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Prevotella copri increases fat accumulation
in pigs fed with formula diets
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Abstract

Background: Excessive fat accumulation of pigs is undesirable, as it severely affects economic returns in the
modern pig industry. Studies in humans and mice have examined the role of the gut microbiome in host energy
metabolism. Commercial Duroc pigs are often fed formula diets with high energy and protein contents. Whether
and how the gut microbiome under this type of diet regulates swine fat accumulation is largely unknown.

Results: In the present study, we systematically investigated the correlation of gut microbiome with pig lean meat
percentage (LMP) in 698 commercial Duroc pigs and found that Prevotella copri was significantly associated with fat
accumulation of pigs. Fat pigs had significantly higher abundance of P. copri in the gut. High abundance of P. copri
was correlated with increased concentrations of serum metabolites associated with obesity, e.g.,
lipopolysaccharides, branched chain amino acids, aromatic amino acids, and the metabolites of arachidonic acid.
Host intestinal barrier permeability and chronic inflammation response were increased. A gavage experiment using
germ-free mice confirmed that the P. copri isolated from experimental pigs was a causal species increasing host fat
accumulation and altering serum metabolites. Colon, adipose tissue, and muscle transcriptomes in P. copri-gavaged
mice indicated that P. copri colonization activated host chronic inflammatory responses through the TLR4 and
mTOR signaling pathways and significantly upregulated the expression of the genes related to lipogenesis and fat
accumulation, but attenuated the genes associated with lipolysis, lipid transport, and muscle growth.

Conclusions: Taken together, the results proposed that P. copri in the gut microbial communities of pigs fed with
commercial formula diets activates host chronic inflammatory responses by the metabolites through the TLR4 and
mTOR signaling pathways, and increases host fat deposition significantly. The results provide fundamental
knowledge for reducing fat accumulation in pigs through regulating the gut microbial composition.
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Background
Fatness traits such as backfat thickness and lean meat
percentage (LMP) are economically important traits that
affect the efficiency and return of modern pig production.
Many factors can influence fat accumulation or fatness of

pigs, including genetics, feed, and management. In
humans and mice, an increasing number of studies using
metagenomic sequencing analysis, colonization experi-
ments of germ-free mice, or cohousing of mice harboring
different gut microbiota have demonstrated that the gut
microbiota is an important factor contributing to host
obesity [1–5]. The gut microbiome of obese individuals
often has a lower ratio of Bacteroidetes to Firmicutes and
an increased capacity to harvest energy from the diet [5,
6]. The domestic pig is an ideal animal model for studying
the causal role of gut microbiota in host obesity and fat
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accumulation because pigs are prone to deposit excess fat,
and the diets of pigs are easily controlled. Furthermore,
pigs show a high similarity of gastrointestinal structure
with humans [7].
Despite a decade of research establishing a strong asso-

ciation between the gut microbiota and obesity, conflicting
findings provided by several studies have challenged this
view [8, 9]. There are few bacterial strains that have been
isolated and confirmed as having causal roles in obesity
[10–12]. Moreover, the underlying mechanism has not yet
been clearly established [13], although several studies have
indicated that obesity is associated with a low-grade sys-
temic and chronic inflammatory condition [14, 15]. In the
modern pig industry, to obtain rapid body weight gain,
commercial formula diets with high concentrations of
proteins and energy have often been provided to produc-
tion pig herds. Whether and how the gut microbiome reg-
ulates swine fat accumulation (e.g., LMP) is also largely
unknown.
In the current study, we investigated the relationship

of gut microbial species with fat accumulation of pigs by
performing an association study in 698 commercial
Duroc pigs fed commercial diets (corn-soybean formula
feeds containing 2960–3023 kcal/kg of digestible energy
and 15–17% of protein). We identified P. copri as a main
bacterial species increasing host fat accumulation (de-
creasing LMP) in pigs. High abundance of gut P. copri
increased serum levels of lipopolysaccharide (LPS),
branch chain amino acids (BCAAs), aromatic amino
acids (AAAs), and the metabolites of arachidonic acid
metabolism, thereby increasing host intestinal barrier
permeability and causing a chronic inflammation re-
sponse through the TLR4 and mTOR signaling path-
ways. The expression levels of genes related to lipid
metabolism, transport, and localization in adipose and
muscle tissues were significantly altered. To further con-
firm the causality of P. copri in host fat accumulation
and investigate the diet effect on the colonization of
P. copri isolated in this study, a gavage experiment using
P. copri was carried out in germ-free mice (Additional
file 1: Fig. S1).

Results
Identifying a significant association of P. copri with fat
accumulation of pigs
Excessive fat accumulation significantly decreases pig
lean meat percentage (LMP). Therefore, in this study,
we used the LMP as an index to assess the role of the
gut microbiome in porcine fatness. We recorded the
LMP of 698 commercial Duroc pigs raised in two farms.
The discovery cohort comprised 550 pigs (309 males
and 241 females) from two farms (280 from Shahu and
270 from Jiangying), and the validated cohort contained
148 pigs (100 males and 48 females) from the Jiangying

farm (Methods). The phenotypic values generally fitted
the normal distribution (Additional file 1: Fig. S2). All
698 pigs had fecal samples collected at the age of 160
days, and we performed hypervariable region sequencing
of the 16S rRNA gene (V4 region for the discovery co-
hort and V3–V4 regions for the validation cohort). The
descriptions of the sequencing procedures are summa-
rized in Additional file 2: Table S1. We first analyzed
the association of enterotypes and co-abundance groups
(CAGs) of OTUs with the LMP in the discovery cohort.
All samples were clustered into two enterotype-like
groups that were dominated by either Prevotella or
Treponema, and the pigs with the Prevotella enterotype
had significantly lower LMP (Additional file 1: Fig. S3).
At the CAG level, all 1,159 OTUs that passed quality
control were used to construct a co-abundance network.
These OTUs were clustered into 12 co-abundance
groups (CAGs) based on SparCC correlation coefficients
(Fig. 1a and Additional file 1: Fig. S4). The CAG3 con-
taining the OTUs mostly annotated to Prevotella, espe-
cially P. copri, were negatively correlated with the LMP,
while the CAG8 that contained the OTUs annotated to
F. prausnitzii and R. flavefaciens showed strongly posi-
tive correlations with the LMP, suggesting the central
roles of these CAGs in the functional guilds of gut
microbiota related to the LMP (Fig. 1a).
We then performed a bacteria-wide association study

with a two-part model to identify the bacterial taxa signifi-
cantly associated with the LMP in the discovery cohort. A
total of 166 LMP-associated OTUs were identified at FDR
< 0.01, including 82 OTUs positively associated with the
LMP and 84 OTUs showing negative associations with the
LMP. Those positively associated OTUs mostly belonged
to the order Clostridiales, for example, F. prausnitzii,
Lachnospiraceae, and Ruminococcaceae, while the nega-
tively associated OTUs were mainly aligned to Prevotella
(40/84). In particular, 18 P. copri OTUs showed the
strongest negative associations with the LMP (Fig. 1b and
Additional file 2: Table S2).
The results of the enterotype analysis were well repeated in

the validation cohort. The OTUs belonging to Prevotella
(e.g., P. copri) were clustered into the CAG8 that was nega-
tively associated with the LMP, and the OTU17 annotated to
P. copri was the hub node in the co-abundance network
(Additional file 1: Fig. S5). A total of 11 LMP-associated
OTUs were identified in the validation cohort. Most of the
bacterial taxa annotated to these LMP-associated OTUs were
the same as those in the discovery cohort (8/11). Two out of
the five OTUs positively associated with the LMP belonged
to Christensenellaceae, while the OTUs showing the most
significant negative association with the LMP were annotated
to Prevotella and P. copri (Additional file 2: Table S3).
These results further suggest the significant association of
P. copri with fat accumulation of pigs.
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Fig. 1 P. copri identified as a hub bacterial species decreasing lean meat percentage (LMP) of pigs. a OTU-level network diagram for identifying co-
abundance groups (CAGs) responding to porcine LMP. Node sizes show the average abundance of each OTU. Red and grey lines between nodes
indicate the positive and negative correlations between the nodes, respectively. Only lines corresponding to the correlations with a magnitude greater
than 0.5 are drawn. The OTUs passing quality control (relative abundance ≥ 0.1% and present in at least 1% of pigs in the test cohort) were grouped
into 12 CAGs by permutational multivariate analysis of variance (PERMANOVA) when P < 0.005. The color gradients on the right show the P values and
coefficients (in the brackets) of the correlations between CAGs and the LMP. b Key OTUs of fecal microbiota associated with pig LMP. The histogram
shows the Z scores computed for the OTUs significantly associated with the LMP using a two-part model. Only those OTUs for which the Z scores
were ranked in the top 20 for positive (red bars) and negative (blue bars) association are shown. c Bacterial species significantly associated with the
LMP using metagenomic sequencing data. The histogram shows the LDA scores computed for bacterial species differentially abundant between the
samples with extremely high (n = 8) and low LMP (n = 8)
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We further performed shotgun metagenomic sequen-
cing of 16 fecal samples that were contained in the valid-
ation cohort, including eight samples with the highest
LMP values and another eight samples with the lowest
LMP (Additional file 1: Fig. S6a). The metagenomic se-
quencing data are summarized in Additional file 2: Table
S4. Consistent with the previous findings in humans [12,
16], the fat pigs had a significantly lower number of genes
and α-diversity (Shannon index) in the gut microbiome
than their lean counterparts (Additional file 1: Fig. S6b,
c). We identified 40 species responsible for the LMP by a
linear discriminant analysis of effect size (LEfSe). The
members from Prevotella predominated the bacterial spe-
cies enriched in fat pigs (13/20). In particular, P. copri
showed the strongest negative association with the LMP
and was the hub species among the bacterial species de-
creasing the LMP (Additional file 1: Fig. S6d). A total of
20 species were enriched in lean pigs, most of which were
SCFAs-producing bacteria from Treponema and Clostri-
diales, e.g. Lactobacillus reuteri and Bifidobacterium
longum (Fig. 1c). To extend the metagenomic sequencing
data, we integrated the metagenomic sequencing data of
20 fecal samples from the discovery cohort that were
chosen based on the phenotypic values of feed efficiency
in our previous study [17]. Similar to the results in the 16
samples, the results in the integrated 36 samples showed
that four species of Prevotella including P. copri were sig-
nificantly associated with the decreased LMP, while the
species from Treponema and Clostridiales had higher
abundance in lean pigs (Additional file 1: Fig. S7a).

Functional capacity of the gut microbiome related to fat
accumulation of pigs
We next investigated the function capacities of the gut
microbiome related to the LMP by mapping the micro-
bial gene catalog onto the Carbohydrate-Active en-
ZYmes database (CAZy), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) modules using metage-
nomic sequencing data. We identified a total of 50
CAZymes having significantly different abundances be-
tween fat and lean pigs, with 27 CAZymes involved in
the metabolism of galactose, xylan, and mannose that
were enriched in lean pigs. The 23 CAZymes having sig-
nificantly higher abundance in the gut microbiome of
obese individuals are mainly involved in the metabolism
of rhamnose and glucan, and the biosynthesis of lipo-
polysaccharide (e.g., GH28, PL11, GH22, PL10 and GT4)
(Fig. 2a). Correlation analysis between the LMP-
associated OTUs and CAZymes indicated the contribu-
tion of the LMP-associated bacteria to the changes in
CAZymes (Fig. 2b).
The LMP-associated KEGG pathways are shown in Fig.

2c and Additional file 1: Fig. S7b. We identified 17
KEGG pathways having significantly higher abundance in

the gut microbiomes of fat pigs, including lipopolysac-
charide biosynthesis and arachidonic acid metabolism in-
volved in mediating inflammatory reactions [11, 18]; FoxO
signaling pathway, insulin resistance, BCAA (valine, leu-
cine, and isoleucine) biosynthesis, and metabolism of aro-
matic amino acids (tyrosine and phenylalanine, AAA)
related to obesity and insulin resistance [12, 15], [19, 20]
along with a two-component system, bacterial chemotaxis,
flagellar assembly, and carbohydrate digestion and absorp-
tion associated with increased capacity for energy harvest
from bacteria [6, 21]. The pathway bacterial invasion of
epithelial cells that should impair gut barrier integrity was
also highly enriched in fat pigs compared with lean pigs
(Fig. 2c). All these pathways were positively correlated
with the fatness-associated bacterial species, especially
with P. copri (Fig. 2d), suggesting that the bacterial species
from fat pigs may produce more factors related to inflam-
matory reactions, obesity and insulin resistance, impair
host gut barrier integrity, and increase the capacity for en-
ergy harvesting.
We further isolated and cultured P. copri in vitro from

the fecal samples of the experimental pigs with low LMP
values. Whole-genome sequencing was performed using
a Nanopore platform (“Methods”). The full-length of P.
copri genome comprised 3.44 Mb containing 3,039 cod-
ing genes (CDS) (Additional file 1: Fig. S8). We first
constructed a phylogenetic tree based on the genome se-
quences of P. copri isolates, including 60 isolates from
westernized human populations, 51 isolates from non-
westernized human populations, and one pig isolate
from this study. The P. copri isolated from pigs in this
study was clearly located in the clade from the western-
ized Chinese population (Fig. 3a). A total of 24 polysac-
charide utilization loci (PULs) were then identified in
this P. copri isolate. More than 10 PULs had higher
prevalence in westernized populations (Additional file
1: Fig. S9). The genes involving in arachidonic acid me-
tabolism, BCAA biosynthesis, AAA biosynthesis and me-
tabolism, the TCA cycle, and protein export were found
in the genome of this P. copri isolate, and the abun-
dances of these genes in the tested samples were deter-
mined by combining the metagenomic sequencing data.
Consistent with the LMP-associated functional capaci-
ties identified only by the metagenomic sequencing data,
the gut microbiome of fat pigs had significantly higher
abundances of the P. copri genes involved in arachidonic
acid metabolism, BCAA biosynthesis, AAA biosynthesis
and metabolism, and insulin resistance, but had lower
abundances of the genes participating in the TCA cycle
and protein export compared with lean pigs (Fig. 3b).
Considering the high abundance of gut P. copri in
fat pigs, P. copri was a main contributor to the shifts
in metagenomic functional capacity related to the
LMP.
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Conversely, 15 KEGG pathways had significantly
higher abundance in lean pigs (Fig. 2c), including buta-
noate metabolism, citrate cycle (the TCA cycle), metab-
olism of cofactors and vitamins, lysine degradation,
cysteine and methionine metabolism, and arginine and
proline metabolism. All these pathways were positively
associated with multiple high LMP-associated bacterial
species (Fig. 2d).

The changes of serum metabolome in fat pigs and the
correlation with shifts in gut microbiome
We first measured and compared the concentrations of
serum LPS and lipopolysaccharide-binding protein (LBP)
using an enzyme-linked immunosorbent assay (ELISA)

between lean pigs (n = 8) and fat individuals (n = 8).
Consistent with the higher abundance of the functional
capacity of LPS biosynthesis in the gut microbiome, fat
pigs had significantly higher serum LPS concentrations
compared to their lean counterparts (P < 0.005). The
same result was also observed for LBP (P < 0.05; Fig. 4a).
We then determined non-targeted metabolome profiles
of 38 serum samples randomly collected from the vali-
dated cohort. We identified 80 metabolite features show-
ing significant association with the LMP by Spearman’s
rank correlation analysis (FDR < 0.05) (Additional file
2: Table S5). These LMP-associated metabolites were
clustered into 23 KEGG pathways covering most of the
LMP-associated functional pathways of the gut

Fig. 2 Functional capacities of the gut microbiome associated with pig lean meat percentage (LMP) and its correlation with the LMP-associated
bacteria with available metagenomic data. a Function terms of CAZy associated with the LMP. b Correlations of the LMP-associated CAZymes
with the LMP-associated bacterial species. c Functional terms of KEGG pathways associated with the LMP. d Correlations of the LMP-associated
KEGG pathways with the LMP-associated bacterial species. The histogram shows the LDA scores computed for function terms differentially
abundant between samples with high (n = 8) and low LMP (n = 8). The correlations between LMP-associated function terms and bacterial
species were set at the threshold |r| > 0.5, FDR < 0.05

Chen et al. Microbiome           (2021) 9:175 Page 5 of 21



Fig. 3 Genomic information of P. copri isolated in this study. a Phylogenetic tree of P. copri isolates from westernized and non-westernized human
populations and from this study based on the genome sequences. Different colors of the outer circle represent the countries that samples were from;
different colors of the inner circle indicate diets. b Comparison of abundances of the genes identified in the P. copri genome and involved in arachidonic
acid metabolism, BCAA biosynthesis, AAA biosynthesis and metabolism, insulin resistance, the citrate cycle, and protein export between lean and fat pigs
by integrating the metagenomic sequencing data; high: fat pigs; low: lean pigs. *FDR < 0.05, **FDR < 0.01, ***FDR < 0.005

Fig. 4 Lipopolysaccharide (LPS), lipopolysaccharide binding protein (LBP), and partial serum metabolites that differed in normalized abundance
between fat and lean pigs, and their correlations with the LMP-associated bacterial species. a Comparison of the concentrations of serum LPS
endotoxin and LBP between fat and lean pigs. High means the pigs with high LMP, and low represents the pigs with low LMP (fat pigs). b
Metabolites that differed in normalized abundance between pigs with high (n = 8) and low LMP (n = 8). Red bars represent the normalized
abundances of metabolites in lean pigs, blue bars show the normalized abundances of metabolites in fat pigs. c Correlations between the
fatness-associated metabolites and the LMP-associated bacterial species. d Correlations between the high LMP-associated metabolites and the
LMP-associated bacterial species. The color gradient represents the values of correlation coefficients
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microbiome (Additional file 1: Fig. S10). We next fo-
cused on some interesting LMP-associated metabolites
based on the LMP-associated functional capacities of the
gut microbiome. Serum concentrations of BCAA, AAA,
and their related metabolites were considerably higher in
fat pigs than in lean individuals (Fig. 4b and Additional
file 1: Table S5). Furthermore, compared to their lean
counterparts, fat pigs had significantly higher serum
concentrations of the metabolites related to inflamma-
tory reaction and metabolic syndrome, such as 3-
methyl-2-oxovaleric acid, an intermediate of BCAA me-
tabolism that can induce the accumulation of BCAAs
[22], L-rhamnose (an important component of lipopoly-
saccharides), and the metabolites of arachidonic acid
metabolism (5-HETE, 9-HETE, leukotrienes, and prosta-
glandins) (Fig. 4b and Additional file 2: Table S5).
These were notably consistent with the proposed func-
tion capacity of the gut microbiome for BCAA biosyn-
thesis and the metabolism of AAAs and arachidonic acid
in fat pigs (Fig. 2b).
Compared to fat pigs, lean pigs had higher concentra-

tions of the metabolites previously reported to reduce fat
accumulation of pigs and increase lean muscle mass in
serum, e.g., creatine [23] and the metabolites of betaine
[24] (L-histidine trimethyl betaine and proline betaine)
and anti-inflammatory factors (Lipoxin A4) [25] (Fig.4b
and Additional file 2: Table S5). Catecholamines, in-
cluding dopamine, N-acetyl dopamine, and L-dopa,
which can reduce lipid accumulation in adipose tissue
by increasing lipolysis, thereby decreasing lipogenesis
and promoting free fatty acid (FFA) transportation [26],
also exhibited higher abundances in the serum of lean
pigs (Additional file 2: Table S5 and Fig. 4b). Serum
concentrations of vitamins (vitamin K1, K2, D3, biotin,
and pantothenic acid) were also significantly higher in
lean pigs than in fat individuals (Additional file 2:
Table S5).
We further evaluated the contribution of the LMP-

associated bacteria to the shifts in serum metabolites at
the OTU level in 38 samples with metabolome profiles
(Additional file 1: Fig. S11) and at the species level in
16 samples having both metagenomic sequencing and
metabolome data (Fig. 4c). P. copri was positively corre-
lated with nearly all fatness-associated metabolites men-
tioned above, but negatively associated with the lean-
associated metabolites (Fig. 4d). The other LMP-
associated bacteria also contributed to the LMP-
associated metabolites to different extents. For example,
both P. copri and two Bacteroides spp. were significantly
associated with serum BCAA concentration, but serum
BCAA was largely driven by P. copri (Additional file 1:
Fig. S12). These results indicated a significant contribu-
tion of the LMP-associated bacteria to the shifts in host
serum metabolites related to fat accumulation.

Taken together, chronic inflammation-associated me-
tabolites, e.g., BCAA, AAA, and metabolites of arachi-
donic acid, had higher abundances in fat pigs, while the
metabolites associated with anti-inflammation, lipid me-
tabolism, and energy expenditure were enriched in the
serum of lean pigs. The P. copri and other LMP-
associated bacteria responded to the shifts in serum me-
tabolites in fat pigs.

Increased host intestinal barrier permeability and chronic
inflammatory reaction in fat pigs
Given the increased concentrations of serum LPS and
the metabolites related to inflammatory reactions in fat
pigs, in order to examine the host intestinal barrier per-
meability and chronic inflammation response, we deter-
mined the serum levels of biomarkers zonulin, diamine
oxidase (DAO), and FABP2 [27] and the pro-
inflammatory cytokines tumor necrosis factor α (TNF-
α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and
interferon-γ (IFN-γ). As expected, compared to high
lean meat pigs (n = 8), fat pigs (n = 8) had higher serum
concentrations of zonulin (P< 0.005) and FABP2 (P =
0.083) although no significant difference was found in
DAO (Fig. 5a), suggesting an increased intestinal barrier
permeability in fat pigs. Moreover, fat pigs also had
higher serum concentrations of TNF-α, IL-1β, IL-6, and
IFN-γ (Fig. 5b), indicating host chronic inflammation re-
sponse. Taken together, the results of metabolome ana-
lysis suggest that a high abundance of gut P. copri may
induce host intestinal barrier permeability and promote
chronic inflammatory response through the metabolites
of LPS, BCAA, AAA, and arachidonic acid, and thereby
increase fat accumulation in pigs.

Gavage in germ-free mice confirmed the causal role of P.
copri
We next evaluated the possible causal relationship be-
tween P. copri isolated from experimental pigs and host
fat accumulation via a gavage experiment using live P.
copri in germ-free mice. A qPCR analysis of fecal DNA
at the end of a 1-month gavage experiment confirmed
the successful colonization of P. copri in the guts of each
treated mouse (Fig. 6a). Phenotype measurements found
significantly increased body fat percentage (P < 0.01)
and epididymis fat percentage (P < 0.05) in P. copri-
gavaged mice raised on a normal chow diet (Fig. 6b). Fat
accumulation became more severe in P. copri-gavaged
mice fed a high-fat diet (HFD) (P < 0.005) (Fig. 6b).
Gavage with the bacteria significantly increased

serum concentrations of both LPS and LBP (P < 0.005).
Moreover, the serum concentration of LPS was en-
hanced by the HFD (Fig. 6c). P. copri colonization also
caused increased serum concentrations of the intestinal
barrier permeability biomarkers FABP2 (P < 0.01) and
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zonulin (P < 0.05). Notably, feeding a high-fat diet to
colonized mice reinforced intestinal barrier permeabil-
ity. The serum concentration of DAO increased near
twofold in mice colonized by P. copri and fed a high-fat

diet (Fig. 6d). Notably, serum concentrations of pro-
inflammatory cytokines (IL-6, IL-1β, TNF-α, and IFN-
γ) were significantly higher in P. copri-colonized mice
than in PBS-gavaged control mice. This was enhanced

Fig. 5 Comparison of serum concentrations of blood markers of gut permeability pathophysiological epithelium integrity (fatty acid-binding
protein 2 (FABP2), zonulin and diamine oxidase (DAO)), and pro-inflammatory cytokines between the pigs with high (n = 8) and low (n = 8) lean
meat percentage (LMP). a, b Comparison of serum concentrations of FABP2, zonulin and DAO between lean and fat pigs. c–f Comparison of
serum concentrations of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) between lean and fat pigs. *P < 0.05; **P < 0.01, and
***P < 0.005. The results indicated that high abundance of gut P. copri upregulated gut barrier permeability and host pro-inflammatory reaction
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by feeding a high-fat diet to P. copri-colonized mice (P <
0.01) (Fig. 6e).
We identified a total of 222 serum metabolites show-

ing differential abundances between controls and P.
copri-colonized mice and 215 differential metabolite fea-
tures between controls and P. copri-colonized mice fed
with HFD (Additional file 2: Table S6). The differential
metabolites between controls and P. copri-colonized
mice were enriched to the pathways highly similar to
those identified between lean and fat pigs (Additional
file 1: Fig. S13). For example, P. copri colonization (in
both normal chow and HFD) increased the richness of
the pathways related to BCAA biosynthesis, AAA me-
tabolism, and arachidonic acid metabolism. The path-
ways of biotin metabolism, butanoate metabolism, and
pantothenate were in low abundance in P. copri-colo-
nized mice (Fig. 6f). Furthermore, as observed in pigs,

the metabolites involved in inflammatory reactions and
metabolic syndrome such as BCAA, AAA, leukotrienes,
prostaglandins, HETE, and L-rhamnose had higher abun-
dances in mice treated by gavage with P. copri, while the
metabolites associated with lean muscle mass, energy ex-
penditure and reduced lipid accumulation (e.g., betaine,
vitamins, and dopamine) were lower in the serum of col-
onized mice (Fig. 6g and Additional file 2: Table S6).

Transcriptome analysis of colon, adipose, and muscle
tissues from P. copri-gavaged mice elucidated the
mechanism of gut microbiome affecting host fat
accumulation
To elucidate the molecular mechanism of P. copri influen-
cing host body fat percentage, RNA-sequencing analysis
was performed on the tissues of the colon, white adipose,
and muscle harvested from control and colonized mice on

Fig. 6 Confirmation of the causal role of P. copri in host fat accumulation. Live P. copri was administrated by oral gavage to germ-free mice three times per
week at a dose of 100-μl bacterial suspension (1 × 107 CFUs/μl). a qPCR confirmed the successful colonization of P. copri in germ-free mice. The Y-axis indicates
the RQ values reflecting the relative abundance of P. copri in gavaged mice. b Comparison of body fat percentage (%) and epididymal fat percentage (%)
among P. copri-gavaged mice (n = 7), P. copri-gavaged mice fed a high-fat diet (n =7), and control mice (n =7). Compared with control mice, P. copri
colonization significantly increased host fat accumulation in both normal-chow mice and high-fat-feeding mice. c Comparison of serum concentrations of LPS
endotoxin and LBP among experimental mouse groups. d Comparison of serum concentrations of FABP2, zonulin, and DAO among experimental mouse
groups. e Comparison of serum concentrations of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) among experimental mouse groups. f Comparison
of the KEGG pathways enriched by differential serum metabolites among experimental mouse groups. The red circles represent experimental mouse groups,
and the sizes of red circles indicate the enrichment by differential metabolites. g Metabolites that differed in normalized abundance among experimental
mouse groups. *P < 0.05, **P < 0.01, ***P < 0.005, all P values were adjusted for the multiple tests
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a normal chow diet. There were 225, 338, and 384 differ-
entially expressed genes (DEGs) identified between con-
trol and P. copri-colonized mice in colon, white adipose,
and muscle tissues (FDR < 0.05), respectively (Additional
file 2: Table S7). According to the increased concentra-
tions of serum LPS, LBP, BCAA, and pro-inflammatory
cytokines, we particularly focused on the expression of the
genes in the TLR4 and mTOR signaling pathways that
responded to bacterial LPS and BCAA, respectively [28].
As expected, compared with controls, mice colonized by
P. copri had higher expression levels of TLR4, CD14,
Myd88, Mal, Irak1, Irak2, and Irak4 in both colon and
epididymal fat tissues (FDR < 0.05), but not in muscle
(Fig. 7a). This suggested the activation of the TLR4 signal-
ing pathway in colon and white adipose tissues. The
mTOR signaling pathway was also activated. Mlst8, a core
component of mTOR Complex 1 (mTORC1) [29], was
upregulated in colon tissues. Rheb, Pdk1, Atg 13, and
Atg101 were upregulated in all three tissues. However,
Tsc2 (a modulator of mTORC1) and Deptor (the inhibi-
tory subunit of mTORC1) [30] were downregulated in all
three tissues. Previous studies indicated that activation of
mTORC1 resulting in lipid accumulation was tightly
coupled to upregulation of Hif1a [31]. Interestingly, Hif1a
was upregulated in all three tissues (Fig. 7b).
We also identified some interesting DEGs related to im-

mune and inflammatory responses, and fat accumulation
and obesity. In the colon tissue of P. copri-colonized mice,

genes involved in immune and inflammatory responses
(e.g., Ccl2, Ccl24, Ccl3, Ccl4, Ccl7, Il1b, Il6ra, Ilf2, Tlr2,
Tlr3, Tlr5, and six genes from the immunoglobulin super-
family), and genes involved in fat accumulation and obes-
ity (such as Fabp2 and Ins2) had higher mRNA levels (Fig.
7c and Additional file 2: Table S7). This was consistent
with the chronic inflammatory reaction and the increased
intestinal permeability induced by P. copri. In white adi-
pose tissue, DEGs involved in lipogenesis (Fabp9, Scd1,
Scd2, and Scd3) and inflammatory response (Il13ra2)
showed higher expression levels in P. copri-colonized mice
than in control mice. However, several genes related to
lipolysis and lipid transport (Abca1, Apoc1, Apoe, Pparg,
Cpt2, and Adrb3) had lower expression levels in P. copri-
colonized mice (Fig. 7c). In muscle, several genes related
to lipogenesis and lipid deposition (e.g., Adipoq, Adipor2,
Apobr, Dgat2, Fabp3, Scd2, Pck1, and Ppargc1a) and in-
flammatory response (Il11ra2, Il6ra, and Ilf2) had higher
expression levels in P. copri-colonized mice, whereas Igf2r
and Igfbp7 associated with skeletal muscle growth were at-
tenuated in response to P. copri colonization (Fig. 7c).
Taken together, the results indicate that P. copri
colonization activated the TLR4 and mTOR signaling
pathways and upregulated the expression levels of the
genes related to immune and inflammatory responses and
the genes associated with lipogenesis and fat accumulation,
while downregulating the expression levels of the genes
associated with lipolysis, lipid transport, and muscle growth.

Fig. 7 Changes in gene expression levels of host colon, adipose, and muscle tissues induced by P. copri administration. a The differential expression
levels of the genes in TLR4 signaling cascades. b The expression changes of the genes in the mTOR pathway. c The differential expression levels of
those genes involved in immunity, lipolysis, lipid transport, and muscle growth in the colon, white adipose tissue, and muscle between control and
P. copri-colonized mice. *Corrected P < 0.05, **< 0.01, and ***< 0.005
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The effect of diets on the colonization of P. copri strain
isolated in this study
Previous researches have shown that different habitual diets
can influence the genomic function and strain representation
of intestinal P. copri [32, 33]. We first carried out a compari-
son of the abundance of P. copri in the guts of pigs raised
under different feeding patterns using metagenomic sequen-
cing data from wild boars (n = 6; free-living, high-fiber diets),
Tibetan pigs (n = 13; semi-grazing, high-fiber diets), Duroc
pigs described above (n = 20 and 16; formula diets with high
energy and protein), and Duroc × (Landrace × Yorkshire)
pigs (DLY, n = 20) under industrial pig husbandry settings
[34]. Significantly higher abundances of P. copri were ob-
served in both Duroc populations (2.68% ± 0.49% (SE)
and 1.20% ± 0.28%, percentage of reads mapped to P.
copri of total clean reads) and DLY (2.67% ± 0.41%)
compared to those in wild boars (0.15% ± 0.05%) and
Tibetan pigs (0.23% ± 0.03%) (Fig. 8a, P < 0.005).
We further investigated the diet effect on P. copri

colonization with C57BL6 germ-free mice. Eighteen
germ-free mice were divided into three groups fed
standard chow, a high-fat diet, or a high-fiber diet
(“Methods”) and were given P. copri by gavage. A signifi-
cantly higher abundance of colonized P. copri was iden-
tified in mice fed the high-fat diet (P < 0.01), but there
was no significant difference between mice fed standard
chow and those fed the high-fiber diet (Fig. 8b). Further-
more, compared to the mice fed standard chow, the
mice fed a high-fat diet had significantly higher percent-
ages of both body fat and epididymis fat (P < 0.005). The

mice fed the high-fiber diet showed less fat accumula-
tion than the mice fed standard chow (P < 0.05), but the
difference was not large (Fig. 8c, Additional file 1: Fig.
14). This should be due to the diet provided to the high-
fiber diet group, whose diet contained less carbohydrate
and energy compared to the standard chow. As for the
effects of diet on host intestinal barrier permeability and
chronic inflammatory reaction in P. copri-colonized
mice, there were no significant differences in the con-
centrations of LPS, LBP, biomarkers zonulin and FABP2,
pro-inflammatory cytokines (IL-1β and IL-6), or TNF-ɑ
between P. copri-gavaged mice fed standard chow and
those fed a high-fiber diet (Additional file 1: Fig. S14).
However, the high-fat diet significantly enhanced the P.
copri-induced host intestinal barrier permeability and
chronic inflammatory reaction (P < 0.05; Additional file
1: Fig. S14)

Discussion
Accumulated evidences have indicated that gut micro-
biota may contribute to host fat accumulation. In this
study, we have identified P. copri from the gut micro-
biome of pigs fed with formula diets as a hub bacterial
species increasing fat accumulation of pigs. P. copri is a
complex comprising several distinct clades [33]. It has
been both positively and negatively associated with host
health depending on habitual diets. For example, P. copri
colonization in mice fed a fiber-rich diet improved glu-
cose homeostasis via intestinal gluconeogenesis [35, 36].
Prevotella abundance or the Prevotella-to-Bacteroides

Fig. 8 Diet effect on the abundance of gut P. copri. a Comparison of the abundances of P. copri in the guts of wild boars, Tibetan pigs, Duroc
pigs, and Duroc × (Landrace × Yorkshire) pigs (DLY, n = 20) under industrial pig growing setting. **P < 0.01, ***P < 0.005, and ****P < 0.001. b
Diet effect on fat accumulation in P. copri-gavaged mice. The C57BL6 germ-free mice colonized by P. copri were randomly divided into three
groups fed with standard chow (CD, n = 6), a high-fat diet (HFD, n = 6), and a high-fiber diet (Fiber, n = 6). Significantly higher percentages (%)
of body fat and epididymal fat were observed in the HFD group

Chen et al. Microbiome           (2021) 9:175 Page 11 of 21



ratio can predict body weight and fat loss success in
overweight participants consuming a whole-grain or
high-fiber diet [37, 38]. However, a clinical trial report
showed that a higher relative abundance of Prevotella-
ceae and Veillonellaceae along with increased gut per-
meability elevated circulating succinate levels associated
with obesity and impaired glucose metabolism [39].
Prevalence of P. copri in the feces and plasma
interleukin-6 levels were increased in type 2 diabetes
patients [40]. P. copri is associated with human insulin
resistance and aggravating glucose intolerance [15]. Dif-
ferent habitual diets lead to distinct genetic and func-
tional traits of human intestinal P. copri strains [32], and
human intestinal P. copri isolates show distinct polysac-
charide utilization profiles [41]. In the modern pig in-
dustry, to exploit the maximum pig growth potential,
commercial formula diets that are processed and contain
high amounts of digestible energy and protein are pro-
vided to pig herds. These diets have selected and shaped
gut P. copri of commercial pigs. Indeed, compared to
Duroc pigs and crossbred DLYs under industrial pig
husbandry settings where the animals were fed a formula
diet with high content of digestible energy and protein,
wild boars and Tibetan pigs fed high-fiber diets had sig-
nificantly lower abundances of P. copri. Furthermore,
from the gavage experiment with germ-free mice, we ob-
served significantly higher abundances of colonized P.
copri isolated in mice fed a high-fat diet. The gut micro-
biome of Duroc pigs from the discovery cohort had a
higher abundance of P. copri than pigs from the vali-
dated cohort. Within a cohort the same formula feed
was provided to the pigs, but we observed significant
variation of the gut P. copri abundances in both experi-
mental cohorts. This could have been caused by mater-
nal effects [42] or/and the diets [43] before performance
measurement (from birth to 30 kg of body weight). All
experimental pigs in both cohorts were from different
farms with different environments and management pat-
terns before performance measurement. The digestible
energy and crude protein of formula diets for the discov-
ery cohort was higher than those provided to validation
Duroc pigs (3,023 vs. 2,960 kcal/kg, and 17% vs. 15%).
Furthermore, these pigs were genetically unrelated (from
different sows). Host genetics may be another reason
causing this significant variation of P. copri abundance
in the gut [44].
Serum concentrations of LPS, LBP, BCAA, AAA, and

the metabolites related to arachidonic acid metabolism
were significantly higher in fat pigs than in lean pigs.
Previous reports in mice have also indicated the role of
gut bacterial LPS in obesity [45, 46]. Several studies in
humans indicated that P. copri largely drives the increase
of the microbial potential for BCAA biosynthesis [15],
and these studies have suggested a causative role for

serum level of BCAAs or their breakdown products in
type 2 diabetes [47], obesity [48], and insulin resistance
[15]. Arachidonic acid is the substrate for the synthesis
of a range of biologically active compounds, including
prostaglandins and leukotrienes [18]. These compounds
can act as mediators and regulators of inflammatory
cytokine production and immune function [18]. As for
AAAs, increased circulating concentration of AAAs has
been reported to be associated with obesity and insulin
resistance in humans [47, 49, 50]. The correlation be-
tween the LMP-associated bacterial taxa and serum me-
tabolites in pigs suggested that the gut microbiota,
especially P. copri, drives elevated levels of serum BCAA,
AAA, and the metabolites of arachidonic acid, implying
that the gut microbiota should induce chronic inflam-
matory response via these metabolites, thereby resulting
in host fat accumulation.
In contrast, the bacterial species that have been re-

ported to have anti-inflammatory effects in humans were
significantly enriched in lean pigs, including F. prausnit-
zii [51] whose abundance in the gut was negatively cor-
related with P. copri in both experimental pig cohorts
(Additional file 1: Fig. S15). The function term of me-
tabolism of cofactors and vitamins was enriched in the
gut microbiome of lean pigs. Interestingly, vitamins K,
D3, pantothenic acid, and biotin, which have been re-
ported to be associated with decreased common obesity
[52], reduced inflammation [53], and increased energy
expenditure and adiponectin expression [54], were
enriched in the serum of lean pigs.
In our previous study, we found that the Prevotella-

predominant enterotype had a higher average daily feed
intake than the Treponema enterotype in 280 Duroc pigs
that were also included in the discovery cohort of this
study. Prevotella (mainly P. copri) may be the keystone
bacteria species associated with host feed intake [55].
Overall, combining the results in pigs from this study
and Yang et al. (2018) [55] and the results from P. copri-
colonized mice, we propose a model of gut microbiome
influence on host fat deposition: (1) high abundance of
Prevotella, especially P. copri in the gut may be associ-
ated with excessive energy uptake; (2) increased concen-
trations of serum LPS, BCAA, and arachidonic acid
metabolites contributed by P. copri activate the TLR4
and mTOR signaling pathways and result in host
chronic inflammatory response; and (3) the genes related
to lipogenesis and fat accumulation are upregulated,
while the genes associated with lipolysis, lipid transport,
and muscle growth are downregulated. This should
increase fat accumulation and lower the LMP.

Conclusions
In conclusion, we identified and confirmed that P. copri
from the gut microbiome of pigs fed commercial
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formula diets significantly increased the fat deposition of
pigs. High abundance of gut P. copri activates host
chronic inflammation responses by the metabolites
through TLR4 and mTOR signaling pathways, and re-
sults in fat accumulation. The results provided funda-
mental knowledge for reducing fat accumulation and
increasing the LMP in pigs through regulating the gut
microbial composition in the pig industry, and give ref-
erence insights for the influence of gut microbiome in
human obesity.

Methods
Experimental animals and sampling
Two experimental pig cohorts were used in this study.
The discovery cohort comprised 550 Duroc pigs from
Shahu (280 pigs) and Jiangying (270 pigs) farms in
southern China. Another 148 Duroc pigs from the Jian-
gying farm were used as the validation cohort. All ex-
perimental pigs were raised under similar feeding and
management conditions. The commercial formula feeds
provided to experimental pigs of each farm contained
60% corn, 15% soybeans, 10% wheat bran, and 8% rice
polishing. The main nutrient components of the diets
are listed in Additional file 2: Table S8. Diet and water
were offered ad libitum. Backfat thickness and transec-
tion area of the longissimus dorsi muscle were measured
in the middle of the last 3rd and 4th ribs using a B-
model ultrasound instrument (Pie-Medical, Netherlands)
when the body weight of experimental pigs achieved 120
± 10 kg, around the age of 160 ± 10 days. The GPS soft-
ware was used to adjust the backfat thickness and tran-
section area of the longissimus dorsi. Lean meat
percentage (LMP) was calculated by the model: adjusted
PPL = [80.95 − (16.44*adj.bf) + (4.693*adj. LMA)]*0.54
[56], where PPL represents lean meat percentage, and
adj.bf and adj.LMA represent adjusted backfat thickness
and transection area of the longissimus dorsi, respect-
ively. The fecal samples were collected from all experi-
mental pigs at the age of 160 days, conserved in
sterilized tubes, and immediately immersed in liquid ni-
trogen for transportation and then stored at – 80 °C
until use. In the validation cohort, we chose 16 fecal
samples with extreme phenotype values for metage-
nomic sequencing, including eight samples with high
LMP values (57.83 ± 0.54, mean ± SD) and eight sam-
ples with low LMP values (54.57 ± 0.59). To investigate
the abundance of P. copri isolated in this study in the
gut of pigs fed diets with different fiber contents, meta-
genomic sequencing data of six fecal samples from nat-
ural free-living wild boars (high-fiber diets, adults, exact
age unknown), 13 fecal samples from semi-grazing Ti-
betan pigs at the age of 210 days (supplemented with
potato and highland barley, high-fiber diets), and feces
samples from (Landrace × Yorkshire) × Duroc pigs at

the age of 126–140 days from pigs that were raised in
Denmark (industrial pig growing setting) [34] were also
used in this study. All experimental pigs were healthy
and had not received any antibiotics, probiotics, or pre-
biotics within at least 2 months before sample collection.

DNA extraction and 16S rRNA gene sequencing
Fecal microbial DNA was extracted using the QIAamp
DNA Stool Mini Kit (QIAGEN, Germany) following the
manufacturer’s guidelines. DNA concentration was mea-
sured with a Nanodrop-1000 (Thermo Scientific, USA),
and the quality was assessed by agarose gel electrophor-
esis. The barcoded fusion forward primer 515F (5′-GTGC
CAGCMGCCGCGGTAA-3′) and the reverse primer
806R (5′-GGACTACHVGGGTWTCTAAT-3′) were
used to amplify the V4 hypervariable region of the 16S
rRNA gene in the discovery cohort. The primers 338F (5′-
ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGAC
TACHVGGGTWTCTAAT-3′) were used to amplify the
V3–V4 hypervariable region of the 16S rRNA gene in the
validation cohort. The PCR amplification conditions were
as follows: initial 95 °C denaturation step for 10 min, 35
cycles of 95 °C for 25 s, 55 °C for 20 s, and 72 °C for 5 min
followed by a final extension for 10 min at 72 °C. All
amplicons were sequenced using the paired-end method
on a MiSeq platform (Illumina, USA) following the stand-
ard protocols.
The raw 16S rRNA gene sequencing data were filtered

for the primer sequences, the barcodes, and the low-
quality reads according to Illumina’s quality control pro-
cedure. High-quality paired-end clean reads were assem-
bled using FLASH (v1.2.11) [57]. The USEARCH
(v7.0.1090) quality filter pipeline was used to filter the
putative chimeras and to choose operational taxonomic
units (OTUs) at 97% sequence identity [58]. Only those
OTUs that had relative abundance > 0.05% and were
present in more than 1% of the experimental pigs were
included for further analysis. Taxonomies were assigned
for the aligned sequences using Quantitative Insights
Into Microbial Ecology (QIIME, v1.80) with a Ribosomal
Database Project (RDP) classifier [59].

Construction of enterotype-like clustering
Enterotype-like clustering was performed according to
the method described previously [60]. In brief, Jensen-
Shannon divergence (JSD) distances were calculated
based on the relative abundances of bacterial taxa at the
genus level using the Partitioning Around Medoids
(PAM) method. The optimal number of clusters and the
groups’ robustness were evaluated with the Calinski-
Harabasz (CH) index and silhouette value. Sparse Corre-
lations for Compositional data (SparCC) was applied to
determine co-abundance (positive) and co-exclusion
(negative) relationships between genera based on their
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relative abundances, and significant correlations between
bacterial genera were identified using the partial correl-
ation and information theory (PCIT) algorithm [61]. The
absolute correlations were transformed into links be-
tween two genera in the genus network, and the net-
works were visualized in Cytoscape (v3.4.0). The
comparison of the LMP values between enterotypes was
performed by Wilcoxon’s rank sum tests in the R pack-
age (v3.5.1).

Association analysis between OTUs and pig LMP
The residuals of phenotypic values of the LMP corrected
for the effects of sex and sampling batch (three and two
sampling batches for discovery and validation cohort, re-
spectively) were used for further association analysis be-
tween the LMP values and the relative abundances of
OTUs. Because the relative abundances of OTUs exhib-
ited a non-normal distribution pattern, the association
analysis was performed using a two-part model as re-
ported previously [62]. In brief, the two-part model ac-
counts for both binary and quantitative characteristics of
gut microbial abundance. The binary model (adj_p = β1b
+ e, adj_p represents LMP values adjusted for the effects
of sex and batch,β1 is the estimated binary effect, b is a
binary feature, and e refers to the residuals) describes a bi-
nomial analysis that tests for association of detecting a mi-
crobe with the LMP. The binary feature of a microbe
under investigation was coded as 0 for undetected or 1 for
detected in each sample. The quantitative model (adj_p=
β2q +e, where β2 is the estimated quantitative effect, and q
is a quantitative feature) evaluates the association between
the abundances of the detected microbes and the LMP
values. A meta-analysis was performed to assess the effects
of both binary and quantitative models by using an un-

weighted Z method (Z = ∑k
i = 1 zi/

ffiffiffi

k
p

~N(0,1); zi =
∅−1(Pi)). The final association P value was set as the mini-
mum of P values of binary, quantitative, and meta-
analyses. In total, 1000 permutation tests were performed
to correct for false positives, and a false discovery rate
(FDR) < 0.01 was set as the significance threshold.

Co-abundance group analysis of OTUs
The OTUs having relative abundance > 0.1% were used
to construct CAGs. We first calculated the correlation
coefficients among OTUs using the Sparse Correlations
for Compositional data (SparCC) algorithm in both test
and validation cohorts [63]. Then, CAGs were defined
by a heat plot using the SparCC correlation coefficient
matrix and Ward’s linkage hierarchical clustering
through theMade4 (v3.40) package [64]. PERMANOVA
was performed to assess the accuracy of clustering with
1000 permutations at P < 0.01 [65]. The network plot
highlighting the SparCC correlations among CAGs was

constructed in Cytoscape (v3.6.0) [66]. We numerically
calculated the topological features and metrics of net-
works, including the average number of neighbors, aver-
age eccentricity, betweenness, closeness, and
centralization degree to determine the hub OTUs of the
network. Spearman’s correlation analysis was performed
to test the correlations between CAGs and the LMP
values in both test and validation cohorts.

Metagenomic sequencing analysis
A pair-end (PE) library with an insertion size of 350 bp
was constructed for each of 16 samples according to the
manufacturer’s instructions (Illumina, USA). Sequencing
was performed on a Novaseq 6000 platform (Illumina,
USA). High-quality reads were obtained by filtering out
adaptors, low-quality reads, and host genomic DNA con-
tamination from the raw data.
We assembled the high-quality reads into contigs using

the SOAPdenovo assembler(v.2.21) [67]. The USEARCH
(v.7.0.1090) program was used to exclude the redundant
contigs [58]. The contigs more than 300 bp in length were
used to predict open reading frames (ORFs) by applying
MetaGeneMark (v2.10) [68]. A non-redundant gene set
containing 2,799,188 genes was constructed by excluding
the redundant genes from all predicted ORFs using Cd-hit
software (v4.6.1) [69]. A gene abundance profile was gen-
erated by mapping the high-quality reads from each sam-
ple to the non-redundant gene set using the screen
function in MOCAT (v2.0) [70]. To assess gene richness
in the high and low LMP pigs, we calculated the total gene
number in each sample using the pair-oriented counting
method [16]. The α-diversity (Shannon index) was calcu-
lated using the gene abundance profiles using the vegan R
package (v3.5.1). Comparisons of gene counts and the α-
diversity between high and low LMP pigs were performed
using the Wilcoxon rank sum test. Taxonomic assign-
ments of the predicted genes were performed using the
BLAST + Lowest Common Ancestor (BLAST + LCA) al-
gorithm based on the sequence similarity to the reference
genomes in the non-redundant (NR) database [71]. Func-
tional annotations were performed by aligning the puta-
tive amino acid sequences that were translated from the
predicted genes against CAZy and KEGG databases using
BLASTP [72]. Linear discriminate analysis effect size
(LEfSe) was used to identify the bacterial species and func-
tion capacities of gut microbiome having significantly dif-
ferent abundances between high and low LMP pigs.
Correlations between the LMP-associated bacterial species
and the LMP-associated function capacities of gut micro-
biome were evaluated in the 16 samples with metage-
nomic sequencing data using Permutational analysis of
variance (PERMANOVA) based on 9,999 permutations
using the vegan package in R (v3.5.1) [12]. The signifi-
cance threshold was set at FDR < 0.05. The correlation
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coefficient was calculated as Spearman’s rank correlation.
The heatmap was plotted using the gplots package in R
(v3.5.1) [73].
The metagenomic sequencing data of another 20 fecal

samples from the discovery cohort were obtained in our
previous study via the same method [17] and were also
used in this study. The association of bacterial species
with the LMP in the integrated 36 metagenomic sequen-
cing data was analyzed by a two-part model as described
above. The comparison of the abundance of P. copri
among pigs fed diets with different fiber contents was
performed with the metagenomic sequencing data of
fecal samples from six wild boars, 13 Tibetan pigs, 36
Duroc pigs, and 20 DLYs (ERR1135357-ERR1135376)
[34] as described above. Clean reads of each sample were
aligned to the reference genomic sequence of P. copri
obtained in this study using BWA MEM (v0.7.17-r1188)
[74], and then the number of successfully assigned reads
was computed using FeatureCounts (v2.0.1) [75]. The
percentage of the reads mapped to P. copri reference
genome in total clean reads was calculated for each sam-
ple and treated as the relative abundance of P. copri in
each sample. The comparison of gut P. copri abundances
among wild boars, Tibetan, and Duroc pigs was per-
formed by a Wilcoxon test and visualized using the
ggpubr package in R (v3.6.2).

Isolation and culture of the bacterial strain of P. copri
from pig fecal samples
The fecal samples from 22 experimental Duroc pigs with
both extreme phenotypic values of fat accumulation (low
LMP) and high abundance of P. copri were collected and
used for the P. copri isolation experiment. One-gram fecal
samples were suspended in phosphate buffered saline
(PBS) buffer and serially diluted to 10−8. Eighty-microliter
diluted samples were plated anaerobically on Bacteroides
mineral salt agar to isolate P. copri [76]. The plates were
incubated at 37 °C for 2–7 days in an anaerobic worksta-
tion (ELECTROTEK AW500SG, UK) filled with 80% N2–
10% CO2–10% H2 gase s[77]. A single colony from plates
was selected according to the main characteristics of the
strain that we were looking for based on the previous de-
scription [78], i.e., white, circular, convex, and gram-
negative rods, and purified by streaking the single bacterial
colony on modified PYG agar supplemented with 5% (v/v)
sterile defibrinated sheep blood with a sterile probe [78].
The plates were maintained under the culture conditions
mentioned above for two days. The 16S rRNA gene of the
single strain was amplified using two universal primers
27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R
(5'-GGTTACCTTGTTACGACTT-3') and sequenced by
the Sanger method. The 16S rRNA gene sequences were
then aligned to the NCBI nucleotide sequence database to
determine P. copri strains. In addition, we blasted the 16S

rRNA gene sequences of the isolated strains with the V3–
V4 sequence of the OTU1905 (P. copri) that was most sig-
nificantly associated with the LMP in this study. The iso-
lated strain with > 99% sequence identity was used for
gavage in germ-free mice. The P. copri strain isolated
above was cultivated in modified PYG medium for 36 h
under anaerobic conditions, harvested in log phase, centri-
fuged at 1000 rpm for 10 min, and then washed twice with
PBS. The precipitate was re-suspended with 5% sterile
non-fat milk prepared by PBS and stored at −80°C until
use.

Whole-genome sequencing of P. copri
The isolated P. copri strain was recovered and grown on
PYG liquid medium at 37°C with 80%-N2-10%CO2-
10%H2 for 72h. Ten milliliters of cultured PYG fluid was
centrifuged at 5000 rpm for 10 min. P. copri cells were
washed twice using sterilized PBS solution and collected
for DNA extraction. Genomic DNA of P. copri was ex-
tracted using QIAamp DNA Mini Kit according to the
manufacturer’s instructions. The quantity and quality of
extracted DNA were evaluated by agarose gel electro-
phoresis, NanoDrop-2000 (ThermoFisher, USA) and
Qubit (ThermoFisher, USA).
A Nanopore sequencing library was prepared accord-

ing to Oxford Nanopore’s “1D gDNA selection for long
reads” protocol (Oxford Nanopore Technologies, UK).
In brief, 2μg of genomic DNA of P. copri was sheared
using a g-Tube (Covaris, USA) with 150 μl of nuclease-
free water at 5000 rpm for 2 min. Long DNA fragments
were enriched using the Blue Pippin selection system
(Sage Science, USA). Subsequent purification of the
DNA fragments was performed using AMPure beads.
Nanopore 1D adapters were ligated to the end-repaired
and adenylated DNA fragments using NEB Blunt/TA
Master Mix (NEB, UK). The libraries were sequenced on
a GridION X5 (Oxford Nanopore Technologies, UK).
To improve the sequence quality, a library for second
generation sequencing was prepared according to the
standard protocol and sequenced on an Illumina Hiseq-
2500 platform using a paired-end strategy.
Base calling of Nanopore raw data was performed with

cloud-based Metrichor workflow [79]. Nanopore reads
were processed using Poretools to convert fast5 files to
fasta format [80]. High-quality reads were selected for
further genome assembly. Canu (v1.7.11) was used for
genome assembly of the Nanopore sequencing data [81].
Illumina paired-end reads were aligned and used for cor-
recting base errors, fixing mis-assemblies, and filling
gaps by Pilon (v1.22) [82]. After removing redundant se-
quences, the automated assembly of the P. copri genome
was performed by Circlator (v1.5.5) [83]. To estimate the
sequence contiguity and coverage, Nanopore reads after
quality control were mapped to the assembled genome
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using Minimap2 (v2.11-r797) and Samtools (v1.9) [84,
85]. In addition, plasmid sequences were identified by
blasting the genome against the plasmid database [86].
Protein-coding genes of P. copri genome were pre-

dicted using Prodigal (v2.6.3) [87]. The predicted
protein-coding genes were further annotated with Inter-
ProScan using Blast2GOagainstPfam (release 31.0),
TIGRFAMs (release 15.0) and SMART (v8.0) databases
[88, 89]. Functional annotation of protein-coding genes
was also performed by Blast2GO with the KEGG data-
base. To compare the abundances of those interesting
genes identified on the P. copri genome and participating
in arachidonic acid metabolism, BCAA biosynthesis,
AAA biosynthesis and metabolism, insulin resistance,
and other glycan degradation between high and low
LMP pigs, the sequences from the metagenomic sequen-
cing data were mapped to the obtained P. copri genome.
The relative abundances of these genes were determined
and compared using Wilcoxon tests. FDR < 0.05 was set
as the significance threshold.

Construction of phylogenetic tree and analysis
polysaccharide utilization loci of P. copri isolates
To construct the phylogenetic tree of P. copri isolates
from humans and pigs, we downloaded 111 P. copri ge-
nomes from westernized and non-westernized human
gut microbiome [33]. Gff file of each genome was gener-
ated using prokka (v1.11) [90] and used to produce the
alignment of core genes by Roary (v3.11) [91]. The
phylogenetic tree was constructed based on the align-
ments of core genes using neighbor-joining approach in
Megan 7 and visualized by iTOL [92]. Polysaccharide
utilization loci of P. copri isolates were predicted by
using deCAN-PUL with identity > 75% and E value < 1e
−50 [93].

Mouse intervention study
Twenty-one germ-free mice having similar body weight
and size (Kunming; 12 males and nine females, each 6
weeks of age) used in this study were housed in cages
under sterile conditions. Male and female mice were
kept separately. Feed and water were available ad libi-
tum. After 2 weeks of acclimatization to the new envir-
onment and the standard chow diet, mice were
randomly divided into three groups (four males and
three females per group). One group received a chow
diet with P. copri administered by gavage. A high-fat diet
group (60% fat, Research Diet, D12492) was adminis-
tered with P. copri by gavage, and a chow diet group
without gavage was used as a control. For the two
colonization groups, mice were given 100 μl of P.copri
suspension (1 × 107 CFUs/μl) three times a week for 4
weeks. To further investigate the effect of diet on P.
copri colonization and host fat accumulation, we used

another 18 germ-free mice with similar body weights
and sizes (C57BL6; nine males and nine females) to per-
form gavage experiments using P. copri. These germ-free
mice were managed and administered the bacteria using
the same gavage methods and procedures described
above. The 18 mice were randomly divided into three
groups (three females and three males for each group)
comprising a standard chow diet group, a high-fat diet
(60% fat, Research Diet, D12492) group, and a high-fiber
diet (35% fiber) group. The feeding experiment lasted 4
weeks, and mice were administered P. copri by gavage
three times per week as described above.
Fecal samples were collected at the end of the gavage

experiment, dipped into liquid nitrogen immediately,
and stored at − 80°C until use. All mice in each group
had lean mass measured and body fat percentage calcu-
lated by a whole-body composition analyzer (Niumag,
China) following the manufacturer’s instructions. After
the body weight measurements, all mice were sacrificed
by cervical dislocation. Epididymal fat was isolated and
weighted for all mice. The epididymal fat percentage
(EMP) was calculated. Tissue samples of the colon, epi-
didymal white adipose, and muscle were sampled from
each experimental mouse for further RNA-seq analysis.
Venous blood was taken from the inner canthus of each
mouse for serum metabolomic analysis. The concentra-
tions of lipopolysaccharide, intestinal barrier permeabil-
ity plasma biomarkers, and pro-inflammatory cytokines
were also determined in serum samples of phenotyped
mice by ELISA using the method described above.

Quantifying the abundances of P. copri in treated mice
Mouse fecal bacterial DNA was extracted using the
QIAamp fast DNA stool mini kit (Qiagen, Germany) as
described above. The quantitative PCR was performed
using a 7500-Fast Real-Time PCR System (ABI, USA)
and SYBR® Premix Ex Taq™ II (TaKaRa, Japan). The
two-step real-time PCR conditions were described as fol-
lows: an initial denaturation for 10 s at 95 °C, 40 cycles
of denaturation at 95 °C for 5 s, and annealing at 60 °C
for 25 s. The RQ value of P. copri was determined by
normalization to the 16S rRNA gene using the2−ΔΔCt

method [15]. Primer sequences are listed in Additional
file 2: Table S9 [94].

Determination of metabolome profiling of serum samples
Metabolome profiles of serum samples were determined
for 38 pigs randomly selected from the validation cohort,
and for seven mice from each of control, P. copri gavage,
and P. copri gavage + HFD feeding groups (a total of 21
samples). Blood samples were collected from the anter-
ior vein. After being placed into serum separator tubes,
all samples were centrifuged at 2500 × g for 15 min at
room temperature to isolate the serum. Serum samples
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were immediately stored at – 80 °C until use. A 100-μL
aliquot of serum sample was used for the extraction of
metabolites using 3 ml of pre-cooled methanol (chro-
matographically pure) (Merck Corp., Germany). After
vortexing for 1 min and incubation at – 20 °C in a re-
frigerator for 3 h, the mixture was centrifuged at 15,000
rpm for 15min at 4 °C to precipitate the protein. Then,
200 μl of the supernatant was processed in a Speedvac
overnight. The concentrated product was resuspended
by the addition of 150 μl of water/methanol (85:15, v/v)
and then placed into a sampling vial pending ultraper-
formance liquid chromatography-quadrupole time-of-
flight mass spectrometry (UPLC-QTOFMS) (Waters
Corp., USA). The quality control was performed via a
pooled QC sample by mixing equal volumes (15 μl) of
each serum sample.
Chromatographic separations were performed on a

UHPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm)
(Waters Corp., USA) maintained at 40°C. The injection
volume was 0.4 μl for each sample, and the samples for
blank-QC-tests were run alternately. The column was
eluted with a linear gradient of 1–20% B at 0–3 min,
20–50% B at 3–5 min, 50–70% B at 5–10 min, 70–85%
B at 10–15 min, and 85–100% B at 15–17 min followed
by a re-equilibration step of 5 min. For electrospray posi-
tive ion mode (ES+) analysis, the mobile phase was water
with 0.1% formic acid (A) and acetonitrile with 0.1% for-
mic acid (B). For negative ion mode (ES−) analysis, elu-
ents A with water and B with acetonitrile were used.
The flow rate was set at 0.3 mL/min. All the samples
were kept at 8 °C during the analysis.
The mass spectrometric data in both positive and

negative modes were collected using an electrospray
ionization source. The source parameters were set as fol-
lows: capillary voltage: 3 kV; drying gas flow: 11 L/min,
and gas temperature: 350 °C. Centroid data were col-
lected from 50 to 1200 m/z with a scan time of 0.3 s and
an interscan delay of 0.02 s over a 20-min analysis time.
MassLynx software (Waters, USA) was used for system
controlling and data acquisition. Data normalization was
performed by QC samples using MetNormalizer in R (v
3.5.1) that generated a data matrix containing retention
time, m/z value, and normalized abundance [95]. To ob-
tain metabolite names and molecular formulas, we
aligned the molecular mass data (m/z) of ions to the me-
tabolites in the HMDB database with a mass error of 10
ppm or less [96].
Associations between serum metabolites and porcine

LMP phenotypic values were tested by Spearman rank
correlation in the 38 experimental pigs. The analysis was
performed using both 16S rRNA gene sequencing and
metabolome analyses at FDR < 0.05. The correlations
between the LMP-associated serum metabolites and the
LMP-associated OTUs were assessed by Spearman

correlation coefficients (FDR < 0.05). To further evaluate
the correlation between the LMP-associated bacterial
species and the LMP-associated serum metabolites in
the 16 tested samples from the metagenomic sequen-
cing, the metabolites differing in normalized abundance
between high (n = 8) and low LMP pigs (n = 8) were
identified by LEfSe. The online MetaboAnalyst program
was used to assign the differential metabolites to KEGG
pathways [97]. PERMANOVA and Spearman’s correl-
ation analysis were performed to assess the correlations
between the LMP-associated bacterial species and the
LMP-associated serum metabolites as described above.
The serum metabolites with different abundances be-
tween controls and P. copri-gavaged mice were identified
by LEfSe.

Quantifying serum concentrations of lipopolysaccharide,
intestinal barrier permeability biomarkers, and pro-
inflammatory cytokines
We quantified the concentrations of serum lipopolysac-
charide (LPS), lipopolysaccharide binding protein (LBP),
fatty acid-binding protein 2 (FABP2), zonulin, diamine
oxidase (DAO), IL-1β, IL-6, IFN-γ, and TNF-α using the
enzyme linked immunosorbent assay (ELISA) method
with commercial ELISA kits (CUSABIO, China) following
the manufacturer’s instructions. Briefly, except for the
blank control wells, 50 μl of standard samples or appropri-
ately diluted serum samples were added into the 96-well
microtiter plates coated with the primary antibodies, and
then 100 μl of HRP-conjugated secondary antibodies was
added to the microtiter plates and incubated for 60 min at
37 °C. Microtiter plates were washed four times with
washing buffer, and 50 μl of substrates A and B were
added to each well of microtiter plates, mixed gently, and
incubated for 15 min at 37 °C under light shading condi-
tions. Finally, 50 μl of enzymatic reaction termination so-
lution was added to each well to stop the reaction. The
O.D. value for each sample at 450 nm was measured and
recorded using a microtiter plate reader (Tecan Infinite
200 pro, Switzerland). A standard curve was plotted ac-
cording to the O.D. values and the concentrations of
standard samples. The serum concentrations of LPS, LBP,
intestinal barrier permeability plasma biomarkers, and
pro-inflammatory cytokines in each test sample were de-
termined using the standard curve. Each standard and
tested serum sample was measured in triplicate. The Wil-
coxon rank sum test was used to compare the serum con-
centrations of LPS, LBP, FABP2, zonulin, DAO, and pro-
inflammatory cytokines between high and low LMP pigs
at an FDR < 0.05. The multiple group comparisons of
these data among experimental mice were performed by
the Kruskal-Wallis test34. All these analyses were carried
out using the R software (v3.5.1).
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RNA extraction, sequencing, and data analysis
The mice used for confirming the causality of P. copri
were further used for RNA sequencing analysis. Six mice
from the group administrated with P. copri and fed
standard chow diet, and the other six mice from the
control group were randomly chosen. Total RNA was
extracted from colon, epididymal white adipose, and
muscle tissues using Trizol (ThermoFisher, USA) ac-
cording to the manufacturer’s manuals. The RNA
concentration and integrity were assessed using a
Nanodrop-1000 spectrophotometer (ThermoFisher,
USA) and a bioanalyzer-2100 (Agilent, USA). The cDNA
libraries were prepared using the Illumina Truseq
Stranded mRNA preparation kit (Illumina, USA) accord-
ing to the manufacturer’s guidelines. The libraries were
sequenced on an Illumina HiSeq 2500 platform (Illu-
mina, USA). Raw data were trimmed for adapter se-
quences, and low-quality reads were filtered out to
generate clean data. After that, the HISAT, StringTie
and Ballgown pipelines were used to explore differen-
tially expressed genes (DEGs) between controls and col-
onized mice as described previously [98]. Briefly, Hisat2
(v2.1.0) was employed to build a reference genome
index, and then high-quality read sequences were
aligned to the mouse reference genome assembly
(GRCm38) to generate SAM files. Samtools (v1.8.0)
was used for SAM file transformation and read sort-
ing to generate sorted bam files [84]. Transcript as-
sembly and quantification were performed using
StringTie (v1.3.4). The outputs of StringTie, including
gene annotation and gene abundance files, were proc-
essed by Ballgown (v3.5) to identify DEGs based on
FPKM values with FDR < 0.05.

Statistical analysis
Shapiro-Wilk’s and Levene’s tests were performed to
evaluate the distribution and equality of variances of the
LMP values in the tested pig populations. The signifi-
cance levels of differential LMP values between two
groups of pigs selected for metagenomic sequencing (8
vs. 8), and between two groups of pigs used for deter-
mining serum metabolome profiles (17 vs. 21) were de-
termined by t-tests. All analyses were performed using R
(v3.5.1). The bacterial species, function capacities of gut
microbiome, and serum metabolite features showing dif-
ferential abundance between high and low LMP pigs
were identified using LEfse using the online version of
Galaxy at a significance threshold criteria of LDA score
> 2.5 and alpha value < 0.01 [99]. The associations be-
tween the relative abundances of bacterial species and
serum metabolite features were analyzed with the PERM
ANOVA method. The correlations between the LMP-
associated bacterial species and the LMP-associated
functional capacities of gut microbiome, and between

the LMP-associated bacterial species and the LMP-
associated serum metabolites, were evaluated using
Spearman’s correlation at FDR < 0.05.
For the colonization experiments using mice, we first

tested the distributions of the phenotypic data in each
group by the Shapiro-Wilk and Levene’s tests. The mul-
tiple group comparisons of the phenotypic values of
body fat percentage and epididymal fat percentage
among controls, P. copri-gavaged mice, and HFD + P.
copri-gavaged mice or among P. copri-gavaged, P. copri-
gavaged + HFD and P. copri-gavaged + high-fiber diet
groups were performed by Tukey’s HSD tests at FDR <
0.05. Differential serum metabolites between groups
were identified by LEfSe at LDA score >3.5 and alpha
value < 0.01.
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