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Abstract

Background: Humans spend the bulk of their time in indoor environments. This space is shared with an indoor
ecosystem of microorganisms, which are in continuous exchange with the human inhabitants. In the particular case
of hospitals, the environmental microorganisms may influence patient recovery and outcome. An understanding of
the bacterial community structure in the hospital environment is pivotal for the prevention of hospital-acquired
infections and the dissemination of antibiotic resistance genes. In this study, we performed a longitudinal
metagenetic approach in a newly opened ward at the Charité Hospital (Berlin) to characterize the dynamics of the
bacterial colonization process in the hospital environment after first patient occupancy.

Results: The sequencing data showed a site-specific taxonomic succession, which led to stable community
structures after only a few weeks. This data was further supported by network analysis and beta-diversity metrics.
Furthermore, the fast colonization process was characterized by a significant increase of the bacterial biomass and
its alpha-diversity. The compositional dynamics could be linked to the exchange with the patient microbiota. Over
a time course of 30 weeks, we did not detect a rise of pathogenic bacteria in the hospital environment, but a
significant increase of antibiotic resistance determinants on the hospital floor.

Conclusions: The results presented in this study provide new insights into different aspects of the environmental
microbiome in the clinical setting, and will help to adopt infection control strategies in hospitals and health care-
related buildings.
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Background
As modern humans, we spend up to 90% of our time in
indoor environments [1]. Microorganisms that inhabit
the same indoor environments constitute an ecosystem
that is in continuous exchange with us. This exchange of
microbes is pivotal for the microbial assemblages and
community structures in built habitats [2]. From an an-
thropocentric point of view, the environmental exposure
to microorganisms will conversely also impact the hu-
man microbiome patterns and, consequently, the health
of the inhabitants [1, 3, 4]. In the last decades, the scien-
tific community has begun to investigate the microbial
interactions between humans and their built environ-
ment by characterizing the microbial diversity and ecol-
ogy of a large number of constructed habitats. These
included, among others, residences [5], museums [6], of-
fice buildings [7], public restrooms [8], subways [9, 10],
and hospitals [11–13].
Among the built environments which have been

screened for their microbial composition, hospitals and
healthcare centers might have the most immediate effect
on human health. The environmental microorganisms
may directly influence patient recovery and outcome.
Thus, the clinical environment is subjected to stringent
hygiene guidelines [14]. The hygienic standards in hospi-
tals include several sterilization-, disinfection-, and
antisepsis-measures [15]. In addition, different architec-
tural strategies are taken into account as potential mod-
ulators of the environmental microbiome in healthcare
buildings [16–19]. Despite the scientific and techno-
logical advances, hospital-acquired infections (HAIs) re-
main a major threat and one of the top public health
issues worldwide [20]. This problem is further aggra-
vated by the rise of infections involving antibiotic-
resistant bacteria [21, 22]. An understanding of the bac-
terial community structure in the hospital environment
may help to develop new approaches to reduce the
spread of nosocomial pathogens and the dissemination
of antibiotic resistance determinants.
Until recently, culture-based microbiology methods

were the first and only available option to monitor hy-
giene standards or to track specific HAIs in the clinical
setting [23]. Metagenomics and next-generation sequen-
cing (NGS)-based metagenetic approaches have opened
an avenue for the comprehensive characterization of the
total microbial diversity in a culture-independent man-
ner [24]. Moreover, they allow for the parallel detection
of additional microbiologic aspects such as virulence or
resistance determinants in complex communities [24,
25]. However, only a few studies have addressed the en-
vironmental microbiome of the hospital in such a com-
prehensive manner [11, 26, 27]. Most of the
environmental studies investigate the microbial profiles
of intensive care units (ICUs), especially in the

neonatology [28–31]. Normal hospital wards represent
potentially different hospital environments, providing
additional ecological conditions for patient-microbe in-
teractions that could have important clinical implica-
tions. Recent studies and data from surveillance
programs for nosocomial infections report a high inci-
dence of HAIs in hospital wards, such as neurology sta-
tions [32, 33]. However, hospital wards have been
addressed in only a few number of microbiome studies,
investigating different room sites [11, 12]. Moreover, the
colonization dynamics, and specifically the kinetics of
the microbial succession after hospital opening and first
patient occupancy are still poorly understood.
In this study, metagenetic approaches were used to

characterize the compositional changes of the colonizing
bacterial communities in the environment of a neurology
ward at the newly constructed Charité Hospital bed
tower in Berlin. The longitudinal study addresses the
pre-opening microbiome and its compositional progres-
sion over the first 30 weeks after patient occupancy. Be-
yond community structures, the study investigates the
dissemination of antibiotic resistance genes (ARGs) on
floors, doorhandles and sinks, as part of the resistance-
reservoir observed in the clinical setting.

Material and methods
Study design and sample collection
This study was designed to investigate the bacterial
colonization dynamics on the environmental elements of
a newly opened neurology ward at the Charité–Universi-
tätsmedizin Berlin. The survey timeline covered the pre-
opening week and the first 30 weeks following patient
occupancy. Sampling was performed on a weekly basis,
and included 3 different environmental sites of the pa-
tients’ rooms: the floor, the doorhandle, and the sink.
These 3 sites were selected after a pilot study for yield-
ing a relative high biomass (as compared to other sites
such as wall and handrail) and for showing the highest
diversity coverage of the environmental microbiota in
our particular setting. The sampled sites were cleaned
daily using site-specific disinfectants (ECOLAB,
Germany, see Suppl. Fig. S1 for disinfectant composition
and sampling details). The sampling was performed at
least 2 h after cleaning and covered 9 independent
rooms of the neurology ward (Stations 116A/B). Patient
samples (nose swab, rectal swab) were collected from
these rooms during the whole timespan (room occupa-
tion rate: 91.7%; patient parameters in Suppl. Table S1).
In addition, elbow- and handpalm-swabs (right side)
were collected from the patients during the final 6
weeks. All patients gave written informed consent in ac-
cordance with the Declaration of Helsinki and the local
ethics committee. Environmental temperature and hu-
midity data were recorded for each of the rooms during
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the weekly sampling routine using a Thermo-
Hygrometer BC25 (Trotec, Germany).
A total of 1547 samples (including 854 environmental

samples, 408 patient samples, and 285 blank controls)
were processed throughout the course of this study. Envir-
onmental samples and patient material were sampled by
trained study-nurses. In all cases, sterile swabs were pre-
moistened with saline solution and rubbed at the collec-
tion site. The swab was then resuspended in 200 μl TE
buffer, and immediately frozen at − 80 °C until further
processing. The blank controls consisted of saline solution
used for the premoistening of the swabs in each of the
rooms and were processed following identical protocols.

DNA extraction and 16S rRNA gene quantification
The DNA of all samples was extracted with the innu-
PREP Bacteria DNA kit (Analytik Jena, Germany) fol-
lowing manufacturer’s instructions. The bacterial
biomass in the samples was then measured by quantifi-
cation of the 16S rRNA gene copies using a qPCR ap-
proach. In brief, 4 μl of DNA were used as template in a
20-μl SYBR-Green-based qPCR reaction (BioLine, UK)
with 200 nM specific amplification primers for the V4
region of the 16S rRNA gene (515Fw: 5′-GTGYCAGC
MGCCGCGGTAA-3′; 806Rv: 5′-GGACTACNVGGG
TWTCTAAT-3′). The qPCR reactions were set up in a
CAS-1200 pipetting robot (Qiagen, Netherlands) and
run in technical duplicates on a Rotor-Gene Q cycler
(QIAGEN, Netherlands). The cycling conditions in-
cluded an initial denaturation step (95 °C, 10 min) and
40 amplification cycles (95 °C, 15 s; 58 °C, 20 s; 72 °C,
30 s), followed by a melting curve to assess the specifi-
city of the amplification process. Non-template controls
were included in each run to control for potential con-
tamination. Quantification of absolute target copy num-
bers was performed using the standard curve method
(R2 = 0.996; conc = 10^(− 0.246*CT + 10.177)) as imple-
mented in the Rotor Gene Series software v. 2.1.0
(QIAGEN, Netherlands).

Library construction and sequencing
16S rRNA amplicon sequencing was used for bacterial
profiling of all environmental and patients’ samples. The
library construction was performed as described else-
where [34, 35]. In brief, the amplification primers
515Fw/806Rv were fused with Golay barcodes and
adapter sequences (see details in Suppl. Table S2). These
constructs were then used as primers to generate the li-
brary by PCR. The 50 μl reaction was performed on a
S1000 Thermal Cycler (BioRad, USA) using the Plat-
inum PCR SuperMix (Thermo Fisher Scientific, USA).
Non-template controls were used to control potential
contamination during the amplification process. Ther-
mal conditions included an initial denaturation step (94

°C, 3 min), followed by 35 amplification cycles (94 °C, 15
s; 58 °C, 20 s; 72 °C, 30 s) and a final elongation step at
72 °C for 10 min. PCR products were purified by size-
selection on 2% SizeSelect E-Gels (Thermo Fisher Scien-
tific, USA) and quantified on D1000 Tapes using a
TapeStation 2200 (Agilent Technologies, UK). The li-
braries were equimolarly pooled and prepared for Illu-
mina sequencing using the MiSeq Reagent Kit v2
(Illumina) and following manufacturer’s instructions.
Run plan and sequencing reagents and primers were
adapted according to Caporaso et al. [36]. Sequencing
was performed on a MiSeq apparatus (Illumina) with
251 cycles.

Sequencing data analyses
Fastq files were first quality checked using FastQC [37].
Forward and reverse reads were then quality-trimmed
using Trimmomatic [38] and demultiplexed with QIIME
v1.9.1 scripts [39]. A sequence-based filtering method
was applied to remove potential contaminants from the
sequencing data as described elsewhere [40]. The de-
tailed pipeline is available at GitHub (https://github.
com/ZubBar/Sequence-based-filtering-method-for-16S-
rRNA-sequencing.git). To determine the bacterial taxo-
nomic distribution in the samples, reads were first clus-
tered using the open reference OTU picking method
with a sequence identity cutoff of 97% (implemented in
the QIIME pipeline) followed by the taxonomic assign-
ment using the SILVA REF NR 99 (release 132) database
[41]. OTUs represented at less than 0.2% relative abun-
dance were not shown. Taxonomic classification at spe-
cies level was performed using the sub-classifying genus
option implemented in SILVA, in order to avoid loss of
data when species level annotation was not possible.
Sub-classified genus results were listed as “sp.” annota-
tions. Principal coordinate analyses (PCoA) were calcu-
lated using weighted or unweighted UniFrac distances.
Statistical significance of beta-diversity metrics between
groups was assessed by analyses of similarities (ANO-
SIM). The alpha-diversity metrics were performed using
Shannon indices. To identify the core microbiota (OTUs
in at least 50% of the samples), the compute_core_
microbiome.py scripts of the QIIME software was used.
The datasets generated in this study (trimmed, demulti-
plexed, and sequence-based filtered FASTA-files) are
available at the SRA database under the accession num-
ber: PRJNA672813 [https://www.ncbi.nlm.nih.gov/sra/
PRJNA672813]. Further project metadata, biom-tables
and diversity metrics can be found at the Zenodo plat-
form [DOI: 10.5281/zenodo.4600715].

Network analyses
In order to measure non-random interactions between
bacteria, co-occurrence network analyses were calculated
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with the SparCC software v.0.1.0 [42] using an OTU
table with limited sequences presented at a relative
abundance > 0.3%. The pairwise median correlation was
estimated using twenty interactions, and the statistical
significance of each correlation was calculated by boot-
strapping (with 100 interactions). All statistically signifi-
cant (p < 0.05) SparCC correlations with a magnitude >
0.9 were incorporated into the network analyses. Each
OTU of the reconstructed networks was represented as
a node, and the significant correlations between the
nodes depicted as edges. The network structure was fur-
ther supplemented with the clustering coefficient values
and the modularity indices, as additional measure of
structural stability of the communities [43]. The net-
works were visualized using the interactive platform
Gephi [44], and the nodes defined and colored based on
their pathogenicity (Suppl. Table S3).

Statistics
Pairwise comparisons between groups were performed
using student t tests or one-way ANOVA with a signifi-
cance threshold of p < 0.05. Statistical analyses and graphic
presentations were performed using GraphPad Prism 5.0
(GraphPad Software, USA). Linear regression models were
employed to investigate trend changes across multiple
timepoints/datasets, in order to detect a significant increase
or decrease of the bacterial biomass. The Bonferroni
method was used for multiple testing corrections.

Antibiotic resistance gene detection
The presence of 12 antibiotic resistance genes (ARGs)
(see Suppl. Table S4) conferring resistance to beta-
lactams, quinolone, polymyxin, and methicillin was ana-
lyzed throughout the course of the study. Following de-
terminants were addressed: blaKPC, blaNDM,
blaOXA48, blaVIM, blaCMY, blaGES, blaSHV, blaTEM,
blaCTX-M1, qnrB1, mcr1, and mecA. These include
many of the most relevant ARGs [45–51] isolated from
nosocomial pathogens, as reported in European surveil-
lance programs [52]. Furthermore, most of these genes
have been reported to be potentially transferrable be-
tween different bacteria by horizontal gene transfer [46,
53]. For their detection, custom multiplex Taq-Man as-
says were developed as described previously [54, 55].
The real-time qPCRs were carried out using the RNA
UltraSense One-Step Quantitative RT-PCR System Kit
(Thermo Fisher Scientific, USA). The qPCR reactions,
containing 200 nM of each primer and 320 nM of the
respective Taq-Man probes (see sequences in Suppl.
Table S4), were set up in a CAS-1200 pipetting robot
(QIAGEN, Netherlands) and run in technical duplicates
on a Corbett Rotor-Gene 6000 cycler (QIAGEN,
Netherlands). Thermal conditions included an initial 95
°C denaturation step for 4 min, followed by 40 cycles of

denaturation at 95 °C for 30 s, initial annealing at 50 °C
for 30 s (60 °C after cycle 3), and extension at 72 °C for
60 s. The data were collected during the annealing phase
and analyzed using the Rotor-Gene 6000 software v.2.1.0
(QIAGEN, Netherlands). DNA samples of bacterial col-
onies positive for the different ARGs were used as con-
trols in each multiplex PCR. Samples were considered as
positive for a specific ARG when the achieved cycle
threshold (Ct) was < 35.

Results
Bacterial colonization dynamics of the hospital
environment
Genetic approaches were used to investigate quantitative
and compositional aspects of the bacterial colonization
patterns of the hospital environment. Absolute quantifi-
cation of the 16S rRNA copies showed an increase of the
microbial biomass during the first weeks after patient
occupancy. For all three tested sites (floor, doorhandle
and sink), this increase was significant (p < 0.05, linear
regression) over the first 7 weeks (Fig. 1A). After a short
stabilization phase, the biomass measurements showed a
slight decrease of the bacterial loads toward the end of
the sampling period (between weeks 16 and 30), reach-
ing statistical significance (p < 0.05, linear regression) for
both the floor and the doorhandle samples. This reduc-
tion of bacterial load correlated with seasonal changes of
indoor temperature and relative humidity at sampling
time as shown by multiple regression models including
these two physical factors (Suppl. Fig. S2).
The sequencing analysis of the 854 environmental

samples showed microbial community patterns with
rapid taxonomic successions over time. The compos-
itional changes were highly site-specific and most prom-
inent during the first 5–7 weeks after patient occupancy.
So, the pre-opening floor was dominated by Enterobacte-
riaceae (21.28%) and Micrococcaceae (16.70%). After pa-
tient occupancy, the floor microbiota was steadily
colonized by Moraxellaceae over time, while experien-
cing a reduction in Enterobaacteriaceae and Flavobacter-
iaceae (Fig. 1B). The doorhandle samples were
characterized by Enterobacteriaceae (58.15%) and Flavo-
bacteriaceae (20.31%) in the week before hospital open-
ing. After the initial week of patient occupancy, the
relative abundance of Enterobacteriaceae decreased (5.5-
fold decrease) while Corynebacteriaceae increased in a
significant manner (4.3-fold increase). For Flavobacteria-
ceae, we observed a steady reduction across the 6 initial
opening weeks, after which the presence of this family
was permanently < 4% (Fig. 1B). On the other hand, the
sink samples were mainly colonized by Veilloneaceae
and Streptococcaceae during the first few weeks of pa-
tient occupancy (Fig. 1B).
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Diversity metrics showed the highest alpha-diversity
for the doorhandle samples, which was significantly in-
creased over the other two environmental sites (Fig. 2A).
In order to analyze the microbiota changes over time,
the weeks were grouped in different week blocks based
on the alpha- and beta-diversity metrics and the distance
pattern between consecutive weeks (Suppl. Fig. S3). The
overall alpha-diversity of the environmental microbiota
increased in a significant manner when comparing the
first week block (w0-3) with the two following (w4-7 and
w8-11; see Fig. 2B). When analyzing the sites independ-
ently, this diversity increase was most prominent in the
floor samples (Suppl. Fig. S4).
The beta-diversity measurements showed a clear site-

specific pattern as reflected by the spatial distance be-
tween the clusters generated in a PCoA plot (Fig. 2C).
Beta-diversity analysis of each site revealed a fast
colonization process, as we observe an early segregation
of the week blocks toward a definite community struc-
ture (Fig. 2D). In all three sites, early week blocks (w4-7

or w8-11) already clustered with late week blocks as they
approach their stable configuration in the PCoA space.
This conclusion was further supported by the measures
of distance to the final microbial composition (last sam-
pling week). The unweighted UniFrac distances to the
week-30-microbiome decreased in all sites over the first
few weeks (w1-w5). As early as in week 7, we observed
no statistical difference in the composition of the micro-
bial communities when compared to the last sampling
week (w30), as assessed by pairwise ANOSIM of the
beta-diversity. These data suggest that the environmental
microbiome of a newly constructed hospital might be
stably established after only a few weeks of patient occu-
pancy. Furthermore, the site-specific aspect of the mi-
crobial colonization process was reinforced by the
observation of growing distances between the different
bacterial communities over time (Suppl. Fig. S5). More-
over, the microbiome maturation was consistent in all
rooms, and no significant spatial effects such as distance
between rooms could be detected (Suppl. Fig. S6).

Fig. 1 Bacterial colonization dynamics of the floor, the doorhandle and the sink during the first 30 weeks after patient occupancy. A Quantitative
analysis of the bacterial biomass over time as measured by qPCR. Shown are the 16S rRNA gene copies in each sample (Median ± IQR). B
Taxonomic summary of the compositional changes of each environmental site over time. Shown are the relative abundances of the collapsed
main taxa (> 0.5%) at family level for each week
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Fig. 2 Diversity metrics of the environmental samples between sites and over time. A Alpha-diversity of each environmental site. Shown is the
Shannon index (Mean ± SEM, ***p < 0.001, ANOVA/Bonferroni). B Alpha-diversity over time. Shown is the Shannon index over different week blocks
(*p < 0.05, **p < 0.01, ANOVA/Bonferroni). C Principal coordinates analysis of the beta-diversity using weighted UniFrac distances. Shown are the
distances between the different sites addressed in this study. D Principal coordinates analysis showing the unweighted UniFrac distances between
samples for each site as analyzed over time in different week-blocks. E Graph depicting the stabilization dynamics of the bacterial community
structures as measured by the unweighted UniFrac distances to the microbial composition of all rooms in week 30 (Mean ± 95%CI). Statistical
significance was calculated by ANOSIM between each week and week 30. (*p < 0.05, **p < 0.01, after Bonferroni correction for multiple testing)
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Impact of patient occupancy on the bacterial colonization
patterns of the environment
In a next step, we determined the extent of the microbial
exchange and interaction between environmental- and
patient-sites analyzed in each of the rooms. In total, we
analyzed 408 patient samples over the time period of 30
weeks after hospital opening. The taxonomic
characterization of the nasal and rectal swabs allowed us
to identify a distinct microbiome pattern for each site
(Suppl. Fig. S7A). Barring inter-individual differences
and outliers, the nare samples were mainly dominated
by Corynebacteriaceae and Staphylococcaceae, while the
rectum samples were rather characterized by the pres-
ence of Clostridiales and Prevotellaceae. In order to
measure the exchange between the patient material and
the environmental samples, we analyzed the overlap of
the core microbiomes of each site across different week
blocks. The amount of shared taxa between all sites in-
creases over time, especially during the initial weeks
(from week block w0-3 to week block w4-7; Suppl. Fig
S7B). These results suggest an important impact of the
patients on the establishment of the environmental
microbiome in this early time frame. In comparison,
other external factors, such as temperature or humidity,
showed a very small impact on the colonization dynam-
ics (Suppl. Fig. S8).
During the last 6 weeks of sampling, two additional

skin sites (handpalm and elbow) of the patients were in-
cluded in the study to determine the extent of their mi-
crobial interchange with the final environment
community. Hand and elbow samples were both domi-
nated by Corynebacteriaceae and Staphylococcaceae, two
commensal taxa of the human skin (Suppl. Fig. S7C).
When the environmental samples of all 3 room sites
were plotted together with the samples from the 4 pa-
tient sites on a PCoA space, we observed a significant
segregation of the patient- and the environmental-
cluster (p < 0.001, ANOSIM; Fig. 3A). To determine the
differential interaction between sites, the weighted Uni-
Frac distances were compared pairwise and plotted as
heatmap (Fig. 3B). These comparisons identified the skin
samples (hand and elbow) as most related to the envir-
onmental samples, and especially similar to the doorhan-
dle samples. In contrast, the rectal samples showed the
highest distance to the environmental sites (see also
Suppl. Fig. S9).
Furthermore, the beta-diversity metrics revealed a site-

specific effect of each particular patient on the compos-
ition of the bacterial communities of their specific room.
The individual impact during the short period of
hospitalization (mean length of stay (LOS) = 5.8 days)
was significant for the skin samples (hand and elbow), as
shown by the pairwise comparison of distances between
particular patient sites and environmental sites from

either their own occupied room or the other rooms ad-
dressed in this study (Fig. 3C). These data suggest that
the skin microbiome dictates the immediate impact of a
particular patient on the environmental microbiota, and
that this effect can be measured as early as a few days
after admission.

Taxonomic succession and community structure over
time
As already shown, a significant quantitative and compos-
itional shift was observed after patient occupancy in all
three analyzed room sites. The Flavobacteriaceae-domi-
nated environment steadily evolved toward stable micro-
bial communities with a site-specific structure. After
hospital opening, the floor was characterized by the in-
crease of Moraxellaceae, the doorhandle was colonized
by Corynebacteriaceae and Streptococcaceae, and the
sink was dominated by Streptococcaceae and Veillonella-
ceae, among others (see also Suppl. Fig. S10). Analyses
at deeper taxonomic levels (species-level) targeting the
significant changes in taxa abundance between sites
showed the extent of the site-specificity during this early
colonization process. The Kruskal-Wallis test identified
42 OTUs as significantly changed between the three en-
vironmental sites, the top 10 of which are listed in Table
1.
When analyzing relative species abundance by sites,

Acinetobacter sp. and Pseudomonas sp. were identified
as the most prominent taxa at the later stages of the mi-
crobial colonization of the hospital floor. Escherichia coli
and Staphylococcus aureus were the most abundant spe-
cies in the doorhandle samples, and Veillonella rogosae
and Streptococcus sp. dominated the sink samples (Fig.
4A). In a next step, the taxa were arranged according to
their variation over time, as measured by statistical sig-
nificance after Kruskal-Wallis-testing. Figure 4B depicts
the fluctuation of the relative abundance over time for
the top 5 taxa that were significantly changed (Fig. 4B).
In many cases, the most abundant taxa of each site were
also among the significantly changed ones. So, among
others, the most important pattern changes were ob-
served for Acinetobacter sp. on the floor, E. coli and Ba-
cillus cereus at the doorhandle, and Prevotella sp. and B.
cereus in the sink. In all three sites, we also observed the
significant decrease of Flavobacterium sp. A directed
search for pathogenic bacteria in the hospital environ-
ment showed that only 3 of eleven common hospital
pathogens were detected in any of the environmental
samples: E. coli, S. aureus, and Enterococcus faecalis.
However, we could not detect a significant increase in
the relative abundance of these pathogens in the room
samples after patient occupancy (Suppl. Fig. S11).
The environmental community composition was then

analyzed for bacteria interactions using taxonomic units
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Table 1 Differentially abundant OTUs in each environmental site. Shown are the top 10 significant OTUs after Kruskal-Wallis test
with Bonferroni correction and the mean counts at each of the sampled room sites

Species Bonferroni_P Floor Doorhandle Sink

Pseudomonas sp. 1.96E-77 720.21 15.68 29.71

Acinetobacter sp. 7.76E-69 3572.17 197.35 174.29

Rheinheimera sp. 6.15E-67 508.66 8.30 15.00

Micrococcus sp. 5.65E-52 157.35 118.02 33.82

Lawsonella clevelandensis 9.74E-48 23.51 174.19 25.96

Corynebacterium kroppenstedtii 2.38E-40 21.39 223.22 21.69

Corynebacterium ureicelerivorans 2.90E-35 206.48 80.02 37.73

Corynebacterium testudinoris 1.25E-29 185.11 51.55 67.15

Staphylococcus aureus 5.38E-29 509.94 281.90 127.88

Corynebacterium glyciniphilum 4.53E-26 305.90 114.03 80.43

Fig. 3 Effect of patient occupancy on the bacterial colonization patterns. A PCoA of the beta-diversity depicting the weighted UniFrac distances
between environmental and patient samples. B Heatmap showing the similarity scores between sample pairs after establishment of the
environmental microbiome (final 6 weeks). C Comparative analysis of the pairwise weighted UniFrac distances between patients in single-rooms
and the environmental sites from either the own occupied room or the other rooms analyzed in the study (mean distance to all rooms). Each
dot represents the distance between a patient site and an environmental site in a specific week. (*p < 0.05, ***p < 0.001, paired t test)
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counts extracted from the sequence data. Interaction
networks were inferred for the pre-opening week (w0)
and for the last sampling week after patient occupancy
(w30), as representative for an incipient and a stabilized
microbial community structure, respectively. The result-
ing networks in the pre-opening week (w0) consisted of
36, 27, and 33 nodes in the floor, doorhandle and sink
samples, respectively. In all cases, non-pathogenic bac-
teria were dominant, while the overall clustering coeffi-
cients were between 0.11 and 0.15, suggesting a low
connectedness of the community members in all three
sites. After 30 weeks of patient occupancy, we observed
an increase of the node counts, with 40–41 bacteria in
each of the interaction networks. The connectedness
remained low, with clustering coefficients ranging be-
tween 0.08 and 0.13. However, modularity metrics in
doorhandle and sink networks were elevated throughout
the whole study duration. Interestingly, the floor showed
a low modularity in the pre-opening week (M = 0.215 in
w0), which almost doubled after patient occupancy (M =

0.411 in w30), suggesting that the modifications of the
community led to an interaction network with a modu-
lar structure. A closer look at the kinetics of this modu-
larity change revealed an early onset (first week of
patient occupancy) of this structure development (Fig.
5B). Taking all together and in spite of a low overall
connectedness between the community members of the
environmental microbiota, we observe an increase of the
interactions and the node counts for the networks over
time, and dense connections within certain groups of
bacteria (high modularity).

Antibiotic resistance gene dissemination in the hospital
environment
In a next set of experiments, we aimed to investigate
whether and to which extent the site-specific develop-
ment of the environmental microbiome might be associ-
ated with the dissemination of antibiotic resistance
determinants after hospital opening. Therefore, selected
weeks across the 30-week timeline were analyzed for the

Fig. 4 Dynamics of the bacterial community structure over time. A Relative abundance changes over time of the most abundant species. Bubble
size represents the proportional abundance across different week blocks. B Relative abundance dynamics of the top significantly changed taxa
(species level) across the different week blocks
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presence of 12 ARGs conferring resistance to beta-
lactams (blaKPC, blaNDM, blaOXA48, blaVIM,
blaCMY, blaGES, blaSHV, blaTEM, blaCTX-M1), quin-
olone (qnrB1), polymyxin (mcr1), and methicillin (mecA)
using specific real-time qPCR assays (Suppl. Table S4).
While half of the tested ARGs were not detected in any
of the environmental samples, six ARGs were tested
positive in the room samples after patient occupancy
(Fig. 6A). The ARGs found to be present in the environ-
mental microbiome included the genes coding for quin-
olone resistance proteins (qnrB1), beta-lactamases
(blaSHV, blaCMY, blaNDM, and blaVIM) and the
penicillin-binding protein PBP2a (mecA). Two of the
genes conferring resistance to beta-lactams, blaVIM and
blaNDM, showed the highest dissemination in our sam-
ple set with 18.5% and 15.5% of the analyzed samples be-
ing positive, respectively.

Dissecting the ARG-detection by sites allowed us to
identify an accumulation over time of the ARGs specific-
ally on the floor. While the amount of total ARG counts
(across the 9 tested rooms) did not increase over the 30-
week span in neither the sink nor the doorhandle sam-
ples, a steady increase (up to 20 total ARG counts in
week 30) was observed for the floor samples over time
(Fig. 6B). Breaking it down to the singular ARGs, the
most significant increase was observed for blaVIM,
which was absent in the pre-opening week and dissemi-
nated to all floor samples in week 16 after patient occu-
pancy. Interestingly, blaVIM was not detected in any of
the doorhandle or sink samples. Another gene, blaNDM,
was also highly detected on the floor (with 67% positive
samples in week 16). Other genes such as blaCMY,
blaSHV, and mecA showed highest dissemination on the
floor in week 30, with 22%, 11%, and 44% of the samples

Fig. 5 Network analyses of the hospital microbiome in the pre-opening week (w0) and the last sampling week (w30) after patient occupancy. A
Shown is the connectedness between nodes (colored according to their pathogenic status, see Suppl. Table S3). The clustering coefficient (CC)
and the modularity index (M) are depicted for each of the networks. B Modularity measured for each room site over time. Shown are the
modularity indices of each network as measured in different weeks
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being positive, respectively. The latter gene, mecA, was
also found to be present in a few doorhandle samples
and was constantly detected in the sink with 11–22%
positive samples starting from week 7 (Fig. 6C).
When analyzing the presence of resistance determi-

nants in the patient samples (rectal and nasal swabs), we
detected the same 6 genes found in the environmental
samples (Suppl. Fig. S12). However, the dissemination of
ARGs was not as pronounced as the one observed on
the floor samples. Moreover, analysis of the room-
specific detection of particular ARGs in both environ-
mental and/or patient samples showed no direct correl-
ation between the patient-environment pairs over each
week (p > 0.1, Chi-square test; see Suppl. Table S5).

Discussion
This study dissects the colonization dynamics of differ-
ent surfaces of the hospital environment after first pa-
tient occupancy. Such an early colonization process is
not a random procedure in which cells arbitrarily attach
and start growing. Instead, it is a complex process in-
volving attachment events, movement, and bacterial

interactions to yield a non-random spatial organization
[56]. The maturation of the community structure will
largely depend on the competition–colonization tradeoff
between its members [57] and the external stress condi-
tions [56]. Thus, the kinetic of such processes is highly
variable. So, for example, a recent study addressing the
colonization process of an urban wastewater treatment
plant reported compositional changes over a few months
until reaching a stable sewage microbiome [58]. Tem-
poral dynamics for the bacterial colonization of plastic
surfaces are even shorter, and have been reported in
terms of weeks [59, 60]. The longitudinal results of our
study on the colonization of hospital surfaces also point
toward very short time frames for the establishment of a
site-specific microbiota. In only 5–7 weeks, we observed
stable microbial communities at all tested locations,
which would not significantly change in their compos-
ition further on, as assessed by ANOSIM analyses on the
beta-diversity over time (Fig. 2E). Moreover, in this short
time frame, we observed a steady increase of the bacter-
ial biomass and its diversity. These are two characteris-
tics which have also been described for well-known

Fig. 6 ARG detection in the hospital environment after patient occupancy. A Bar chart depicting the ARG expression across all environmental
samples analyzed. Bars represent percentage of samples with positive ARG detection. B ARG detection over time. Shown are the total ARG counts
for each of the environmental sites over different weeks after hospital opening. C Chart depicting the specific ARGs detected at each site over
time. Shown is the percentage of positive samples
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colonization processes, such as the gut microbiome de-
velopment in infants [61, 62]. Toward the end of the
time series, we observed a slight decrease of the bacterial
biomass in each of the analyzed sites from the hospital
environment (Fig. 1A). We hypothesize that this general
reduction of bacterial load might be dependent, at least
in part, on seasonal fluctuations of physical factors that
have an effect on the entire patient room. Air
temperature and relative humidity have been reported to
correlate with indoor microbial community richness in
different buildings and environments [1, 16, 63, 64].
Moreover, in the clinical setting, a number of studies
have already reported seasonal and temperature-
associated increases of bacterial bloodstream infections
[65, 66] and surgical site infections [67] in hospitalized
patients. In our study, air temperature and relative hu-
midity were recorded in all rooms at the time of sam-
pling. Multiple regression models suggest a significant
association between these two physical factors and the
bacterial load measured in the room environment
(Suppl. Fig. S2). These findings underscore the import-
ance of thoughtful architectural design of new hospital
buildings, with a focus on temperature and ventilation
control [1, 16].
The fast maturation process of the microbial ecosys-

tems in the hospital environment as observed by its di-
versity metrics was further supported by the results
obtained by network analyses of their community inter-
actions. The overall connectivity of the communities was
rather low, as reflected by the clustering coefficients for
all sites. These observations are in agreement with the
results of a recent study investigating the environmental
microbiome in different medical units in Brazil [13].
However, in our study, we observed relatively high
modularity indices for all three room sites. While these
values did not change over time for doorhandle and sink
samples throughout the whole study, they clearly in-
creased on the floor. In the pre-opening week, the mi-
crobial community of the floor showed modularity
values of 0.215. These values almost doubled after
stabilization of the site-specific community (M (week30)
= 0.411). According to Newman (2006), values > 0.4 are
indicative of a modular structure in the networks [43].
Such modularity values are positively associated with
network stability and an improved resilience of the mi-
crobial communities to environmental stress factors
[68]. Interestingly, the highest rise of the modularity
index for the floor samples was already observed after
the first week of patient occupancy (from 0.215 (w0) to
0.375 (w1)), suggesting an early onset of the modular
structuring of the community and thus, of its stability.
In the particular case of the floor, the fast increase of
modular structures and the stabilization of its microbial
composition is remarkable, as it represents the

continuation of the outside environment, where a high
bacterial exchange and shoe-to-floor carryover might be
assumed [69].
In our study, we observe a site-specific organization of

the communities, which are more divergent between
each other as the community structures develop over
time. Grinberg et al. (2019) suggested that such early
colonization processes are driven by self-organizing
mechanisms, such as preferential attachments. The au-
thors described this process as a stochastic growth, in
which individuals join existing groups and aggregate in a
system in a non-random way [56]. In our system, the pa-
tient occupancy is the main driving input of new bacter-
ial cells, which will then show its preferential attachment
to different aggregates in each niche. From the patient
microbiota, the skin microbiome (hand and elbow)
showed the highest impact on the hospital environment,
which is in agreement with previous findings [11]. Indir-
ectly, the human action also introduces severe distur-
bances and landscape changes to the system in a site-
specific manner. Besides daily washing/disinfection pro-
cedures, these disturbances also include the alternating
wet-dry cycles of the sink. Grinberg et al. (2019) demon-
strated that periodic stress, and wet-dry cycles in par-
ticular, lead to lower community fitness [56]. This might
explain, at least in part, that the structure dynamics are
most biased in the sink samples, as measured by the
lower modularity of its network (M = 0.330 week 30) or
the increased fluctuation observed in the beta-diversity
analyses over time.
From a taxonomic point of view, the most abundant

species identified in the sink was Veillonella rogosae,
which showed a significant increase of its relative abun-
dance over time. This species is known as one of the
early colonizers in oral biofilm formation [70, 71]. In this
context, V. rogosae has been reported to coaggregate
with Streptococcus spp. and cooperate in the early stages
of biofilm formation of the oral cavity [70]. Accordingly,
we identified two Streptococcus entries among the 5 top
abundant species in the sink samples, one of them being
an “oral clone” (Fig. 4A). Indeed, V. rogosae and the
Streptococcus spp. account for 32.3% of all sink species
in week 30. Moreover, a significant interaction between
the oral Streptococcus sp. and V. rogosae was identified
in the network analysis of week 30 (p < 0.05), but not in
the pre-opening week. These results might point toward
the dental hygiene measures of the patients as one of the
main contributors to the bacterial colonization process
in the sink. This hypothesis is in agreement with previ-
ous studies reporting a dominant presence of Veillonel-
laceae in bathroom sink drainage pipes [72] as opposed
to other periodically wet household surfaces, such as kit-
chen sinks or bathroom showers [73]. Furthermore, Veil-
lonella and Streptococcus species were recently identified
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as the main bacterial taxa found on used toothbrushes
by metagenomics approaches [74], which is consistent
with the bacterial community structure found in our
sink samples. On the floor, we identified Acinetobacter
as the most abundant genera, showing a significant in-
crease over time after patient occupancy. The high dom-
inance of this single taxa contributes to an unexpected
low alpha-diversity metric on the floor when compared
to the other two sites. However, the observed dominance
of Acinetobacter species on floor samples is in agree-
ment with the findings of other studies addressing the
floor microbiota of public buildings [11, 75]. While taxo-
nomic analyses did not permit for species assignment,
targeted sequence search allowed us to discard the pres-
ence (< 0.1%) of the pathogenic bacteria Acinetobacter
baumanii sequences in our sample set. On the other
side, we identified two potential pathogens (E. coli and S.
aureus) as the most abundant species on the doorhandle
samples. However, we did not detect a significant in-
crease of these species over time.
From a scientific point of view, monitoring of bacterial

communities in the hospital environment would not
only allow for a better understanding of the growth dy-
namics of potential pathogens, but also to characterize
the dissemination of antibiotic resistance determinants.
A recent study by Gupta et al. (2019) showed an in-
creased incidence of ARGs on floor surfaces of hospitals
when compared with other building types [76]. The au-
thors investigated the presence of three ARGs in their
study, and were the first to report the presence of
blaKPC, a mobile beta-lactamase coding ARG, on the
floor surface of a hospital. In our study, we explored the
presence of 12 different ARGs, most of them coding for
different beta-lactamases. To our knowledge, this is the
first study addressing such an amount of ARGs in the
hospital environment. Six of the ARGs were detected in
the room sites analyzed: blaVIM, blaNDM, blaCMY,
blaSHV, qnrB, and mecA. While ARG detection on
doorhandle and sink was rather random over time, we
detected a site-specific increase of ARGs after patient
occupancy on the floor surface. The most significant in-
crease was observed for blaVIM, which was absent in
the pre-opening week and steadily increased its dissem-
ination until its detection on the floors of all 9 rooms in
week 16 after patient occupancy. Plasmids with this
carbapenemase-coding gene have been often detected in
clinical isolates from diverse Acinetobacter and Pseudo-
monas species [77–79]. Interestingly, these two genera
are among the 5 most abundant taxa on the floor in
week 30, accounting for a combined 55.4% of the relative
abundance in that week. Since the distribution of Acine-
tobacter spp. and Pseudomonas spp. is also highly signifi-
cant between the analyzed room sites (see Table 1 for
relative distribution values), it might be reasonable to

assume that these species might harbor the bulk of the
resistance determinants detected on the floor surface in
this study. The other 2 ARGs with high incidence and
increasing detection on the floor were blaNDM and
mecA. In the clinical setting, these ARGs are typically
isolated from E. coli and S. aureus, respectively [80, 81].
These two species ranged as top 14 and top 3 most
abundant species on the floor in the last sampling week.
However, the data does not allow for direct pathogen-
ARG association. We can also not assume that all ARGs
originate from live bacteria at the time of sampling. Fur-
ther studies are needed to investigate whether mobile
ARGs might bear the potential to be integrated by hu-
man pathogenic bacteria. Transformation processes and
horizontal gene transfer between bacteria have been de-
scribed as potential mechanisms in this context [82–84].
Moreover, ARG acquisition by natural transformation
has been shown to be triggered by disinfection measures
[85]. Some studies have pointed toward an underappre-
ciated potential of the floor surfaces as source for health
care-associated pathogens or ARGs [63–65]. However,
epidemiological studies suggest an inconsequential con-
tribution of microorganisms from inanimate surfaces to
the incidence of HAIs [86–88]. In line with this, we did
not detect any nosocomial infection with either
methicillin-resistant S. aureus, extended-spectrum beta-
lactamase-producing enterobacterales, or carbapenem-
resistant enterobacterales among the patients enrolled in
our study. Further environmental studies with an add-
itional epidemiological focus are needed to investigate
the effect strength of the floor as potential transmission
source.
Our study has some limitations, which mainly in-

clude the inability to assign detected ARGs to specific
bacteria, the inability to discriminate between live and
death bacteria, and the limited amount of ARGs that
were tested. In addition, only one ward was analyzed
in this study, although on a very comprehensive sam-
pling scheme. Further studies involving different
wards and more healthcare centers should validate
the results observed in this work. Furthermore, the
integration of metagenomics strategies will allow the
identification of particular antibiotic-resistant strains
in each of the room sites. Seasonal factors could be
only partially investigated in this study. More time
series over a longer period of time are needed to in-
vestigate their effect on compositional aspects and
not only on biomass. In addition, bacterial community
structure might be different in older buildings, and
on different surface materials. Further comparative
analysis between hospitals and cleaning regimes might
add valuable information at the epidemiological and
the microbiological level for the refurbishment or
renovation of older health care buildings.
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Conclusions
In conclusion, this study describes the early bacterial
colonization dynamics of the hospital environment upon
initial patient occupancy. We report a site-specific devel-
opment of the microbial populations on doorhandle,
sink, and floor surfaces, leading to stable community
structures in only a few weeks after patient occupancy.
This colonization is characterized by an initial increase
in the bacterial load and its diversity. In the particular
case of the floor surface, the colonization process is as-
sociated with a significant rise of antibiotic-resistance
determinants over time. This data contribute to a novel
understanding of the environmental microbiota in the
hospital setting.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40168-021-01109-7.

Additional file 1: Suppl. Figure S1. Workflow schematic of the
longitudinal study. Shown is the map depicting the 9 rooms of the
neurological ward in which 1547 samples were collected including 3
environmental sites and 4 patient sites over a time course of 31 weeks
(Pre-opening week + 30 weeks after initial patient occupancy). The
metagenetic pipelines included 16S rRNA quantification and sequencing
steps, as well as Taq-Man assays for ARG-detection. Suppl. Figure S2.
Correlation between physical parameters and bacterial load. Shown are
different multiple regression models which beside location include either
the temperature, the humidity or both factors as potential contributors to
the bacterial load as measured by 16S rRNA copies (qPCR). The highest r2
value and the best model fit was achieved when combining both
temperature and humidity in the regression model. (C/E: copies per ex-
traction). Suppl. Figure S3. Alpha- and beta-diversity metrics used for
systematic subsampling in week-blocks. A) Shown are the overall alpha-
diversity values of the collapsed environmental microbiome of each of
the 31 weeks. Significant increase was observed after the first initial 4-
week block. B) PCA of the collapsed environmental microbiome data for
all 31 week (each week represented by a single dot). The coloring
scheme is based on the distance pattern between consecutive weeks.
The second block (8 weeks, green) was further divided in two halves to
allow a more detailed analysis of the critical period of community
stabilization, which was shown to occur between weeks 5 and 7 after pa-
tient occupancy. Suppl. Figure S4. Alpha-diversity metrics of the differ-
ent room sites over time. Shown are the Shannon indices (Median and
IQR 25-75%) of floor, doorhandle and sink samples across different week
blocks. Suppl. Figure S5. Distance comparison between sites in the pre-
opening and last sampling weeks. Shown are the weighted UniFrac dis-
tances between site pairs as measured in week 0 and in week 30 (Mean±
SEM; *p<0.05; **p<0.01). Suppl. Figure S6. No impact of spatial room
distribution on microbiome patterns. A) Principal Coordinate plots show
the distribution of the microbiome data based on the distribution of the
rooms across the ward. Shown are the p-values obtained by PERMANOVA
test. B) The floor plan shows two clusters of contiguous rooms among
the sampled sites, which are located on opposing sides of the neurology
ward. Suppl. Figure S7. Patient microbiome patterns in this study. A)
Collapsed taxonomic summary of the nasal and rectal swabs collected
from the patients during the first 30 weeks of occupancy. B) Heatmaps
showing the amount of shared taxa (at family level) between the core
microbiomes of the environmental- and the patient-samples for different
week-blocks. C) Taxonomic summary of the hand and elbow samples col-
lected during the final 6 weeks of the time series. Suppl. Figure S8. Cor-
relation plots between alpha-diversity metrics and external factors
(temperature and humidity). Shown are the correlations between the
temperature (°C) or the humidity (%) and the alpha-diversity of the three
environmental sites. Suppl. Figure S9. PCoA of the beta-diversity

depicting the distances between environmental and patient samples.
Shown are the weighted UniFrac distances between the environmental
cluster (grey) to each of the patient sites individually (colored). Suppl.
Figure S10. Dynamics of the bacterial community structure over time. A)
Relative abundance changes over time of the most abundant families.
Bubble size represents the proportional abundance across different week
blocks. B) Relative abundance dynamics of the top significantly changed
taxa (family level) across the different week blocks. Suppl. Figure S11.
Pathogen colonization of the hospital environment. A) Bar-chart depict-
ing the incidence of pathogenic bacteria in the analyzed environmental
samples. Shown are the number of samples positive for C. difficile or any
of the 10 most frequent pathogens isolated from Charité-patients during
the sampling period. B) Relative abundance of the detected pathogen se-
quences over time. Shown are the patterns across different week blocks.
Suppl. Figure S12. ARG detection in the patient samples (rectum and
nare) over selected weeks. Chart depicts the percentage of positive sam-
ples in each week for each of the ARGs. Suppl. Table S1. Basic epi-
demiological parameters of the patients sampled in this study. Suppl.
Table S2. Library PCR-constructs. Shown are the sequences of the Fw-
and Rv-primers used for library construction. Suppl. Table S3. List of
nodes from the network analysis, indicating their pathogenicity status
and the supporting reference source. When the taxa was not listed in
any of the pathogen databases (KEGG Pathogens database (https://www.
kegg.jp/kegg/genome/pathogen.html); ISID: Database of The International
Society for Infectious Diseases (ISID) (https://isid.org/)), literature research
was performed with the species name. Reports on opportunistic patho-
genicity were referenced where possible. In all other cases, the node was
defined as non-pathogen/unclassified. Suppl. Table S4. List of all ARGs
addressed in this study, indicating the sequences of the designed primers
and probes used for their detection via Taq-Man assay. In all cases,
primers were designed to cover maximum number of known gene vari-
ants. Suppl. Table S5. Correlation tests between the occurrence of spe-
cific ARGs in Patient AND Environment Sites in a particular week. Shown
are the p-values obtained for each correlation (Chi-Square test).
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