 
previously that such smaller populations were consid-
ered to consist of strains with detectable clonal signal and 
should be removed for obtaining clear population struc-
ture [20, 50]. We therefore randomly removed all but one 
of the strains in these clonal groups and reran fineSTRU​
CTU​RE.

For 295 representative B. longum subsp. longum strains, 
SNP sites [57] were used to convert multiple alignments 
of the core-genome to VCF format. Fst values within and 
between B. longum populations were analyzed using the 
R package hierfstat [58].

Population‑specific genes/SNPs
The flow chart of approaches used for identification of 
population-specific genes/SNPs is shown in Figure  S7. 
Gene-based and SNP-based GWAS without correc-
tion for population structure were used for identifying 
distinct genes/variants related to each B. longum subsp. 
longum population according to the approach reported 
previously [19]. Two hundred and ninety-five repre-
sentative strains retained after two fineSTRU​CTU​RE 
runs were used for this part of analyses. Although typical 
GWAS elucidate associations between specific pheno-
types and genetic elements while adjusting for popula-
tion effects, we omitted the control population to search 

for genomic markers that were varied between different 
populations, some of which may intrinsically define pop-
ulation structure. Three separate GWAS were conducted 
to find variable genes/SNPs that were present or absent 
in the BLAsia1 population alone (BLAsia1 GWAS), the 
BLAsia2 population alone (BLAsia2 GWAS), and the 
BLothers population (BLothers GWAS). GWAS pipeline 
pyseer was used [59], and only variants found in 5–95% 
of the analyzed strains were used. pyseer was conducted 
using population arrangements of isolates (BLAsia1/
non-BLAsia1, BLAsia2/non-BLAsia2, or BLothers/non-
BLothers) as the binary phenotype and the presence/
absence of each gene/SNP as the tested genotype. The 
significance threshold was set using Bonferroni correc-
tion with a required P value of 0.05/number of variants.

Final sets of population-specific variants (SNPs or 
genes) were finally obtained by merging the results of the 
three GWAS. We annotated the biological functions of 
the SNPs within coding regions and also annotated the 
genes identified above in terms of functional categories 
[cluster of orthologous group (COG) term] and path-
way data [Kyoto Encyclopedia of Genes and Genomes 
(KEGG)], using EggNOG [60] with a threshold bit-score 
of 60, query coverage of 50, and an e-value of 10−5. Func-
tional enrichment was conducted as previously reported 
[19]. In brief, the reference genome NCC2705 harbored 
the total population-specific SNPs, and 100 of 362 pop-
ulation-specific genes. One-sided Fisher’s exact test was 
adopted to identify COG functions and KEGG path-
ways that represented significant deviation from ran-
dom expectation in the NCC2705 genome. Enrichment 
analysis for SNPs and genes was performed for 20 COG 
categories and 200 pathway terms, and the significant 
threshold was set as a P value of 0.01/220 = 4.55 × 10−5 
using a strict Bonferroni correction.

Transmission analysis
By setting pairwise SNP distances less than 2500, we 
defined 31 semi-clonal groups (SCG) with each SCG 
containing 2–146 isolates for the 418 B. longum subsp. 
longum strains. As the number of used assemblies can 
affect the size of the core genome and the number of 
detected SNPs, we recalled SNPs for each SCG and used 
the recombination detection tool (Gubbins) [61] to iden-
tify the recombination sites for each SCG. After remov-
ing recombination regions, we re-analyzed the pairwise 
SNP distances between strains of each SCG to identify 
clonal groups (CGs). A pairwise SNP distance of less than 
10 was set as the CG threshold, according to a previous 
study [62]. Isolates in each CG are the decedents of a 
common ancestor, and thus are considered as valid can-
didates to reflect transmission events.
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Phenotype association mapping
The flow chart of approaches used for phenotype asso-
ciation mapping is shown in Figure  S8. The pyseer 
software was used for this analysis [59]. Four pheno-
types (province, age, longevous district status, and 
sex) and three phenotypes (country, age, and sex) 
were collected for the local panel (the isolated Chinese 
strains in this study) and the global panel of B. longum 
subsp. longum strains (the isolated Chinese strains 
in this study, and Japanese strains benefiting from 
detailed record of phenotype information in a previ-
ous research [9]), respectively (see Tables S1 and S2 for 
detailed phenotype information). Among these phe-
notypes, the term “longevous district status” means 
whether a strain was isolated from the longevous dis-
tricts or not. SNP-based and gene-based GWAS were 
conducted, and a fixed model was adopted. Differ-
ent core-genome alignments and the resulting SNP 
matrixes were prepared for each subset of the data. 
Age served as a continuous phenotype, while the other 
three phenotypes were in binary format. We used the 
Mash tool to calculate population structure, and con-
ducted multidimensional scaling (MDS) to determine 
retained dimensions for the distance matrix. The pair-
wise distance matrix from Mash was used to adjust 
the population structure. The SNP matrix and the 
gene presence/absence table were used as a genotype 
matrix. The genomic variants were filtered to ensure 
that they appeared in >1% and <99% of samples. The 
significance threshold was set using Bonferroni cor-
rection with a required P value of 0.05/number of 
variants. Visualization of the data from GWAS was 
achieved by drawing Manhattan plots using the qqman 
package in R. We also used RDA analysis and PER-
MANOVA (based on Euclidean distance) to validate 
the above phenotype association results, and calcu-
lated the relative importance of these phenotypes for 
explaining the genomic variations. It should be men-
tioned that the relative importance of host phenotypes 
can only be accessed (via RDA and PERMANOVA 
analyses) when the phenotypes are shared among 
all the analyzed strains; as long as a strain lacks any 
phenotype, the strain should be excluded from the 
analysis. Therefore, the abovementioned two panels 
were adopted for the phenotype association mapping, 
including the local panel (Chinese strains with shared 
four phenotypes) and the global panel (Chinese strains 
and Japanese strains with shared three phenotypes). 
For other entries apart from Chinese and Japanese 
strains in the total dataset of 418 strains, no phenotype 
or only country phenotype was available, and thus, 
these entries were precluded from the analysis.

Animal experiments
Strain selection and in vitro assays for measuring the ability 
of a strain to alter arginine levels
Ten B. longum subsp. longum strains with divergent SNP 
statuses [five strains for each genotype (AGT or GTC 
in the genomic loci 891,726, 891,804, and 891,054)] in 
the arginine biosynthesis pathway were preliminarily 
selected, and their ability to alter the arginine level of the 
culture supernatant was determined. Briefly, each strain 
was inoculated into MRS broth with 0.1% l-cysteine 
HCl, and culture medium without inoculation served 
as a blank. After cultivation to early stationary phase 
(OD600 = 5.0; the accuracy of the bacterial cell number 
was determined by plate counting), the culture was cen-
trifuged to remove bacterial cells, and after precipitating 
protein by trichloroacetic acid (CAS number 76–03-
9, Sinopharm Chemical Reagent Co., Ltd., China), the 
supernatant (including the medium blank) was directly 
used for determining the arginine level using an amino 
acid analyzer (L-8900, Hitachi, Japan). Alterations in the 
arginine level after bacterial cultivation were measured 
and expressed as ΔArg. Three pairs of B. longum subsp. 
longum strains (each pair comprised two phylogenetically 
close strains with different abilities to adjust arginine 
metabolism) were finally selected out of the 10 strains to 
conduct animal experiments.

Animals and experimental design
Eight-week-old male C57black/6 J mice used in this study 
were purchased from the Shanghai Laboratory Animal 
Center (Shanghai, China). Animal care and study pro-
tocols were approved by the Ethics Committee of Jiang-
nan University, China (JN. No20181215b1000130[269]). 
All the applicable institutional and national guidelines 
for the care and use of animals were followed. The mice 
were kept in the mouse facility at the Laboratory Animal 
Center of the Department of Food Science and Technol-
ogy, Jiangnan University, Wuxi, China, on a 12-h light/
dark cycle in a temperature- (22 °C ± 1 °C) and humidity-
controlled (55% ± 10%) room.

Mice were assigned to different experimental groups 
(n = 9 for each group). The aging model was generated by 
administering d-galactose (CAS number 59–23-4, Sinop-
harm Chemical Reagent Co., Ltd., China) via subcutane-
ous injection at a dose of 1000  mg/kg BW/d according 
to our preliminary results (data not shown) and a previ-
ous study [63]. Mice in the control group received ster-
ile saline via subcutaneous injection, while the other 
groups were treated with saline-based d-galactose. For 
arginine supplementation, arginine was added to the 
normal mouse chow diet to ensure a dose of 0.4  mg/g 
BW/d according to a previous report [64]. B. longum 
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strains were freshly cultured in MRS broth, then resus-
pended in sterile saline, each day, and plate counts were 
conducted to ensure a gavage dose of 108–109 CFU/d for 
each mouse. Related to the daily preparation of strains 
over 9 weeks, F2 cultures for each strain were used and 
grown from the same original cryo-stock to avoid pos-
sible genetic drift of strains. For the control group, an 
equal volume of sterile saline was administered. The body 
weight and feed intake of all of the mice were recorded 
daily, and the doses of arginine and d-galactose were 
adjusted correspondingly.

Behavior test
For the behavior tests, the testing room was fitted with 
an adjustable dimmer light within 280 lx, and mice were 
transferred into the room at least 30 min before testing. 
Testing equipment was cleaned regularly using 70% etha-
nol between events to avoid olfactory cuing. The open-
field test, Morris water maze (MWM) test, step-through 
test, and Y-maze test were performed (see the Supple-
mentary materials for detailed experimental settings and 
procedures).

Antioxidative parameters
One day after all of the behavior tests had been com-
pleted, the mice were euthanized. Tissues were collected 
immediately and stored at − 80 °C for measuring the anti-
oxidative parameters within 1 week. The levels of MDA 
and the activities of GSH-Px, SOD, and CAT in the liver 
and brain were evaluated according to the instructions 
of the manufacturer using assay kits (Jiancheng Bioengi-
neering Institute, Nanjing, China).

Occurrence of ingested B. longum strains
The detailed protocol for detecting the occurrence of 
ingested B. longum strains is described in the supplemen-
tary methods.

Metabolomics of the gut microbiota
The detailed protocol for fecal metabolomics analysis is 
described in the Supplementary methods.

Statistical analysis
All the data from the animal experiments were con-
firmed to have a normal distribution by the Kolmogo-
rov–Smirnov (KS) normality test and were analyzed 
by one-way ANOVA. The scaled data were used for 
principal component analysis (PCA) via prcomp in the 
R software. Metabolites showing different concentra-
tions for each pairwise comparison were identified with 
ANOVA [false discovery rate (FDR)-adjusted P < 0.05] 
and orthogonal partial least squares discriminant analysis 
[OPLS-DA, variable important in projection (VIP) > 1]. 

Cross-validation with 200 permutations was conducted 
to avoid over-fitting by the OPLS-DA analysis. The PLS-
DA plot based on all the tested metabolic features of the 
nine experimental groups was analyzed and plotted using 
the R package “mixOmics”. The OPLS-DA analysis was 
conducted via R package “ropls”. The pathway enrich-
ment analysis based on metabolites with known KEGG 
IDs was performed through the MBrole online tool 
against the complete KEGG database.

Results
Effect of environmental factors on the human gut 
microbiota and bifidobacteria
Although some studies have focused on the characteris-
tics of the human gut microbiota at the genus, species, 
and even strain levels [65–69], the distribution of gut 
bacterial genera and Bifidobacterium species, and their 
relationships with host factors remain largely unknown 
for Chinese populations. Here, we sequenced 109 fecal 
samples from subjects of both sexes who ranged in age 
from birth to 105 years and resided in longevous districts 
(districts with high ratios of centenarians) or normal 
areas of 16 provinces (or municipalities) in China.

The bacterial compositions of the samples were 
sequenced and analyzed. As shown in Figure  S2B and 
Table S4, Bifidobacterium was among the 18 core genera 
(accounting for 78.34% of the total sequences) within the 
cohort and was ranked sixth in terms of detected relative 
abundance (accounting for 4.26% of the total sequences) 
among a variety of gut genera, although the relative 
abundances of this species showed great individuality. 
To evaluate the individual contributions of the isolation 
location, age, longevous district status (the term means 
whether a strain was isolated from the longevous districts 
or not), and sex on the microbiota composition, we per-
formed a distance-based redundancy analysis (db-RDA) 
and Adonis PERMANOVA analysis. The results showed 
that these additional covariates explained at least 13.8% 
of the variation in fecal microbiota (13.8% for db-RDA 
and 29.2% for PERMANOVA; Fig. 1A and B). However, 
the only statistically significant individual factors were 
province (db-RDA 11.4% and PERMANOVA 22.2%), 
age (db-RDA 2.7% and PERMANOVA 3.8%), and lon-
gevous region status (db-RDA 1.6% and PERMANOVA 
2.6%). Among the tested genera, it is notable that Bifido-
bacterium was the top 2 member for which its relative 
abundance was markedly different among age catego-
ries (P = 0.0008 for Kruskal–Wallis test; Fig. 1C and Fig-
ure S2C), showing a decrease trend with increase of age. 
For pairwise comparisons between age categories, age 
group 0–17 and age group 18–45 respectively showed 
marked difference in Bifidobacterium relative abundance 
compared with either of the other two age groups (46–65 
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and > 65; P < 0.05 for Mann–Whitney U test). Apart from 
host age, relative abundances of some genera also varied 
significantly by the isolation location, longevous district 
status, or host sex (Table S5).

We then tested the composition of Bifidobacterium 
species in the samples based on groEL gene-based bifi-
dobacterial profiling. B. longum was present in every 

individual and was the most dominant species (36.08% 
in total for the sequences tested, rank: 1st) across both 
sexes, all age groups, and different isolation locations 
(Fig. 1D and E, and Table S6). Similarly, four phenotypes 
accounted for at least 14.6% of the fecal bifidobacterial 
variation (14.6% for RDA and 29.3% for PERMANOVA; 
Fig.  1F and G). The isolation location (RDA 14.0% and 

Fig. 1  Bifidobacterium, particularly B. longum, was prevalent and dominant in the guts of subjects in a Chinese cohort, and the relative abundances 
of this genus and species were significantly associated with host age. A Triplot of a distance-based redundancy analysis (db-RDA) of the microbiota 
composition at the genus level relative to province, age, longevous district status, and sex. B Individual effect sizes of the gut microbiota covariates 
based on genus-level db-RDA and PERMANOVA analyses. C Comparisons of the Bifidobacterium relative abundance between age segments. The 
overall P value was calculated by Kruskal–Wallis test, while pairwise comparisons were conducted by Mann–Whitney U test. Significant differences 
(P < 0.05) between the age categories are indicated with different letters (a and b) above the bars. D Bifidobacterium species-level composition of 
the gut microbiota. Each column represents a sample. The stacked bars have been sorted according to the decreasing occurrence of B. longum. 
E Abundance of each bifidobacterial species relative to the total Bifidobacterium. Each dot represents a sample. F Triplot of a db-RDA of the 
microbiota composition at the Bifidobacterium species level relative to province, age, longevous district status, and sex. G Individual effect sizes 
of the gut microbiota covariates based on the Bifidobacterium species-level db-RDA and PERMANOVA analyses. H Comparisons of the B. longum 
relative abundance between age segments. The overall P value was calculated by Kruskal–Wallis test, while pairwise comparisons were conducted 
by Mann–Whitney U test. Significant differences (P < 0.05) between the age categories are indicated with different letters (a and b) above the bars. 
Among these analyzed phenotypes, the term “longevity/longevous district status” means whether a strain was isolated from the longevous districts 
or not. *P < 0.05, **P < 0.01, ***P < 0.001
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PERMANOVA 24.0%) was the first contributor to the 
variation, followed by age (RDA 2.4% and PERMANOVA 
3.3%), whereas the composition was not affected by lon-
gevous region status (P = 0.407) or sex (P = 0.217). The 
abundances of individual bifidobacterial species relative 
to the total Bifidobacterium were normalized by the rela-
tive abundance of the genus Bifidobacterium in each sam-
ple (Figure S2D), and a generated abundance matrix was 
used to conduct comparisons of biomasses of individual 
Bifidobacterium species by each of host factors. Nota-
bly, B. longum was among the tested species for which 
the relative abundances showed significant differences 
among age segments with an obvious decrease along 
age axis (P = 0.0123 for Kruskal–Wallis test; Fig. 1H and 
Figure  S2E). Significant higher level of B. longum rela-
tive abundance was observed in the age group of 0–17 
compared with either of two age groups (46–65 and > 65; 
P < 0.05 for Mann–Whitney U test), while age group of 
18–45 showed no marked difference in B. longum rela-
tive abundance compared with each of the other three 
age groups. In addition, significant differences in rela-
tive abundances of individual bifidobacterial species were 
also observed for the other host phenotypes except host 
sex (Table S5).

These results suggest that geography and host phe-
notype have significant effects on the microbiota com-
munity structure at both the genus and bifidobacterial 
species levels. Bifidobacterium, particularly B. longum, 
was prevalent and dominant within the studied cohort 
and showed a significant association with host age. 
Therefore, B. longum can be considered to be a ubiqui-
tous gut microbe that interacts actively with the host, 
and its genotype may well serve as a candidate molecular 
marker of evolutionary events.

Three geographically distinct B. longum gene pools
To examine the evolution and transmission mode of B. 
longum, we isolated and sequenced 143 B. longum subsp. 
longum strains from 100 out of the abovementioned 
109 Chinese fecal samples and additional 39 samples in 
our laboratory collection, and combined these with 275 
publicly available genomes of the subspecies, resulting 
in a dataset of 418 genome sequences from four conti-
nents and 17 countries that were isolated primarily from 
the gut (375/397; 21 genomes with missing niche val-
ues; Tables  S1 and S2, Fig.  2A, and Figure  S4A). A sin-
gle nucleotide polymorphism (SNP) analysis of the core 
genome indicated comparable genetic diversity among 
strains across continents and countries, with the excep-
tion of strains from Japan that exhibited relatively greater 
diversity (Figure  S4B and C), as determined by pair-
wise SNP distances. This relatively greater diversity of 

Japanese strains seemed to be not correlated with the 
high number of B. longum strains isolated in Japan, since 
China with the highest number of included genomes 
(197) showed the middle rank of genomic diversity, while 
Italy with only 7 sequenced genomes ranked the second.

Our fineSTRU​CTU​RE analysis identified three popu-
lations, each containing 124, 97, and 74 representative 
members, and defined them as BLAsia1, BLAsia2, and 
BLothers, respectively (Fig.  2A and Figure  S4A). The 
majority of isolates in BLAsia1 were from China (96.8%, 
120/124), with three strains from Korea and one strain 
from Ireland. BLAsia2 predominantly included Japanese 
isolates (92.8%, 90/97), with two strains from the USA, 
one strain from Norway, one strain from China, one 
strain from Italy, and two strains from unknown areas. 
BLothers included isolates from diverse geographical 
locations, such as Kenya (Africa), Ireland (Europe), and 
the USA (North America), which could likely be catego-
rized further into subpopulations if additional strains 
were available. Co-ancestry plots (Fig.  2A) and fixation 
index (Fst) values (Figure  S4D) revealed closer genetic 
configurations between BLAsia2 and BLothers, whereas 
BLAsia1 was more distinct. These distinct populations 
exhibited comparable genetic diversity in terms of pair-
wise SNPs (Figure S4D and E).

In the chromosome painting analysis, the strains from 
each population received a large proportion of their pal-
ettes from within their own populations, confirming their 
differentiation from the other populations (Fig.  2B and 
Figure S4F). The formation of differentiated populations 
suggested an admixture within each gene pool. The pal-
ettes also provide evidence of genetic mixtures between 
populations within countries. The Chinese isolates (n = 6) 
that were not assigned to BLAsia1 had higher ratios 
of components associated with BLAsia2 and BLothers 
(Fig.  2B and Figure  S4F), and at least two populations 
existed within some countries, including China, Japan, 
the USA, Ireland, Italy, and Norway, with their palettes 
representing higher proportions of their respective popu-
lations, which is consistent with transmission and recent 
genetic exchange.

Population‑specific genomic loci suggested significant 
variations in cell wall biosynthesis and carbohydrate 
metabolism among populations
To investigate the genetic basis for distinguishing dis-
tinct B. longum populations, we used a GWAS approach 
to systematically screen for particular SNPs in the core 
genome and specific genes in the accessory genome that 
were present differentially in each population.

Regarding the SNPs in the core genome, cell wall bio-
synthesis, particularly peptidoglycan biosynthesis, was 
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Fig. 2  Formation of three geography-related populations and evolution driven mainly by admixture within each population. A B. longum 
population structure revealed by FineSTRU​CTU​RE analysis. The color of each cell in the co-ancestry matrix represents the anticipated number of 
DNA chunks imported from a donor strain (column) to a recipient strain (row). The color bar near the tree represents the geographical locations 
where the strains were sampled. B Genomic compositions of B. longum strains inferred by chromosome painting. Each vertical bar represents one 
strain, and the bars are sorted by geographical location. The color of each bar represents the contribution by each of the three populations to 
the core genome of that strain. The color bar at the bottom indicates the sampling locations. Two hundred and ninety-five representative strains 
retained after FineSTRU​CTU​RE runs were used for this part of analyses

Fig. 3  Population-specific genetic profiles. COG (A) and KEGG pathway analyses (B) of population-specific SNPs in the core genome. Functional 
or pathway enrichment was evaluated using a one-sided Fisher’s exact test to identify significant terms against random expectation based on 
the reference genome NCC2705. The enriched terms are marked with asterisks. *P < 10−5, **P < 10−10. Two hundred and ninety-five representative 
strains retained after fineSTRU​CTU​RE runs were used for this part of analyses

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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the most significant discriminant among the three pop-
ulations as evidenced by both COG enrichment and 
KEGG analyses (Fig. 3A and B, Tables S9 and S10). SNPs 
were accumulated densely in individual genes and fre-
quently involved non-synonymous loci, and these altera-
tions could well have direct effects on strain phenotypes 
such as gut fitness.

In the accessory genome, only the carbohydrate 
transport and metabolism category were identified as 
significant in COG analysis (Table S11 and Fig. 4, one-
sided Fisher test: P = 1.39 × 10−5), and no significant 
KEGG pathways were detected (Table  S12). Gener-
ally, genes involved in arabinose and lactose transport 
and metabolism varied markedly between the three 
populations in both the presence or absence of genes 
and the paralog compositions of specific genes (Fig-
ure  S10). In addition, the paralog sequences of these 
genes were also highly dissimilar (Figures  S11, S12 
and S13). For the detailed description on the related 
results of this subsection, see the supplementary 
results.

B. longum undergoes active transmission within families 
and communities, via inter‑city, and inter‑country routes, 
and across different hosts
The frequent transmission of pathogens (e.g., Helicobac-
ter pylori) vertically from mother to infant and between 
individuals in close proximity has been well established 
[18]. Human activities, such as migration, have been 
reported to drive the global and regional dissemination 
of pathogenic microbes [15, 16]. Although the accumu-
lated evidence based on strain resolution also indicates 
the existence of vertical transmission of gut symbionts, 
including Bifidobacterium species [70, 71], the effects of 
geography and proximity on the transmission of these 
microbes remain largely unknown.

As shown in Table  S13, several geographic levels of 
transmission have been identified in terms of inter-coun-
try spread (P29 and CG8), inter-provincial spread (CG3, 
P6, CG4, CG5, P3, and P4), and transmission between 
different cities within the same province (CG4). Over-
all, our analysis indicates the existence of inter-country, 
inter-provincial, and inter-city transmission of B. longum 

Fig. 4  Population-specific genetic profiles. COG analysis of population-specific accessory genes. Functional enrichment was evaluated using a 
one-sided Fisher’s exact test to identify significant terms against random expectation based on the reference genome NCC2705. The enriched 
terms are marked with asterisks. *P < 10−5, **P < 10−10. Two hundred and ninety-five representative strains retained after fineSTRU​CTU​RE runs 
were used for this part of analyses
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strains, particularly in China, which suggests a possible 
association with population migration.

Interestingly, we also observed transmission between 
individuals in close proximity. An analysis of 16 strains 
from 16 residents of a home for the elderly in Wuxi, 
Jiangsu, yielded five distinct clonal groups (CG6, CG11, 
P8, P9, and P26), which suggested strain transmission 
within the community. Transmission between family 
members has also been identified (CG12), and we also 
observed transmission of B. longum strains between a 
human and chicken (P10) in the same household.

The isolation of multiple strains within an individual 
sample was also of interest. We observed that strains 
isolated from the same individual were clonally related 
(CG1, CG2, P5, P10, P17, P21, P22, P23, and P32 for nine 
different human subjects) with a median pairwise SNP 
value of 2, consistent with a single colonisation event in 
which an individual subject was colonised by a unique 
clone. For the detailed description on the related results 
of this subsection, see the supplementary results.

Genome‑wide association identifies arginine biosynthesis 
as a host age‑associated factor in B. longum
GWAS can identify the causal genetic factors that under-
lie important phenotypes but are rarely applied to the 
analyses of gut symbionts. Here, we applied GWAS of 
both core and accessory genome variations to identify 
links between the host phenotypes and B. longum geno-
types. We also used RDA and PERMANOVA analyses 
to re-confirm the significant variations identified in the 
GWAS and to access the individual contributions of phe-
notypes to the overall bacterial genotypes.

In the local panel, all factors had a significant effect on 
the B. longum genotypes (Fig.  5A and B). Province was 
the most important discriminant for both SNPs (16.4% 
and 5.1% of overall genetic variations according to PER-
MANOVA and RDA, respectively, Fig.  5A) and genes 
(15.5% and 4.5%, respectively, Fig.  5B), followed by lon-
gevous district status, age, and sex. In the global panel, 
country was the most important discriminant, with indi-
vidual effect sizes of 6.0–9.6% for the core genome and 
4.2–7.0% for the accessory genome (Fig. 5C and D). The 
genotypes were also markedly affected by host age, but 
not by sex. Overall, the results implied that all examined 
host phenotypes other than sex could significantly affect 
B. longum genotypes, although geography was the pri-
mary contributor.

The GWAS revealed one SNP and two genes in B. 
longum that were strongly associated with host age 
(Fig.  5E). Group_2037, which encodes a polysaccharide 
pyruvyl transferase, was more prevalent in elderly sub-
jects, whereas group_3009 was predominant among 
young people (Fig.  5F). The arrangement of these two 

genes was consistent with the age distribution but 
both were frequently absent from the Japanese lineage 
(Fig. 5F). Interestingly, a SNP locus (synonymous muta-
tion SNP_891726) located in argB was the variant most 
significantly associated with age, followed by two other 
adjacent loci (non-synonymous mutation 891,804 and 
synonymous mutation 891,054) in argB and argD, which 
were slightly below the significance threshold. Both argB 
and argD encode enzymes in the bacterial arginine bio-
synthesis pathway, and the distributions of the three loci 
among B. longum strains were highly consistent with the 
host age distribution (Fig.  5F). RDA analysis confirmed 
this association, as the variable axes of these loci were 
highly consistent with the axis of age in both data pan-
els (Fig.  5G and H). Moreover, genomic profiles strati-
fied by four defined age groups were arranged along the 
age axis in age-ascending order, particularly for SNPs in 
the global panel (Fig. 5G). This pattern further indicated 
the strong association of B. longum genotypes with host 
age. No significant variations were detected with respect 
to the other phenotypes (Figure S14A–G). Regarding the 
country phenotype, however, we observed a more fre-
quent distribution of lacS_2 in Chinese strains (118/144), 
whereas this gene was largely absent from Japanese 
strains (17/121), which was consistent with the results 
presented above for the analysis of population-specific 
loci. For the phenotype of longevous district status, two 
loci in dnaE nearly reached the significance threshold, 
and this association was also confirmed by the RDA axis 
(Fig. 5G).

Taken together, the data demonstrate that factors such 
as geography and host age are significant discriminants 
of the overall B. longum genotype. Although geography 
might be the primary factor for population differentia-
tion, host age may also be a strong contributor in terms 
of the distribution of specific variations, and arginine 
biosynthesis appears to be a host age-associated factor in 
B. longum.

B. longum strains with different arginine 
metabolism‑related genotypes represent divergent 
alleviation against host aging
The significant reverse associations between host age 
and B. longum relative abundance and the strong link 
between host age and strain genotype (particularly SNPs 
in arginine biosynthesis-related genes) suggest the poten-
tial effect of B. longum and its key pathways on host 
aging.

The results from in  vitro assays indicated that B. 
longum subsp. longum strains with the AGT allele in the 
genes of arginine biosynthesis pathway (positive strains) 
exhibited a significantly improved ability to increase argi-
nine abundance in the culture supernatants relative to 
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those negative ones that harbored GTC (the SNP var-
iations in the abovementioned allele of the 10 strains 
were validated by PCR amplification; Fig.  6A). Hav-
ing validated this phenotypic difference, we intro-
duced 6 out of these 10 strains [three positive strains 
with higher ability to increase arginine level in vitro: 

O1, O2, and O3; and three negative strains with 
lower ability to increase arginine level: Y1, Y2, and 
Y3] in a mouse model of d-galactose-induced aging 
and evaluated various behaviors and antioxidative 
parameters in the host mice after 9  weeks (Fig.  6B 
and C).

Fig. 5  Environmental factors significantly discriminated the overall genotypes of B. longum, and arginine biosynthesis of B. longum was identified 
as a potential host age-associated factor. A Individual effect sizes of genome covariates (isolated province, longevous district status, age, and sex) 
determined by SNP-level db-RDA and PERMANOVA analysis of a local panel (Chinese strains). B Individual effect sizes of genome covariates based 
on a gene-level db-RDA and PERMANOVA analysis of a local panel. C Individual effect sizes of genome covariates based on SNP-level db-RDA 
and PERMANOVA analysis of a global panel (Chinese and Japanese strains). D Individual effect sizes of genome covariates based on gene-level 
db-RDA and PERMANOVA analysis of a global panel. E Manhattan plot of GWAS results for the associations of age with the genomic profiles of B. 
longum based on core genome SNPs (left) and genes (right). The significance threshold is indicated by a horizontal red line and was defined using 
Bonferroni correction with a required P-value of 0.05/number of tested variants. F Distribution of significant variants according to phylogeny and 
host age. G, H Triplots of the db-RDA analysis of genomic composition relative to the host province (or country), age, longevous district status, and 
sex. Different datasets were used for these analyses. G (left) SNP profiles of the local panel; G (right) gene profiles of the local panel; H (left) SNP 
profiles of the global panel, and H (right) gene profiles of the global panel. Among these analyzed phenotypes, the term “longevity/longevous 
district status” means whether a strain was isolated from the longevous districts or not. *P < 0.05, **P < 0.01, ***P < 0.001
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Our behavioral tests (Fig.  6D-I) indicated that aging 
significantly reduced the activity levels of mice in terms 
of the numbers of crossings and rearings in an open-field 
test. Aging also appeared to damage their learning and 

memory capacities, as indicated by marked decreases in 
spontaneous alterations during the Y maze test and an 
increase in the time spent in the target quadrant after 
training and a reduction in escape latency during a 5-day 

Fig. 6  B. longum strains with specific genotypes can significantly reverse behavioral changes in aging mice. A Ability of B. longum strains with 
different SNP statuses [five positive strains (with AGT allele at genomic loci 891,726, 891,804, and 891,054): 278(O1), RG4-1 (O2), FJSWXJ10M2 
(O3), ZCC2 (O4), and ZCC5 (O5); and five negative strains (with GTC allele): FGSZY16M3 (Y1), FHaNCM25GMM1 (Y2), FSDLZ59M1 (Y3), ZCC12 
(Y4), and CCFM752 (Y5)] in arginine biosynthesis pathway genes to increase arginine levels in culture supernatants. B Locations of six selected 
phylogenetically distant strains [three positive strains with higher ability to increase arginine level in vitro: O1, O2, and O3; and three negative strains 
with lower ability to increase arginine level: Y1, Y2, and Y3] used in the mice in a neighbor-joining tree. C Diagram of the experimental design. Please 
see the “Methods” section for additional details. Behavioral parameters. Open-field test (D and E), step-through test (F), Y-maze (G), and Morris water 
maze (H and I). The normal distribution of all data was confirmed using the Kolmogorov–Smirnov (KS) normality test. All data were analyzed using 
one-way ANOVA and are presented as the means ± standard errors of the means; n ≥ 3 for each group. Arg, Arginine group. Statistical significance 
was calculated for the comparisons between the aging group and the control group (*s in green color), and for the comparisons between the 
aging group and each of strain treatment groups (*s in the other colors). *P < 0.05, **P < 0.01, ***P < 0.001
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training period for the Morris water maze. Aging-related 
behavioral damage was reversed by both arginine sup-
plementation and B. longum strain gavage (Fig.  6D-I). 
More significant alleviation of the behavioral effects was 
observed when positive strains (O1, O2, and O3 with the 
AGT allele) or arginine was administered. Specifically, 
the administration of strain O1, O2, O3, or arginine led 
to the significant recovery of five, four, four, and four of 
the five aging-related parameters, respectively, whereas 
the administration of negative strains (Y1, Y2, and Y3 
with the GTC allele) had little effect on most parameters.

Regarding antioxidative parameters, seven of eight 
oxidative parameters in the brain and liver were mark-
edly damaged; only glutathione peroxidase (GSH-Px) 
activity in the liver was spared (Fig.  7A-H). Although 
positive and negative strains had similar effects on cat-
alase (CAT) activity in the brain and liver, the malon-
dialdehyde (MDA) level in the brain, and superoxide 
dismutase (SOD) activity in the liver, these effects were 
more strongly induced by the positive strains. Positive 
strains could also rescue SOD activity in the brain and 
MDA levels in the liver, whereas negative strains had no 
observable effects.

PCA based on these tested behavioral and oxida-
tive parameters indicated that the groups treated with 
positive strains or arginine were located more closely 
to the control group and were more clearly separated 
from the aging group than the negative strain groups. 
The data support our conclusions from the individual 
index and demonstrate that positive, rather than nega-
tive, B. longum strains can more efficiently alleviate 
aging (Fig.  7I). In addition, both groEL bifidobacterial 
profiling and quantitative PCR analysis consistently 
demonstrated that each of the six ingested B. longum 
strains engrafted successfully with colonized biomass 
of 108–109 cells/g feces at the time points of week 1, 
week 4, and week 9, thus suggesting their stable occur-
rence during intervention (Figure S15).

The metabolic profile of gut microbiota was differentially 
modified according to the genotypes of administered B. 
longum strains
We also performed an analysis of differences in fecal 
metabolite profiles between treatments. A total of 22,074 
fecal metabolite features remained after the data of nine 
experimental groups were processed. A PLS-DA based on 
these features indicated that both positive strains (O1, O2, 
and O3) and arginine played an important role in revers-
ing age-related alterations in metabolites (Fig. 8A). These 
groups were clearly separated and distant from the aging 
group and had fecal metabolite patterns more similar to 
the control group. By contrast, the negative strain groups 
(Y1, Y2, and Y3) were intermixed with the aging group.

Next, we analyzed the metabolites for which differ-
ent concentration trends had been identified between 
pairwise groups (FDR-adjusted P < 0.05 and orthogonal 
PLS-DA (OPLS-DA) VIP > 1). The OPLS-DA models 
were checked by cross-validation with 200 permutations 
to avoid overfitting (Table S14). A total of 8765 metabo-
lite features (406 with defined names) in the aging group 
exhibited differentiation from the control group (Fig. 8B 
and Table  S15). Supplementation with arginine or posi-
tive strains shifted 2474–9280 of the metabolite features 
(129–477 with defined names) relative to the aging group, 
whereas only 0–33 (0–1 with a defined name) identified 
metabolite features could distinguish the metabolomes 
of the negative strain groups from those of the aging 
group (Fig. 8B, Tables S16, S17, S18, S19, S20 and S21). 
We then summarized the differentially present metabo-
lites related to arginine metabolism (Fig.  8C). We were 
intrigued to observe differences in arginine metabolism-
related substances between the control and aging groups, 
which suggested that aging could perturb arginine flux 
in the fecal metabolome. Furthermore, both arginine 
supplementation and administration of positive strains 
affected the abundances of some metabolites involved 
in arginine metabolism, whereas negative strains did not 
exert observable effects. These results strongly suggested 
that B. longum strains with specific arginine biosynthe-
sis pathway-related genotypes can recover aging-related 
metabolome perturbations and modify the arginine met-
abolic flux in the gut.

To further reveal the underlying changes in function, 
we conducted a pathway enrichment analysis based on 
fecal metabolites with known KEGG IDs (FDR-adjusted 
corrected P < 0.05; Figure S16). Compared with the con-
trol group, the aging group demonstrated evident differ-
entiation of the fecal metabolites involved in some key 
pathways, including linoleic acid metabolism, α-linolenic 
acid metabolism, phenylalanine metabolism, and the 
PPAR signaling pathway. Supplementation with argi-
nine or positive strains markedly modulated some of 
these aging-perturbed pathways, including linoleic acid 
metabolism, α-linolenic acid metabolism, and the PPAR 
signaling pathway. Additionally, both supplementation 
with arginine and the administration of O1 regulated 
tryptophan metabolism, whereas O2 modified the neuro-
trophin signaling pathway; this might be relevant to the 
alleviation of aging-related negative behavioral changes. 
Interestingly, linoleic acid metabolism was a core path-
way affected by aging that was significantly modified by 
effective treatments (positive strains O1, O2, and O3).

Overall, these results indicate that B. longum strains 
with specific genotypes and superior arginine enrich-
ment ability in vitro can recover aging-related perturba-
tions in fecal metabolite profiles and modify the arginine 
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flux in the gut. These strains could also affect other cru-
cial biological pathways in the gut microbiota, such as 
linoleic acid metabolism.

Discussion
In this study of the evolution, transmission, and associa-
tions of a gut microbial species with host phenotypes, 
we selected B. longum as a model species because it is a 

core colonizing species in the human gut microbiome, 
and its relative abundance is related to host age. Using a 
conceptual framework based on evolution and the patho-
gen transmission theory, we showed that B. longum had 
formed at least three geographically related populations 
and established the active transmission of B. longum 
strains across different types of hosts and according to 
geography and proximity. Interestingly, we identified a 

Fig. 7  B. longum strains with specific genotypes can significantly reverse oxidative damage in aging mice. Oxidative parameters in brain 
tissue (A-D). Oxidative parameters in liver tissue (E-H). PCA plot based on all behavioral and oxidative data as the inputs (I). The normal distribution 
of all data was confirmed using the Kolmogorov–Smirnov (KS) normality test. All data were analyzed using one-way ANOVA and are presented as 
the means ± standard errors of the means; n ≥ 3 for each group. Arg, Arginine group. Statistical significance was calculated for the comparisons 
between the aging group and the control group (*s in green color), and for the comparisons between the aging group and each of strain treatment 
groups (*s in the other colors). *P < 0.05, **P < 0.01, ***P < 0.001
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strong and statistically significant association between 
host age and genetic variations in B. longum genomes. 
We further correlated host metabolic flux with gut bac-
terial metabolic activity and provided an example to 
support the potential therapeutic application of this 
knowledge.

This study provided additional evidence that environ-
mental conditions are related to the composition of the 
gut microbiota and the overall genotypic profile of an 
individual gut resident species (B. longum). Although 
geography is the primary discriminant, host age is also 
a significant contributing factor. Our findings support 
an earlier report by Zhang et al. that found that gut gen-
era were clustered mainly according to host ethnicity/
geography rather than lifestyle in Chinese cohorts [65]. 
Similarly, He et al. identified an isolated district as the top 
host factor that showed a significant association with gut 
microbial variations among the samples collected within 

Guangdong province [66]. Furthermore, in this study, we 
revealed that species-level composition profiles within 
the genus Bifidobacterium are largely discriminated by 
geography. Although previous research has focused on 
genetic and functional reservoirs in the human microbi-
ome and their relationships with environmental factors 
[67–69], the effects of these factors on the overall geno-
types of individual gut microbial species remained largely 
unknown. We determined that geographical location 
(country/province) contributed most to genetic varia-
tions in B. longum, followed by host age. The geographi-
cal dissimilarities at both the microbiome and genotype 
levels might be explained by the decreased transmission 
of gut microbes as the geographic scale increased, which 
was due to diminished environmental survival during 
fecal–oral transmission and limited human mobility.

Our data provide several insights into the evolution of 
B. longum, a gut resident microbe. Studies of strain-level 

Fig. 8  Aging-related metabolic profile in the gut microbiota was significantly reversed by the administration of arginine-enriching B. longum 
strains. A PLS-DA plots of fecal metabolite profiles according to the experimental group. B Numbers of metabolite features and metabolites with 
defined names, and trends in different concentrations between pairwise comparisons (FDR-adjusted P < 0.05 and VIP > 1). C Detected changes 
in metabolites related to arginine metabolism between pairwise comparisons. VIP values (before slash) and FDR-adjusted P values (after slash) 
are shown and highlighted in purple for all the identified differentially presented metabolites related to arginine metabolism between pairwise 
comparisons (FDR-adjusted P < 0.05 and VIP > 1). The cells marked by “n.s.” indicate that alterations of specific metabolites in specific comparisons did 
not reach significant level (FDR-adjusted P > 0.05 or VIP < 1). O series/Y series respectively denote treatments with individual positive strains/negative 
strains. Three positive strains are O1(278), O2 (RG4-1), and O3 (FJSWXJ10M2); three negative strains are Y1 (FGSZY16M3), Y2 (FHaNCM25GMM1), and 
Y3 (FSDLZ59M1). Arg, Arginine group
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evolution of pathogens and gut allochthonous bacte-
ria have received considerable attention in recent years 
[18–20, 22] and have revealed valuable basic knowledge, 
as well as useful procedural methods. Here, we applied 
the theory and approach used in research of pathogens 
and gut allochthonous bacteria to the representative 
gut microbe B. longum. In this context, we observed 
the existence of distinct geographical populations of B. 
longum strains and identified population-specific micro-
bial functional potential. First, multiple previous reports 
supported the existence of geographically based distribu-
tions of different strain patterns [22, 23, 72], which are 
usually named as “isolation by distance” brought about 
by host-microbe co-dispersal, possibly due to migration 
movements of early humans. Our findings suggested that 
despite increases in globalization and a multinational 
probiotic industry, the transmission bottleneck caused 
by geographical segregation across counties has inhibited 
genetic coalescence across distinct bacterial populations, 
and strengthened vertical transmission and seeding from 
the local (social) environment, resulting in geographically 
specific gene pools.

However, isolation by distance is likely not the only 
force acting on the genetics of B. longum; other metadata 
(e.g., different lifestyles, diet, and host genetics) might 
also have their influence. For example, significant SNP 
variations in cell wall biosynthesis-related genes and bio-
film formation pathway in the core genomes of different 
B. longum populations might be a reflection of different 
degree of antibiotic exposure among subjects from dif-
ferent countries. Antibiotic stress has been reported to 
be able to induce bacterial biofilm formation [73] and 
alter expression of their cell wall biosynthesis-related 
genes [74]. Meanwhile, it has been confirmed that dele-
tion of bacterial genes involved in cell wall biosynthesis 
[75] or overexpression bacterial genes that influence bio-
film formation [76] led to significant changes of bacterial 
resistance against specific antibiotics. In addition, the 
carbohydrate metabolism-related gene profiles of strains 
from different populations were also markedly different, 
especially with respect to genes related to lactose and 
arabinose metabolism. Arabinose is a plant-derived pol-
ysaccharide that is enriched in high-fiber food that can-
not be digested in the upper gut and is exclusively used 
by gut microbes. This observation supports the existence 
of selection pressure by different dietary habits on the 
genotypes of the strains [77], in which Chinese popula-
tions can be characterized by a pattern associated with a 
high-fiber diet. In a recent study, De Filippis et al. dem-
onstrated that diet may select distinctive Prevotella copri 
strains with distinguishable functions, with weakened 
genetic potential for complex carbohydrate utilization 

and enhanced drug metabolism of strains during dietary 
‘‘Westernization’’ (from high-fiber diet to high-protein 
and fat diet) [77]. Besides these genes involved in utili-
zation of dietary carbohydrates, other genes in path-
ways of thiamine metabolism and metabolism of amino 
acids also varied between B. longum populations, possi-
bly separately reflecting diet differences on vitamins and 
proteins. Notably, vitamin B1 is present in a wide range 
of food products, especially cereal bran, and it is heavily 
reduced in refined cereals, which are typically consumed 
in Western countries. Potentially, our approach to deter-
mine the evolutionary history and functional segregation 
of B. longum could be expanded to other bifidobacterial 
species, including gut allochthonous species.

Our data also suggest that the transmission of gut-col-
onizing B. longum is frequent. Unlike pathogens, com-
mensal intestinal bacteria could be transmitted between 
humans to promote health by establishing, maintain-
ing, and replenishing microbial diversity in the host gut 
microbiota. However, the manner by which commen-
sal bacteria are transmitted remains unappreciated and 
poorly understood, despite the likely similarities between 
both. We frequently observed B. longum strains with 
the same genotypes among individuals within China, 
particularly in the guts of genetically unrelated sub-
jects within the same community (e.g., Wuxi home for 
the elderly) and family members. This observation sug-
gests that cohabitation or proximity drives transmis-
sion and that similar lifestyle and dietary habits exert 
uniform selection for colonization by specific B. longum 
strains. Active transmission may be partly dependent 
on the environmental survival of the strains. B. longum 
strains are relatively aerotolerant, and live isolates have 
been detected in environmental samples (e.g., soil and 
water). Therefore, transmission might be a general fea-
ture of multiple gut Bifidobacterium species. Moreover, 
the strains isolated from the same host in our study were 
derivatives of a common ancestor, consistent with a sin-
gle colonization event as described previously for other 
gut commensal [78, 79] and pathogenic species [80].

Our data also provide a molecular basis for host–
microbe coevolution, and this knowledge could feasibly 
be used to promote host health. The causal link between 
the gut microbiota and host aging has been investigated 
extensively, and microbiome-based therapies such as 
dietary interventions, probiotics, and fecal microbiota 
transplantation have been shown to efficiently alleviate 
host aging [81]. Some bacteria have been associated with 
a long human lifespan by analyzing the gut microbiota 
of centenarians, including Faecalibacterium prausnitzii 
[82], Eubacterium limosum [82], and particular health-
associated groups (e.g., Akkermansia, Bifidobacterium, 
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and Christensenellaceae) [34]. No chronological thresh-
old or age is associated with an abrupt change in the 
microbiota composition; rather, these changes proceed 
gradually over time [83]. Here, we compared relative 
abundances of different gut bacterial types among host 
age segments, instead of solely focusing on the unique 
gut microbiota features of centenarians. We identified a 
strong negative association of the genus Bifidobacterium 
with host age, consistent with previous observations of 
reduced bifidobacterial counts in the elderly compared 
with the gut microbiota of two or three other age groups 
[84–87]. We further investigated the bifidobacterial spe-
cies-level composition and identified B. longum as the 
most dominant of the core bifidobacterial species in the 
studied cohort. We further determined that the relative 
abundance of B. longum was also significantly correlated 
with host age. Interestingly, efforts to associate the geno-
type of this aging-related species with host age revealed 
a robustly significant association with the bacterial argi-
nine biosynthesis pathway. The relevance of this associa-
tion was further validated by the differential abilities of 
B. longum strains with different SNP variations in related 
genes to enrich arginine levels in vitro and the divergent 
abilities of these strains to alleviate host aging in  vivo. 
Preliminarily, we attribute these effects to the abilities 
of positive B. longum strains with arginine metabolism-
active genotypes to efficiently modulate the arginine flux 
and the overall gut microbiota metabolome.

Previous studies have demonstrated many molecular 
mechanisms by which microbiota may favorably affect 
host health and aging, based on principles designed 
to seek possible solutions to those changes experi-
enced during the aging process, including (1) decreased 
immune system functioning (i.e., immunosenescence) 
and low-grade chronic inflammation (i.e., inflammag-
ing); (2) inappropriate oxidative stress; (3) impaired gut 
barrier function; (4) decreased energy supply for colon 
epithelial cells; and (5) perturbed gut metabolism (e.g., 
lipid metabolism, glucose homeostasis, vitamin B and 
conjugated linoleic acid production), as reviewed by 
Vaiserman et  al. [81]. Here, we propose another potent 
mechanistic route that key players (B. longum) in the gut 
microbiota are capable of generating age-related genomic 
adaptations in the arginine metabolism pathway, enhanc-
ing the bacterial arginine-enriching ability, further modi-
fying arginine flux and the overall metabolome in the gut 
microbiota, and ultimately achieving protection against 
host aging. It should be mentioned that we also observed 
that negative strains with relatively lower arginine 
enrichment ability also showed alleviation on a few lim-
ited aging-related parameters. The possible explanations 
for this might be that negative strains worked through 

other reported mechanistic routes. In addition, d-galac-
tose-induced aging mouse model used here has been 
reported to have some limitations. It was believed that 
this accelerated aging model could only mimic “natural 
aging,” but could not completely capture all phenotypes 
of aging [88–90]. In addition, there is evidence that there 
were strain differences of the mouse species with respect 
to aging-related phenotypes [91, 92]. However, d-galac-
tose-induced aging mouse model has priority and is one 
of the most preferred models for the study of aging and 
age-related diseases because of the favorable outcome in 
terms of increased aging markers, its convenience, the 
least side effects, and the higher survival rate throughout 
the experimental period [93–96]. In our following stud-
ies, we will use natural aging mice of different genetic 
backgrounds (not only C57/BL6 used here) to further 
validate our conclusions.

Conclusions
This study demonstrated the evolutionary pattern of a 
gut autochthonous bacterial species and identified cer-
tain gene elements associated with the host phenotypes. 
We have provided an early demonstration of the mecha-
nisms by which host–microbial interactions (e.g., probi-
otic effector molecules or pathways) can be identified, 
based on associations between the host phenotypes and 
bacterial genotypes. Our findings support the concept of 
coevolution between gut microbes and the host, in which 
the host exerts selective pressure on the microbial geno-
types, while benefitting from microbial genomic adapta-
tion. Furthermore, geography-specific gene pools of gut 
species reinforce the potential localized use of probiotics 
and live biotherapeutics to increase their beneficial value. 
It remains unclear whether strains would exhibit better 
probiotic functionality when administered to individu-
als in the same regions where the strains were naturally 
found and isolated. By revealing the modes of active 
transmission, we demonstrate that the gut microbiota is 
an open reservoir that can be established, maintained, 
and replenished, and this provides a basis for microbi-
ome-targeted therapeutics.
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