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Abstract

Background: Identification of bacterial taxa associated with diseases, exposures, and other variables of interest offers
a more comprehensive understanding of the role of microbes in many conditions. However, despite considerable
research in statistical methods for association testing with microbiome data, approaches that are generally applicable
remain elusive. Classical tests often do not accommodate the realities of microbiome data, leading to power loss.
Approaches tailored for microbiome data depend highly upon the normalization strategies used to handle differential
read depth and other data characteristics, and they often have unacceptably high false positive rates, generally due to
unsatisfied distributional assumptions. On the other hand, many non-parametric tests suffer from loss of power and
may also present difficulties in adjusting for potential covariates. Most extant approaches also fail in the presence of
heterogeneous effects. The field needs new non-parametric approaches that are tailored to microbiome data, robust
to distributional assumptions, and powerful under heterogeneous effects, while permitting adjustment for covariates.

Methods: As an alternative to existing approaches, we propose a zero-inflated quantile approach (ZINQ), which uses
a two-part quantile regression model to accommodate the zero inflation in microbiome data. For a given taxon, ZINQ
consists of a valid test in logistic regression to model the zero counts, followed by a series of quantile rank-score based
tests on multiple quantiles of the non-zero part with adjustment for the zero inflation. As a regression and
quantile-based approach, the method is non-parametric and robust to irregular distributions, while providing an
allowance for covariate adjustment. Since no distributional assumptions are made, ZINQ can be applied to data that
has been processed under any normalization strategy.

Results: Thorough simulations based on real data across a range of scenarios and application to real data sets show
that ZINQ often has equivalent or higher power compared to existing tests even as it offers better control of false
positives.

Conclusions: We present ZINQ, a quantile-based association test between microbiota and dichotomous or
quantitative clinical variables, providing a powerful and robust alternative for the current microbiome differential
abundance analysis.
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Background
High-throughput sequencing technology has enabled
large-scale microbiome profiling via 16S rRNA gene
amplicon sequencing and shotgunmetagenomic sequenc-
ing [1]. A recurring objective of human microbiome pro-
filing studies is to identify individual bacterial taxa that are
associated with experimental conditions, exposures, or
other outcome variables of interest. Such trait-associated
taxa (referred to as differentially abundant taxa, for sim-
plicity) can provide clues to the biological mechanisms
underlying conditions or responses and facilitate follow-
up investigations of the impact of microorganisms on
human diseases, leading to novel preventive or therapeu-
tic strategies. Consequently, differential abundance analy-
sis has become a critical step in microbiome studies and
has resulted in identification of bacterial taxa related to
a wide range of conditions including obesity [2], type 2
diabetes [3], and bacterial vaginosis [4], among others.
Despite many successes, the most appropriate approach

to differential abundance analysis is still unclear. Most dif-
ferential abundance analysis approaches tailored towards
genomic and microbiome data assume a statistical distri-
bution for the transformed read counts, causing inflated
false positive findings when these assumptions fail. On the
other hand, classical statistical methods such as Wilcoxon
tests are conservative, controlling type I error but losing
power since they fail to fully exploit the data characteris-
tics.
Many papers demonstrate poor type I error control of

existing methods [5–7]. Due to the complex distributional
attributes of microbiome data (even after normalization),
such as sparsity, heavy tails [8], multimodality [9], and
other heterogeneity, strong parametric assumptions rarely
hold. For example, DESeq2 [10] and edgeR [11, 12] model
the read counts using a negative binomial distribution
with an offset to account for sequencing depth. Limma-
voom [13] models the log counts by a linear model. These
approaches can suffer from serious type I error inflation
when the (log-transformed) data are far from the neg-
ative binomial or linear model. Corncob [14] assumes
that the read counts are generated from a beta-binomial
distribution, which accommodates some over-dispersion,
but may not fully capture the distributions. Moreover, a
separate feature of corncob is the ability to test associa-
tions between a taxon variability and variables of interest;
though, the algorithm often fails to converge in the pres-
ence of covariates.
Recognizing the sparsity of the data, many groups have

proposed zero-inflated models, which assume the data
is distributed as a mixture of zero and a positive dis-
tribution (e.g., negative binomial, log-normal, beta, and
gamma distributions) [15–19], to specifically account for
the biases due to the undersampling of the microbial com-
munity [20–22]. For example, metagenomeSeq [18] first

normalizes the read counts through cumulative sum scal-
ing (CSS, dividing counts by the total counts up to a fixed
quantile in each sample), and subsequently models the
data via a zero-inflatedGaussian/log-normalmodel.Mon-
ocle [23, 24] utilizes generalized additive models assuming
negative binomial for the positive component, or uses a
tobit model (a censoredGaussian linearmodel) depending
on the nature of the normalized counts. Although these
methods can potentially offer increased power, they still
depend on strong parametric assumptions for the non-
zero component of the normalized data, which leads to
inflated type I error if the assumptions are not satisfied.
Alternatively, we may first transform the microbiome

data, then apply classical statistical methods. This gen-
erally helps to control the type I error, but suffers from
a loss of power. In this approach, normalization can be
done by, for example, dividing the counts by the total
sequencing depth (i.e., the total read counts across all
taxa in a sample, also referred to as library size) to obtain
proportions, or conducting log-ratio (CLR) transforma-
tion of the data to mitigate compositionality [25, 26].
Subsequent analyses use classical methods such as lin-
ear regression, t-tests, or Wilcoxon tests (which has been
repackaged as the LeFSe approach [27]). However, these
approaches often struggle with zeroes and ties; many of
them cannot adjust for covariates, includingWilcoxon and
Kolmogorov–Smirnov (KS) tests; and they lose power by
not taking full advantage of data characteristics. Recently,
LDM [28] uses the sum of squares decomposition in
multivariate linearmodels to test hypotheses in themicro-
biome. Though improved from classical methods, it is still
underpowered because of the conservative linear model.
In addition, the abundance of normalization meth-

ods makes the advantages of existing strategies con-
troversial. The sequencing depth can vary substantially
between samples, reflecting only differential efficiency
in the sequencing process, not real biological variations.
Therefore, it is necessary to normalize the data so that
different samples are comparable. Unfortunately, there
are various methods, such as rarefying (resampling as if
each sample has the same total counts), CSS, total sum
scaling (TSS, dividing counts by the sequencing depth),
and others, and the performance of some strongly para-
metric approaches, mainly the tailored approaches for
genomic and microbiome data, depends heavily on the
normalization choices. For example, DESeq2 internally
implements relative log expression (RLE) normalization,
and metagenomeSeq requires CSS normalization.
To address the aforementioned challenges, in this paper,

we propose a zero-inflated quantile test (ZINQ) for asso-
ciations between microbiome taxa and a clinical vari-
able (dichotomous or quantitative), achieving robust and
powerful inference regardless of the data’s distributional
attributes and normalization method. Quantile regression
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[29] is a robust regression tool that avoids any paramet-
ric assumptions. By aggregating the results of quantile
regression on multiple quantile levels, e.g., the 1st quartile
(τ = 0.25) and median (τ = 0.5) of the normalized read
counts, we can boost the power by detecting higher-order
associations in addition to the mean effect. This will help
identify biological mechanisms that affect more than the
mean of abundance, such as the dispersion or upper tail
of abundance, enabling a comprehensive understanding of
heterogeneous microbiome effects.
However, a direct application of quantile regression

is problematic due to the sparsity of microbiome data.
Quantile regression requires the outcome variable to be
purely continuous, which is violated by the presence
of many zeroes in microbiome data. Also, it implicitly
assumes a constant probability of observing non-zero
abundance, failing to account for undersampling biases.
As a remedy, ZINQ is derived from a two-part quantile
regression model for zero-inflated microbial abundance.
It comprises a valid test using logistic regression for the
zero counts, and a sequence of novel quantile rank-score
based tests for the non-zero part. We make the final deci-
sion by combining the marginal p-values using a MinP or
Cauchy procedure. We demonstrate the performance of
ZINQ using real and simulated data, and compare it to the
existing differential abundance analysis approaches.
This work provides a robust and powerful non-

parametric regression approach to association testing for
microbiome data. The first contribution is to incorpo-
rate the quantile regression framework into microbiome
analysis, relieving the inflated type I error in existing
parametric approaches while maintaining the merits of
regression, such as adjusting for covariates. Secondly, the
test improves power by combining the effect of the inves-
tigated variable on both the probability of the taxon being
observed and the distribution of its abundance when
detected, regardless of the magnitude or direction of the
effect. ZINQ’s performance is superior to competitors
when the variable’s effect is heterogeneous, for example,
diminishing at lower or higher percentiles of the abun-
dance. Finally, it is broadly applicable regardless of the
normalization methods. As a non-parametric method, it
can handle data after any transformation or without nor-
malization. Therefore, ZINQ enables powerful differential
abundance analysis to identify complex biological mech-
anisms on microbial read counts, while easing the worry
about inflated false positives.

Methods
The fundamental idea underlying our approach is to
model the zero inflation and then separately, but non-
parametrically, model multiple selected percentiles of
non-zero values of the taxon abundance. In this section,
we first describe our notation, followed by the proposed

two-part quantile model for simultaneous modeling of
zeroes and non-zeroes, as well as the formal testing
procedure.

Notation
Suppose the data consist of n samples, and from each sam-
ple, the counts of J taxa are summarized. We then have
an n × J taxon table Y 0, and the entry Y 0

i,j denotes the
count of the ith sample on the jth taxon. We denote Y as
the normalized read count table following any normaliza-
tion method. In this paper, we treat the microbiome data
after normalization as the outcome in regression mod-
els, and relate them to the clinical variable of interest and
other covariates. Note that Yi,j is zero-inflated, and the
non-zero part can be either count or continuous depend-
ing on the normalization method. Next, each sample has a
set of characteristics X i = (Z�

i ,Ci)�, where Ci is the clin-
ical variable under investigation and Zi denotes a p-vector
of other covariates, including the intercept. The objective
is to identify which of the Yj’s are associated with C, i.e.,
which taxa are differentially abundant according to C. To
do this, we will perform a taxon-level analysis for each
taxon j, j = 1, . . . , J . Thus, we omit the subscript j for a
simpler presentation in the rest of this paper.

Two-part quantile regression model
As a common approach to address zero-inflated out-
comes, a two-part [30] or a hurdle model [31] models the
chance of observing a positive outcome and the mean of
the non-zero outcome separately. We use a similar strat-
egy. First, we assume that the probability of observing a
non-zero Yi, P(Yi > 0|X i), follows a logistic model,

logit{P(Yi > 0|X i)} = Z�
i ζ + γ Ci,

where ζ and γ are the true logistic coefficients associated
with the covariates and condition of interest. Next, instead
of modeling the mean by traditional parametric models,
we use linear quantile regression to model the non-zero
part, Yi|Yi > 0. We assume

QYi(τ |X i,Yi > 0) = Z�
i α(τ ) + β(τ)Ci,

where α(τ ) and β(τ) are the true quantile coefficients at
the τ th quantile of non-zero Yi, e.g., QYi(0.5|X i,Yi > 0)
is the conditional median and QYi(0.75|Xi,Yi > 0) is the
conditional 3rd quartile of the non-zero abundance. Note
that if Y is a count variable, to break the ties and achieve
valid inference, we add a perturbation to the outcome, i.e.,
Wi = Yi + U , U ∼ U(0, 1), and model the conditional
quantiles of Wi (the standard technique to apply quantile
regression for counts [32]). The quantile coefficients α(τ )
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and β(τ) can be estimated by minimizing the following
loss function

min
α,β

n∑

i=1
ρτ {Yi − Z�

i α − β Ci}I(Yi > 0), (1)

where ρτ (u) = u{τ − I(u < 0)} is the standard quantile
loss function [33].
In the two-part model, γ and β(τ), τ ∈ (0, 1) are

jointly of interest, characterizing the association between
the variable of interest and the entire distribution of the
taxon’s normalized abundance. Specifically, γ describes
the effect of the variable on the presence and absence of
the taxon, and β(τ) reflects the association of the variable
with the distribution of the normalized abundance when
the taxon is present in the sample. Thus, our global null
hypothesis in the differential analysis is

H0 : γ = 0 & β(τ) = 0 ∀τ ∈ (0, 1), (2)

such that there is no difference in zero inflation (γ = 0)
nor at the quantiles (β(τ) = 0, τ ∈ (0, 1)). Conversely, the
alternative hypothesis is HA : γ �= 0 or β(τ) �= 0 at some
percentiles of its abundance indicating that the abundance
of the taxon is associated with the variable of interest C.

Zero-inflated quantile rank-score based test (ZINQ)
As illustrated in Fig. 1, to test the hypothesis (2), our
strategy is first to test γ = 0, confirming whether there
is a difference between the groups concerning the likeli-
hood of the taxon being present in the samples. Indepen-
dently, we test β(τ) = 0 on the non-zero measurements
(accounts for the bias due to excluding zeroes) to see
whether the τ th percentile of the taxon abundance is dif-
ferent between the groups given it is present.K percentiles
are chosen to investigate typical locations of the non-zero
distribution. Finally, we combine all the marginal p-values
accounting for the relationships of the tests to avoid type
I error inflation by multiple-testing. Only when the sum-
marized p-value is significant, we conclude that the taxon
is differentially abundant. The detailed algorithm is as
follows:
Step 1: Conduct any valid test of logistic regression

regarding γ = 0, i.e., Wald test, Rao’s score test or
likelihood-ratio test, on the data {(X i, I(Yi > 0)); i =
1, . . . , n}. Denote the test statistic as TL and the p-value as
pL.
Step 2: Conduct a sequence of quantile rank-score tests

on the subset of non-zero Yi’s regarding β(τk) = 0, k =
1, · · · ,K (Appendix 1). Denote the test statistics asTQ

τk and
the p-values as pQτk , k = 1, · · · ,K .
Step 3: Combine the marginal p-values by the MinP

procedure [34, 35] or Cauchy combination test [36].
For the MinP procedure, the smallest p-value,

TZINQ-MinP = min{pL, pQτ1 , · · · , pQτK }, is the test statistic:

we reject the null hypothesis (2) if it is unlikely to observe
an even smaller minimum p-value. The final p-value can
be obtained by a resampling method based on the rela-
tionships among TL and TQ

τk , k = 1, · · · ,K (Appendix 2).
For the Cauchy combination test, we use TZINQ-Cauchy =
r̂n tan{(0.5−pL)π}+∑K

k=1 wk tan{(0.5−pQτk )π}, a weighted
sum of the tangent-transformed individual p-values as a
test statistic. Here, r̂n is the observed proportion of zero
in Yi’s, and wk = (1 − r̂n) τkI(τk≤0.5)+(1−τk)I(τk>0.5)∑K

k=1{τkI(τk≤0.5)+(1−τk)I(τk>0.5)} ,
i.e., the sum of all weights is 1, and the p-values for
central quantiles are assigned with larger weights while
the p-values on extreme tails have smaller weights. The
final p-value can be computed easily as TZINQ-Cauchy
converges to the standard Cauchy distribution under the
null hypothesis.
Through Steps 1–3, we aggregate the clinical variable’s

effect over the distribution of taxon abundance, includ-
ing the zero counts and various quantiles of the non-zero
part. We emphasize that ZINQ (as with LeFSe and the
Wilcoxon test) is a global test, in which we are assessing
any differences. But in contrast to other global tests, ZINQ
has the advantage that we can further evaluate where dif-
ferencesmay be observed, providing further clues as to the
manner of the association, i.e., whether the overall distri-
bution is shifted or there is some quantile at which there
is a substantial difference (indicating a subgroup effect).

Fine tuning on the grid of quantile levels
The selection of a quantile grid affects the testing perfor-
mance, so we recommend a fine tuning process. There are
two rules for searching. First, to thoroughly investigate the
distribution of microbial abundance, we prefer a grid that
covers typical locations of the distribution, e.g., the quar-
tiles. Second, to avoid high dependence among marginal
results that likely leads to uncontrolled false positives, the
number of quantile levels needs to be less than the number
of non-zero measurements of the investigated taxon.
Microbiome data is highly sparse and over-dispersed.

Thus, there may be a limited number of effective obser-
vations for quantile estimation. To be cautious about the
type I error, we recommend the conservative default, τ =
0.1, 0.25, 0.5, 0.75, 0.9 (common practice in quantile analy-
sis) for common taxa, and τ = 0.25, 0.5, 0.75 for rare taxa.
Also, for discrete normalized abundance (e.g., after rar-
efaction), τ = 0.25, 0.5, 0.75 is preferred as the data is even
more sparse and extra noise is introduced by perturbation
during analysis. Next, as estimates at multiple quantiles
are closely related, adding extra quantiles might introduce
more signals but also import more noise. Consequently,
we recommend that researchers start with the default. If
the sample size and taxon abundance permit, they may
try a series of finer grids. The final grid choice will be
the one that permits detection of differentially abundant
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Fig. 1 Graphical illustration of the step-wise implementation of ZINQ. Step 1: Test of γ = 0 by any valid test of logistic regression tells whether the
variable of interest is associated with the presence-absence status of the taxon in samples. Step 2: Test of β(τk) = 0 by the novel quantile rank-score
test adjusting for zero inflation tells whether the variable of interest is associated with the difference at the τkth percentile of the taxon’s non-zero
measurements. The testing is conducted marginally on K selected quantiles of the non-zero abundance, such as the default grid. Step 3: Combine
the marginal p-values in Steps 1 and 2 considering the dependence structure of the tests. Only when the aggregate p-value is significant, we
conclude that the taxon is differentially abundant

taxa at meaningful quantiles while keeping type I error
well-controlled.

Overview of CARDIA data
The Coronary Artery Risk Development in Young Adults
(CARDIA [37]) Study enrolled 5115 young adults (ages
18–30) in 1985–1986 with the aim of elucidating risk
factors for cardiovascular disease. Subject enrollment
was balanced according to Black or white race, gen-
der, education (more than high school or not), and

age. Each subject participated in up to eight follow-
up visits during 1987–1988 (year 2), 1990–1991 (year),
1992–1993 (year 7), 1995–1996 (year 10), 2000–2001
(year 15), 2005–2006 (year 20), 2010–2011 (year 25),
and 2015–2016 (year 30). A variety of factors that are
related to cardiovascular disease have been collected,
including blood pressure. Physical measurements such
as weight and body composition and lifestyle factors
such as dietary and exercise patterns have also been
collected.
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At the Year 30 follow-up examination (2015–2016),
stool samples were collected, and the 16S rRNA marker
gene was sequenced to obtain the gut microbiota profiles.
Sun et al. [38] examined the cross-sectional associations
between gut microbial diversity/taxonomic composition
and blood pressure. They conducted genus-specific analy-
ses using multiple linear regression with p-values adjusted
by the Benjamini-Hochberg (BH) procedure. As described
by Sun et al., “many individual genera lost statistical signif-
icance after adjustment for demographic, health behavior
and clinical covariates”.Wewill use ZINQ to improve their
results.
To be consistent with the original study [38], we focused

on microbiome count data aggregated at the genus-level
and removed genera that were present in less than 25% of
participants to avoid spurious findings due to rare genera.
The processed data has data on 149 genera for 531 sub-
jects. We aim to find all genera that have cross-sectional
associations with the status of having high blood pressure
(HBP). The same data from CARDIA will also serve as a
basis for our simulation studies. Note that we could quan-
tify blood pressure either as a continuous variable or as
a binary variable (HBP vs. non-HBP). For demonstration
purposes, we use HBP as a binary variable in this arti-
cle. Table 1 shows that three covariates [38], age, physical
activity score and dietary quality score, are not balanced
between participants with and without HBP, suggesting
the need to adjust for these variables in the analysis.

Simulation scenarios
We carried out four simulation studies to assess the type
I error control and power of ZINQ in comparison with
existing approaches. All simulations used the CARDIA
data as the starting data and aimed to identify differ-
entially abundant taxa between subjects with HBP and
without HBP.
The first simulation study, named “unadjusted analysis

on a single taxon”, investigated the association between
four typical taxa (two common and two rare) and HBP
without adjustment for other covariates.
In the second simulation, we generated an entire

OTU table via the proposed two-part quantile regression

Table 1 Summary statistics of three important covariates of
CARDIA in groups with / without HBP

Without HBP With HBP p-value

N 346 185

Age 55.12 (3.44) 55.78 (3.39) 0.034

Physical activity score 393.76 (307.74) 263.84 (241.39) < 0.001

Dietary quality score 3.43 (5.84) 1.29 (5.39) < 0.001

p-values are calculated by 2-sample t test.
Stratified count, mean and standard deviation of age, physical activity score and
dietary quality score in groups with/without HBP

model, and assessed the association of each taxon with
HBP adjusting for the three covariates in Table 1. We
name this simulation “adjusted analysis on an OTU table”.
In the third simulation, to favor mean-based

approaches, we generated OTU tables through the
Dirichlet-Multinomial (DM) distribution instead of the
two-part quantile regression model, and examined the
association between each taxon and HBP without adjust-
ing for covariates. We name this simulation scenario
“unadjusted analysis on a DM OTU table”.
We also permuted the CARDIA data to create null dis-

tributions, and assessed the type I error of association
testing between each taxon and HBP adjusting for the
covariates in Table 1. The results will be used to assist
subsequent real analyses on CARDIA data.
For ZINQ, we considered both MinP and Cauchy pro-

cedures for p-value combination and used the default
quantile grids depending on the specific scenarios.

Simulation 1 - unadjusted analysis on a single taxon
For common taxa, we selected two representative genera,
Anaerovorax and Saccharibacteria. Anaerovorax is differ-
entially abundant in the processed CARDIA data [38],
with strong differences in mean abundance by HBP status.
Saccharibacteria is not differentially abundant by ordi-
nary linear regression. However, HBP has strong effects
on the 1st quartile to the median of the microbe’s abun-
dance (by direct application of quantile regression, per-
turbing zeroes to break ties). The two genera are examples
with a mean association and substantial quantile associa-
tions with HBP, respectively.
We simulated the normalized abundance of the two

genera from the empirical distribution functions (edf ) of
their measurements in the normalized CARDIA data by
(1) rarefaction, (2) TSS or (3) CSS. We set the sample
size as 600 (comparable to CARDIA data), divided evenly
between samples with and without HBP (different from
the real data, but suitable for type I error and power
investigation). To assess type I error control, we simulated
null data by generating the 600 samples exclusively from
the edf of the normalized abundance in subjects without
HBP. To assess power, we created three settings. In set-
ting 1, we generated 300 samples each from the edf of
HBP and non-HBP groups so that the effect size is the
same as in the real data. In setting 2, for the 300 “with
HBP” samples, we generated 80% of them from the HBP
edf, while generated the remaining 20% from the non-
HBP edf; similarly, we simulated a mixture of 20% HBP
measurements and 80% non-HBP ones for “without HBP”
samples. In setting 3, we generated mixtures as in set-
ting 2, but changed the proportions to 60% and 40%. As
a result, we generated multiple effect sizes by decreas-
ing the true signal strength from setting 1 to 3. We also
used sample sizes 50, 100, and 200, with half HBP and half
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non-HBP samples, to mimic scenarios with more limited
sample sizes.
To study the performance of ZINQ on rare taxa, we

picked two genera, Propionispira and Corynebacterium,
with prevalence 5% in the CARDIA data before filtering
(not included in the processed data). Similarly, Propi-
onispira and Corynebacterium have mean and quantile
associations with HBP, respectively. We simulated their
null and alternative data following the same procedures,
but only with a sample size of 600 since small sample sizes
are likely to result in uniformly zero counts.
We applied 7 parametric zero-inflated methods to the

simulated data, in comparison with ZINQ: (1) zero-
inflated Poisson (ZIP) for rarefied data, (2) zero-inflated
negative binomial (ZINB) for rarefied data, (3) zero-
inflated beta regression (ZIB) for TSS normalized data, a
popular approach for compositional microbiome data, (4)
tobit model (assumes left-censoring at 0) for TSS and CSS
normalized data, which is the model of Monocle when the
positive normalized data is continuous, (5) zero-inflated
log-normal model (ZIlogN) for TSS and CSS normalized
data, which is the model of metagenomeSeq, (6) zero-
inflated gamma (ZIG) for TSS and CSS normalized data,
and (7) linear regression for all three normalization meth-
ods. We aimed to use those competing approaches to
illustrate the limitations of strong parametric assumptions
on microbiome data.
A taxon was considered differentially abundant if the

corresponding p-value was less than 0.05 or 0.01. The
simulation process was repeated 10,000 times. Then, we
assessed type I error control on the null data by the per-
centage of differentially abundant cases over the 10,000
runs, and computed power on the alternative data by the
proportion of positive calls among the 10,000 replicates.

Simulation 2 - adjusted analysis on anOTU table
We rarefied the CARDIA data 10 times to read depth
46,663 (the minimum read depth in the processed CAR-
DIA data), and averaged the resulting datasets to create
the starting data. This multiple rarefaction step was used
to avoid highly heterogeneous library sizes among sam-
ples and remove bias/randomness in each rarefaction, so
as to ensure a proper fitting of models on the starting data.
Note that this is not a general normalization procedure
and is only used for simulating datasets.
Then, we fitted each of the genera in the starting data by

the two-part quantile regression model:

logit{P(D =1|X)} = γ0 + γ1HBP
+ γ2age + γ3physical activity
+ γ4diet quality score,

(3)

where D = I(Y > 0) is a binary indicator of the presence
of the genus and the parameters γ0, . . . , γ4 were estimated
from the starting data,

QY (τ |X,Y > 0) =β0(τ ) + β1(τ )HBP
+ β2(τ )age + β3(τ )physical activity
+ β4(τ )diet quality score,

(4)

where the coefficient functions β0(τ ), . . . ,β4(τ ), τ ∈ (0, 1)
were estimated from the non-zero observations of the
starting data, using estimates at τ = 0.01, · · · , 0.99 (the
fine grid is acceptable to simply estimate quantile func-
tions).
The simulated tables were of the same size as CAR-

DIA data, with 531 samples and 148 genera. To simulate
one null OTU table for type I error assessment, we first
generated the covariates HBP, age, physical activity and
diet quality score for the 531 samples by resampling each
of the real covariates with replacement independently (to
create “new” samples instead of the real ones in the CAR-
DIA data). Then we generated the read counts based on
each of the 148 fitted models for the genera in the CAR-
DIA data, imposing the constraint that γ1 = β1(τ ) =
0, τ ∈ (0, 1). In detail, we simulated the binary indica-
tor D by Eq. 3 with γ1 = 0. If D = 0, we assigned 0
as the count. If D = 1, we simulated the count by the
inverse CDF method: randomly drew U ∼ U(0, 1), com-
puted Y = β0(U)+β2(U)physical activity+β3(U)age+
β4(U)diet quality score, and rounded it to the nearest
integer. To simulate one alternative OTU table for power
assessment, we followed the same procedure, but used the
fitted models directly without constraints. We also exam-
ined OTU tables with 50, 100, and 200 samples, which
were generated following the same steps.
We considered four normalization procedures for the

simulated OTU tables: (1) no normalization, (2) rarefac-
tion, (3) TSS, or (4) CSS. Then, we applied ZINQ to the
four resulting data sets, in comparison with 9 classical and
tailored approaches for microbiome analysis: (1) corncob
for original and rarefied data, assuming beta-binomial dis-
tribution and conducting simultaneous differential abun-
dance and variability analysis, (2) DESeq2 for original and
rarefied data, assuming negative binomial distribution, (3)
edgeR for original and rarefied data, assuming negative
binomial distribution, (4) LDM for all the four data, using
linear decomposition model, (5) limma for original and
rarefied data, using linear regression on log counts, (6) lin-
ear regression for all the four data, (7) metagenomeSeq
for CSS normalized data, assuming zero-inflated normal
distribution (which is supported by the current algorithm
in adjusted analysis, while the log-normal version cannot
incorporate covariates besides the variable of interest), (8)
Monocle, assuming negative binomial distribution for the
original and rarefied data, and tobit model for TSS and
CSS normalized data, and (9) QRank [39], a direct quantile
approach summarizing a sequence of standard rank-score
tests [40] and ignoring zero inflation (perturbation should



Ling et al. Microbiome           (2021) 9:181 Page 8 of 19

be added to zeroes to break ties and make algorithm run),
for all four data sets. Those competing methods are com-
monly used in current genomic or microbiome analysis;
unlike Wilcoxon or KS tests, they also allow adjustment
of covariates, which is suitable for this adjusted analy-
sis. We also considered CLR normalization that removes
compositionality of microbiome data, and used applicable
methods, LDM, linear regression and QRank to compare
with ZINQ. Note that the CLR transformed data can be
negative and is continuous without zero inflation, gen-
uinely different from the other normalized data examined
in the paper. We also analyzed the CLR transformed data
with zeroes filled back.
The taxon was considered differentially abundant if the

corresponding p-value was less than 0.05 or 0.01. False
positive rate (FPR) and true positive rate (TPR) were com-
puted as the proportion of positive calls in one null or
alternative OTU table, respectively. As one table con-
tained null or alternative cases exclusively, we regard FPR
and TPR as the type I error control and power of the corre-
sponding method. We repeated simulating such null and
alternative OTU tables 1000 times, and summarized the
average FPR and TPR as the comparison criteria.

Simulation 3 - unadjusted analysis on a DMOTU table
To facilitate a fair comparison, we deviated from our
proposed model and simulated data based on the DM dis-
tribution. This simulation strategy favors the mean-based
approaches.We first fitted a DMdistribution on the entire
starting OTU table (processed in Simulation 2) irrespec-
tive of HBP status.We called this model f 0. Next, we fitted
two DM models on the stratified starting data consisting
of HBP or non-HBP subjects exclusively, called them f 1HBP
and f 1non-HBP. Note that there are no covariates in the fit-
ted models. Therefore, we did not adjust for them either
in the downstream analysis. We repeat all the simulations
in Simulation 2.
To simulate one OTU table with 531 (or 50, 100, or

200) samples and 148 genera, we first generated the
binary covariate HBP by resampling from the real sam-
ples with replacement, and obtained the corresponding
library sizes. Then, for a null OTU table, we disregarded
the HBP realizations and generated counts of the 148 gen-
era for each sample based on f 0 with the corresponding
library size. For an alternative OTU table, we simulated
the counts for each sample using f 1HBP when HBP =
1, and f 1non-HBP when HBP = 0. The same normaliza-
tion and differential analysis methods in Simulation 2
were used. Average FPR and TPR were summarized over
1000 runs.

Simulation 4 – null distribution in permuted CARDIA data
Finally, we assessed type I error control based on per-
muted CARDIA data and used the results to infer the

validity of different approaches in analyzing real CAR-
DIA data. First, we normalized the CARDIA data by (1)
rarefaction or (2) CSS. We then permuted the covariates
(HBP, age, physical activity score and dietary quality score)
jointly over the 531 samples to create a permuted OTU
table. Such a permutation maintains the relationships
among covariates, but removes the association between
HBP and the normalized microbial abundance. Thus, the
permuted table should have no differentially abundant
taxa, and taxa with small p-values are considered false
positive signals. We applied ZINQ and all the competing
methods in Simulation 2 to the permuted table, then eval-
uated type I error control by the proportion of taxa with
p-values less than 0.05. We repeated the process 50 times
and summarized the type I errors by boxplots.

Results
Type I error and power in Simulation 1
Tables 2 and 3 report the type I error and power in ana-
lyzing the genera Anaerovorax and Saccharibacteria with
a sample size of 600, respectively.
From Table 2, we see that for a genus having a strong

mean association with HBP, ZINQ, using either MinP or
Cauchy p-value combinations, has well-controlled type
I error and demonstrates similar or higher power com-
pared to existing methods, regardless of how the data is
normalized. For rarefied data, ZINB has inflated type I
errors with 20% of the null taxa having p-values less than
0.05 and 8% of them having p-values less than 0.01. ZIP
performs even worse. In comparison, ZINQ-MinP and
ZINQ-Cauchy have type I error rates close to the nomi-
nal value of 0.05 and 0.01. ZINQ is even more powerful
than ZINB in Setting 2, with more than 83% of the true
differentially abundant taxa detected, compared to 73%
for ZINB. Linear regression controls type I error well, but
inferior to ZINQ in Setting 2 with less than 70% true
differentially abundant taxa detected. On the composi-
tional data normalized by TSS, ZIB has deflated type I
error with only 1% null taxa having p-values less than
0.05, and ZIlogN has inflated type I error with 70% of the
null taxa having p-values less than 0.05. The remaining
approaches, linear regression, Tobit, ZIG and ZINQ, all
control type I error well. In terms of power, ZINQ domi-
nates the others in Setting 2, where ZINQ identifies more
than 89% of the true differentially abundant taxa, while
the first runner-up, Tobit, detects 80% of them. As the
CSS normalized data is quite regular, all the approaches
have well-controlled type I error, and ZINQ shows similar
powers to the competing methods in all the three settings.
When sample size is 50 (Additional file 1: Table S1), the
type I error of ZINQ is deflated. For sample sizes 100 and
200 (Additional file 1: Tables S2 and S3), ZINQ maintains
a proper type I error across different normalizations, and
its power is comparable to the existing methods.
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Table 2 Type I error control and power on simulated data based
on Anaerovorax’s normalized abundance

Sample size = 600

Type I error Power

Null Setting 1 Setting 2 Setting 3

α-level 0.05 0.01 0.05 0.05 0.05

Rarefaction

Linear regression 0.0547 0.0084 0.9949 0.6928 0.1247

ZIP 0.7387 0.6622 1.0000∗ 0.9742∗ 0.7720∗

ZINB 0.2019 0.0771 0.9812∗ 0.7321∗ 0.2398∗

ZINQ-MinP 0.0526 0.0106 0.9994 0.8557 0.1508

ZINQ-Cauchy 0.0580 0.0110 0.9991 0.8346 0.1493

TSS

Linear regression 0.0536 0.0088 0.9970 0.7425 0.1320

ZIB 0.0110 0.0017 0.9964+ 0.6255+ 0.0305+

Tobit 0.0543 0.0099 0.9989 0.8041 0.1467

ZIlogN 0.6992 0.6872 1.0000∗ 1.0000∗ 0.9999∗

ZIG 0.0548 0.0102 0.9961 0.7264 0.1196

ZINQ-MinP 0.0501 0.0101 0.9995 0.9096 0.1669

ZINQ-Cauchy 0.0503 0.0103 0.9994 0.8981 0.1555

CSS

Linear regression 0.0527 0.0113 0.9995 0.8934 0.1733

Tobit 0.0526 0.0110 0.9985 0.8597 0.1628

ZIlogN 0.0475 0.0095 0.9996 0.8794 0.1464

ZIG 0.0494 0.0096 0.9998 0.8850 0.1474

ZINQ-MinP 0.0501 0.0103 0.9993 0.8852 0.1520

ZINQ-Cauchy 0.0505 0.0095 0.9991 0.8735 0.1524

Setting 1: 100% from HBP edf for HBP samples;
Setting 2: 80% from HBP edf and 20% from non-HBP edf for HBP samples;
Setting 3: 60% from HBP edf and 40% from non-HBP edf for HBP samples.
∗ : power of a method that inflates type I error
+ : power of a method that deflates type I error
Results by the various methods on 10000 simulated datasets by generating samples
from the edf of Anaerovorax’s normalized abundance, including type I error control
and power under different settings with significance cutoffs 0.05 and 0.01

From Table 3, we see that for a genus having substan-
tial quantile associations but no mean association with
HBP, the merits of ZINQ are amplified. Similar compari-
son results are seen for rarefied and TSS normalized data,
where ZINQ has already shown advantages for Anaerovo-
rax, and the improvement is mainly in CSS normalized
data. All methods control type I error well on the CSS nor-
malized data, while ZINQ demonstrates superior power
to the others. In the three settings, ZINQ has powersmore
than 83%, 37%, and 7%, respectively, while powers of the
first runner-up, ZIG, are only 56%, 23%, and 6%. We again
observe type I error deflation of ZINQ when sample size
is 50 (Additional file 1: Table S4). When sample size is
100 or 200 (Additional file 1: Tables S5 and S6), ZINQ’s

Table 3 Type I error control and power on simulated data based
on Saccharibacteria’s normalized abundance

Sample size = 600

Type I error Power

Null Setting 1 Setting 2 Setting 3

α-level 0.05 0.01 0.05 0.05 0.05

Rarefaction

Linear regression 0.0247 0.0032 0.0602+ 0.0424+ 0.0326+

ZIP 0.8238 0.7766 0.8056∗ 0.7642∗ 0.7384∗

ZINB 0.4241 0.2916 0.3515∗ 0.3304∗ 0.3150∗

ZINQ-MinP 0.0471 0.0089 0.9243 0.4867 0.0819

ZINQ-Cauchy 0.0506 0.0100 0.9166 0.5428 0.0954

TSS

Linear regression 0.0279 0.0030 0.0372+ 0.0338+ 0.0320+

ZIB 0.0053 0.0009 0.0649+ 0.0190+ 0.0067+

Tobit 0.0522 0.0137 0.0837 0.0703 0.0635

ZIlogN 0.9997 0.9997 0.9987∗ 0.9978∗ 0.9983∗

ZIG 0.0495 0.0073 0.1094 0.0675 0.0498

ZINQ-MinP 0.0428 0.0083 0.6626 0.2480 0.0596

ZINQ-Cauchy 0.0497 0.0099 0.6800 0.2818 0.0700

CSS

Linear regression 0.0500 0.0107 0.2021 0.1034 0.0541

Tobit 0.0498 0.0111 0.1677 0.0929 0.0533

ZIlogN 0.0446 0.0071 0.4933 0.2063 0.0621

ZIG 0.0443 0.0076 0.5563 0.2264 0.0643

ZINQ-MinP 0.0456 0.0085 0.8442 0.3766 0.0720

ZINQ-Cauchy 0.0497 0.0099 0.8327 0.3897 0.0773

Setting 1: 100% from HBP edf for HBP samples;
Setting 2: 80% from HBP edf and 20% from non-HBP edf for HBP samples;
Setting 3: 60% from HBP edf and 40% from non-HBP edf for HBP samples.
∗ : power of a method that inflates type I error
+ : power of a method that deflates type I error
Results by the various methods on 10000 simulated datasets by generating samples
from the edf of Saccharibacteria’s normalized abundance, including type I error
control and power under different settings with significance cutoffs 0.05 and 0.01

advantages on such taxa having heterogeneous associa-
tions with the variable of interest are clearer. It keeps false
positives below the nominal levels, and has higher power
than the others.
From Table S7 (Additional file 1), we see that for a rare

genus with mean differences, ZINQ obtains the nominal
significance level, and shows equivalent or higher power
than competing approaches. Table S8 (Additional file 1)
suggests that the superiority of ZINQ on a genus with
quantile differences is robust to the its rarity.
We note that ZINQ-MinP and ZINQ-Cauchy are gener-

ally comparable in the single taxon simulation, whileMinP
procedure is not as stable when sample size is limited,
more likely to experience type I error deflation.
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Overall, for taxa with either mean or quantile associ-
ations with the variable of interest, and when there are
reasonably abundant non-zero measurements, ZINQ is
robust, controlling type I error well, and shows similar or
improved power in detecting differentially abundant taxa
regardless of the normalization method.

Type I error and power in Simulation 2
Table 4 reports the average FPR and TPR of adjusted
analysis on 1000 simulated OTU tables generated by the
proposed two-part quantile regression model with sam-
ple size 531. ZINQ demonstrates a stable control of type I
error regardless of how the OTU table was processed and
gives the highest power among the valid approaches.
Specifically, for the raw read counts, corncob, DESeq2,

edgeR and Monocle have inflated type I error, with more

than 9% of p-values less than 0.05 and more than 4%
of p-values less than 0.01. Note that when adjusting for
covariates, the algorithm of corncob sometimes fails to
converge and could produce results for only 2/3 of the
taxa simulated. Compared to the remaining valid meth-
ods, LDM, limma, linear regression and QRank, all of
which have less than 40% power, ZINQ-Cauchy has supe-
rior power with more than 49% of the true differentially
abundant taxa identified at a significance level of α = 0.05.
ZINQ-MinP is less powerful (44%) but still advantageous.
On the rarefied table, corncob, DESeq2, edgeR, limma,

and Monocle fail to control the false positives with more
than 7% and 2% of p-values less than 0.05 and 0.01, respec-
tively. In terms of power, the valid approaches, LDM,
linear regression and QRank, have powers around 30%,
while ZINQ-Cauchy and ZINQ-MinP detect more than

Table 4 Average FPR and TPR by adjusted analysis on un-normalized/normalized simulated OTU tables

Sample size = 531

Count Rarefaction TSS CSS

α-level 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

FPR

Corncob 0.1077 0.0498 0.0919 0.0400 - - - -

DESeq2 0.0921 0.0395 0.0779 0.0312 - - - -

EdgeR 0.1034 0.0415 0.0893 0.0331 - - - -

LDM 0.0501 0.0096 0.0499 0.0096 0.0501 0.0096 0.0489 0.0095

Limma 0.0561 0.0128 0.0719 0.0203 - - - -

Linear regression 0.0475 0.0085 0.0469 0.0083 0.0472 0.0083 0.0488 0.0098

MetagenomeSeq - - - - - - 0.1539 0.0759

Monocle 0.7261 0.6695 0.6493 0.5839 0.0486 0.0086 0.0501 0.0102

QRank 0.0493 0.0101 0.0499 0.0100 0.0503 0.0098 0.0496 0.0099

ZINQ-MinP 0.0483 0.0094 0.0484 0.0096 0.0488 0.0096 0.0472 0.0091

ZINQ-Cauchy 0.0533 0.0107 0.0535 0.0106 0.0539 0.0104 0.0530 0.0109

TPR

Corncob 0.4544∗ 0.3093∗ 0.4018∗ 0.2615∗ - - - -

DESeq2 0.3289∗ 0.2346∗ 0.2859∗ 0.1912∗ - - - -

EdgeR 0.4046∗ 0.2782∗ 0.3653∗ 0.2395∗ - - - -

LDM 0.3283 0.1850 0.3094 0.1677 0.3283 0.1850 0.4150 0.2700

Limma 0.3981 0.2636∗ 0.3701∗ 0.2369∗ - - - -

Linear regression 0.3358 0.1867 0.3030 0.1573 0.3214 0.1735 0.4080 0.2735

MetagenomeSeq - - - - - - 0.4900∗ 0.3731∗

Monocle 0.8637∗ 0.8275∗ 0.8055∗ 0.7579∗ 0.3251 0.1766 0.4107 0.2761

QRank 0.3887 0.2346 0.2981 0.1641 0.3634 0.2160 0.3593 0.2117

ZINQ-MinP 0.4437 0.2733 0.3452 0.1945 0.4188 0.2535 0.4176 0.2519

ZINQ-Cauchy 0.4919 0.3156 0.3941 0.2333 0.4666 0.2943 0.4627 0.2919

∗ : power of a method that inflates type I error
+ : power of a method that deflates type I error
Results by the various methods on un-normalized/normalized simulated OTU table generated from the proposed two-part quantile model fitted on CARDIA data, including
the average FPR and average TPR over 1000 runs according to significance cutoffs 0.05 and 0.01
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39% and 34% of true differentially abundant taxa with the
cutoff 0.05.
On compositional data normalized using TSS, all of the

candidate methods control type I error well, while ZINQ-
Cauchy shows the highest power of 46% (α = 0.05) and
29% (α = 0.01) and ZINQ-MinP shows power of 42% and
25%. The first runner-up, QRank, shows power of only
36% and 22%.
For the CSS normalized data, the state-of-the-art

approach, metagenomeSeq, cannot control type I error,
with 15% and 8% of its p-values less than 0.05 and 0.01,
respectively. Among the methods that have proper type I
error control, ZINQ-Cauchy is the most powerful, find-
ing more than 46% of the true differentially abundant taxa
with the cutoff 0.05, ZINQ-MinP shows power of 42%,
while the competing approaches have powers less than
42%.
For the CLR normalized data (Additional file 1: Table

S9), we see qualitatively similar results as on other normal-
ized data – ZINQ controls type I error and shows power
gain. As the major difference of ZINQ from QRank is that
it considers zero inflation, we note that QRank is compa-
rable to ZINQ on the CLR normalized data but becomes
inferior when zeroes are added back.
When sample size is 50, ZINQ-MinP sometimes inflates

its type I error (by TSS, Additional file 1: Table S10).
For sample size 100 or 200 (Additional file 1: Tables S11
and S12), both ZINQ-MinP and ZINQ-Cauchy are robust,
obtaining nominal significance levels, and demonstrate
equivalent power to existing approaches on CSS normal-
ized OTU tables and improved power on other types of
data. Comparing the MinP and Cauchy procedures, we
see that ZINQ-Cauchy is more robust to small sample size
and is marginally more powerful on an OTU table.
To sum up, on an OTU table consisting of hundreds

of taxa with various distributional attributes, the non-
parametric ZINQ is robust and effectively controls false
positives, as long as the samples with non-zero counts
are adequate. Among the approaches with proper type I
error, ZINQ shows comparable or improved power due to
its ability to detect higher-order associations, not just the
mean effects.

Type I error and power in Simulation 3
Table 5 reports the average FPR and TPR of unad-
justed analysis on 1000 simulated OTU tables from the
DM models with sample size 531. Again, ZINQ controls
type I error well no matter how the OTU tables were
normalized.
The data was simulated to have definite mean dif-

ferences between the HBP and non-HBP groups, and
the analysis is simple with no covariates. As expected,
the mean-based approaches such as limma (on un-
normalized and rarefied data), LDM, linear regression

and Monocle (on CSS normalized data) show high power.
Corncob controls FPR and presents high power on un-
normalized and rarefied data, but has inflated type I error
when sample size is 50 or 100 (Additional file 1: Tables
S14 and S15). Even though the setting was not designed
to favor quantile-based methods, ZINQ-Cauchy always
demonstrates a top-tier power. Though ZINQ-MinP
shows a power reduction compared to those approaches
on certain normalized data, none of them shows consis-
tent power gain across all normalization methods. We see
similar results when sample size is 50 to 200 (Additional
file 1: Tables S14-S16). On the CLR normalized DMOTU
table (Additional file 1: Table S13), ZINQ maintains its
advantages as in Simulation 2.
Again, on an OTU table that includes taxa with var-

ious distributional attributes, though generated with
mean associations from DM models, ZINQ-Cauchy is
marginally more powerful than ZINQ-MinP.
Therefore, even when the true difference lies in the

mean abundance, with adequate non-zero measurements,
ZINQ is reliable and robust. It controls type I error and
demonstrates a high power regardless of the simulation
setup and data preprocessing procedures.

Type I error in Simulation 4
Figure 2 reports the type I errors of various approaches in
analyzing permuted normalized CARDIA data. In the top
panel, corncob, DESeq2, edgeR andMonocle have inflated
type I error with more than 15% p-values less than 0.05.
Of them, DESeq2, edgeR, and Monocle assume a negative
binomial distribution and corncob uses a beta-binomial
distribution, suggesting a failure to fully model the micro-
biome data even with such complex parametric models.
The bottom panel of Fig. 2 suggests that after CSS normal-
ization, all the methods have controlled type I error except
metagenomeSeq. This investigation provides a list of valid
approaches for subsequent analyses of the real CARDIA
data.

CARDIA data analysis
We applied the methods in Simulation 2, and focused on
those have proper type I error control in the permuted
CARDIA data to study the rarefied and CSS normal-
ized CARDIA data. Taxa were considered differentially
abundant if the corresponding BH-adjusted p-values were
less than 0.05. Table 6 reports the number of differen-
tially abundant taxa detected by the different approaches.
It shows that ZINQ is the most powerful, detecting the
largest number of differentially abundant taxa among the
tests that control type I error, regardless of the normaliza-
tion method. Note that we picked ZINQ-Cauchy to repre-
sent ZINQ, comparing with the others in this section, as it
is more powerful than ZINQ-MinP on the CARDIA data
(consistent with findings in Simulations 2 and 3).
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Table 5 Average FPR and TPR by unadjusted analysis on un-normalized/normalized simulated DM OTU tables

Sample size = 531

Count Rarefaction TSS CSS

α-level 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

FPR

Corncob 0.0522 0.0115 0.0523 0.0115 - - - -

DESeq2 0.0954 0.0305 0.0951 0.0304 - - - -

EdgeR 0.0588 0.0130 0.0580 0.0133 - - - -

LDM 0.0494 0.0097 0.0493 0.0098 0.0494 0.0097 0.0499 0.0097

Limma 0.0493 0.0098 0.0493 0.0101 - - - -

Linear regression 0.0475 0.0085 0.0475 0.0085 0.0475 0.0085 0.0496 0.0101

MetagenomeSeq - - - - - - 0.1354 0.0552

Monocle 0.9463 0.9296 0.9452 0.9283 0.0481 0.0087 0.0501 0.0102

QRank 0.0489 0.0098 0.0496 0.0096 0.0489 0.0097 0.0491 0.0096

ZINQ-MinP 0.0468 0.0092 0.0468 0.0091 0.0466 0.0090 0.0478 0.0092

ZINQ-Cauchy 0.0522 0.0108 0.0523 0.0106 0.0524 0.0107 0.0523 0.0108

TPR

Corncob 0.3009 0.1678 0.3000 0.1675 - - - -

DESeq2 0.2210∗ 0.1095∗ 0.2207∗ 0.1093∗ - - - -

EdgeR 0.1603 0.0642∗ 0.1610 0.0652∗ - - - -

LDM 0.1554 0.0646 0.1553 0.0646 0.1554 0.0646 0.2775 0.1530

Limma 0.2923 0.1647 0.2918 0.1646 - - - -

Linear regression 0.1529 0.0611 0.1528 0.0611 0.1528 0.0610 0.2888 0.1619

MetagenomeSeq - - - - - - 0.3165∗ 0.1955∗

Monocle 0.9610∗ 0.9485∗ 0.9603∗ 0.9476∗ 0.1537 0.0616 0.2901 0.1630

QRank 0.2318 0.1156 0.2316 0.1152 0.2325 0.1162 0.2253 0.1088

ZINQ-MinP 0.2419 0.1244 0.2414 0.1236 0.2422 0.1242 0.2391 0.1194

ZINQ-Cauchy 0.2820 0.1511 0.2814 0.1506 0.2819 0.1514 0.2785 0.1449

∗ : power of a method that inflates type I error
Results by the various methods on un-normalized/normalized simulated OTU table generated from the DMmodels fitted on CARDIA data, including the average FPR and
average TPR over 1000 runs according to significance cutoffs 0.05 and 0.01

On rarefied data, the valid competing methods, LDM,
limma, linear regression and QRank (by Fig. 2) detect
11, 24, 5, and 13 differentially abundant taxa, respec-
tively. In comparison, ZINQ identifies 49 differentially
abundant taxa, demonstrating dominating power. On CSS
normalized data, ZINQ claims 41 differentially abundant
taxa, and the first runner-up among all valid compet-
ing approaches (by Fig. 2), linear regression, finds only
25 differentially abundant taxa. Therefore, we can con-
clude that ZINQ controls false positives well and improves
the power in detecting differentially abundant taxa on
CARDIA data.
Figure 3 reports how the numbers of differentially abun-

dant taxa detected by the valid methods overlap with
each other. To compare with ZINQ, we grouped the
valid parametric methods and considered the results of
QRank separately, as these two groups are fundamentally

different due to their parametric versus non-parametric
nature. On the rarefied data (Fig. 3, left), ZINQ identifies
all genera but one found by the valid parametric methods,
LDM, limma and linear regression. Also, all of the genera
but one detected byQRank are identified by ZINQ.On the
other hand, ZINQ exclusively detects 20 genera. On the
CSS normalized data (Fig. 3, right), we see similar results:
ZINQ detects all except three genera found by LDM, lin-
ear regression and Monocle, whereas the two parametric
methods fail to identify 16 genera detected by ZINQ. The
findings confirm that ZINQ is the most powerful among
the approaches that control type I error. It possesses both
robustness and high power as it considers zero inflation in
a quantile-based approach. As a result, most of the genera
detected by the parametric and non-parametric compet-
ing methods are also identified by ZINQ, while there is a
noticeable number of genera uniquely detected by ZINQ.
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Fig. 2 Type I error control of the various methods on permuted normalized CARDIA data. a Boxplots of type I error over 50 null rarefied data. b
Boxplots of type I error over 50 null CSS normalized data

Table 6 Numbers of differentially abundant taxa by valid
methods on data normalized by rarefaction or CSS

Rarefaction CSS

Corncob 16∗ –

DESeq2 34∗ –

EdgeR 33∗ –

LDM 11 23

Limma 24 –

Linear regression 5 25

MetagenomeSeq – 40∗

Monocle 121∗ 20

QRank 13 12

ZINQ-MinP 48 37

ZINQ-Cauchy 49 41
∗ : method that inflates type I error

We then investigated the abundance profiles of those
genera exclusively identified by ZINQ, and found two pat-
terns that highlight ZINQ’s improved power. We exam-
ined two representative genera that correspond to the
two patterns in Fig. 4. For both Eubacterium (rarefied)
andHaemophilus (CSS normalized), themean normalized
abundance is nearly the same in the HBP and non-HBP
groups, however, the quantiles of their normalized abun-
dance in the two groups are substantially different. The
two genera exhibit different patterns of quantile differ-
ences.
The quantile functions corresponding to Eubacterium

in HBP and non-HBP subjects form a spindle shape (Fig. 4,
left). The two curves differ between the 60th and 95th per-
centiles, with themaximum difference attained at the 80th
percentile. This finding suggests that when Eubacterium is
abundant in the gut, having HBP is associated with lower
Eubacterium abundances.
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Fig. 3 Venn diagrams of the differentially abundant taxa detected by ZINQ, QRank, and valid parametric methods that control type I error. a Results
on rarefied data and b results on CSS normalized data

For Haemophilus, the two quantile functions cross each
other at the 48th percentile (Fig. 4, right). Thus, in
addition to varying in magnitude, the effect of HBP on
Haemophilus changes direction as well. Biologically, we
can conclude that for people with a normal amount of
Haemophilus in the gut, having HBP or not is unas-
sociated with the abundance of the microbe. However,
for subjects with a low level of Haemophilus, having
HBP is associated with still lower abundances, whereas
the opposite is true for subjects with high Haemophilus.
That is, HBP is associated with more extreme values of
Haemophilus abundance in both directions, relative to
subjects without HBP. This diverse association depending
on the abundance level might be driven by the differences
in species and strain level effects. Some species domi-
nates at the low abundance level, and associates with HBP

in one direction, while another species dominates at the
high abundance level and responds in the opposite way.
Another example of such a diverse association is Lacto-
bacillus [41], which has been observed by most vaginal
microbiome researchers. L. iners and L. crispatus are the
most common species and can both dominate the vagi-
nal microbiome, but L. iners more often co-occurs with
a diverse state associated with bacterial vaginosis. Due to
the diversity of effect at the species level, the association
with bacterial vaginosis is obscured at the genus level.
From the Venn diagrams and visual investigation of

quantile functions, we know that ZINQ can not only
detect most of the cases with homogeneous covari-
ate effect/mean difference, but is capable of identifying
heterogeneous covariate effect/quantile differences. To
validate this claim, we checked the degree of heterogeneity

Fig. 4 Empirical quantile functions (quantiles of normalized abundance (quantile) vs. quantile levels (τ )) stratified by with / without HBP for two
typical taxa detected by ZINQ exclusively, with dashed horizontal lines indicating the two group means, which are close or identical in the examples.
a Spindle shape, HBP is associated with lower Eubacterium abundance (rarefied) when the microbe is abundant. b Crossing, HBP is associated with
lower Haemophilus abundance (CSS normalized) when the microbe is at a low level, but with higher abundance when the microbe is abundant
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of the microbial abundance-HBP association in the genera
exclusively detected by ZINQ or valid parametric meth-
ods on CSS normalized CARDIA data (Fig. 3, right). We
used the coefficient of variation of the coefficients associ-
ated with HBP as the measure of heterogeneity. For each
genus, we first computed the logistic coefficient γ1 in (3)
for the zero counts and 19 quantile coefficients β1(τk) in
(4) with τk = 0.05, · · · , 0.95 on the non-zero part. Then,
we calculated the absolute value of the ratio between the
standard deviation and the mean of those coefficients.
Intuitively, a higher value of the coefficient of variation
reflects a higher degree of heterogeneity in the microbial
abundance-HBP association.
Figure 5 presents the density plots of the heterogene-

ity measure in the 16 genera uniquely detected by ZINQ
and 3 other genera exclusively identified by the valid para-
metric methods, linear regression and Monocle. We see
that the associations in ZINQ-detected genera are much
more heterogeneous than those detected by mean-based
parametric approaches. This finding analytically supports
our claim that as a non-parametric method, ZINQ can-
not be as sensitive as those parametric ones when there
is a subtle mean effect of HBP; however, it is more pow-
erful when the signal is heterogeneous, which is prevalent

in microbiome data which has complex distributional
attributes.
As computation cost is crucial for differential abun-

dance analysis, we summarized the time and memory
used by each method to analyze the CARDIA data 10
times. As Table S17 (Additional file 1) suggests, ZINQ is
fairly fast and economical. ZINQ-Cauchy entails 4.5 min
to analyze the real dataset 10 times, almost the same as
the time cost by QRank, which uses standard quantile
regression. The recently developed approaches tailored
for microbiome data, corncob and LDM, are much slower
than ZINQ. In terms of memory, ZINQ-Cauchy uses
as much as most of the established differential analysis
methods. ZINQ-MinP costs more resources than ZINQ-
Cauchy due to its resampling step.

Discussion
In this paper, we proposed to use a zero-inflated quantile
rank-score based test (ZINQ) under a two-part quantile
regression model for microbiome differential abundance
analysis. The tool detects the difference in zero counts by
logistic regression and searches for signals on the non-
zero normalized abundance via quantile rank-score based
tests. The final testing decision is based on the combined

Fig. 5 Heterogeneity comparison between the taxa detected by ZINQ exclusively and those found by the valid parametric methods that control
type I error but not ZINQ on the CSS normalized data
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p-value of those marginal tests using the MinP proce-
dure or Cauchy combination test. The novel approach
controls type I error due to its non-parametric nature
that handles various complex distributions robustly. In
addition, by examining multiple quantiles of the non-
zero abundance, ZINQ improves the testing power by
detecting quantile/higher-order associations between the
clinical variable and microbial abundance, besides the
mean association. Next, as a regression-based method,
it is flexible to adjust for covariates. Finally, thanks to
its non-parametric nature, ZINQ is generic, applicable to
microbiome data processed by any normalizationmethod.
Through simulations and application to the CARDIA

data, ZINQ complements and often offers improve-
ments over a number of existing methods, particularly
with regard to improved type I error control. Improve-
ments in type I error are, as discussed, often due to the
non-restrictive nature of quantile regression towards the
underlying distribution. Regarding power, among meth-
ods that usually control type I error, ZINQ is most advan-
tageous for taxa for which there are a reasonable number
of non-zero counts and may have heterogeneous effects.
Under these scenarios, ZINQ uniformly dominates com-
peting approaches. On the other hand, in situations where
there are primarily mean effects, competing approaches
such as LDM, may have higher power—though ZINQ is
usually not too far behind. As large-sample microbiome
data become increasingly available thanks to advances
in technology, the advantage of ZINQ to detect sub-
tle and heterogeneous differences while adjusting for
crucial clinical covariates becomes important. It will
help identify complicated biological mechanisms of dis-
eases/exposures on microbes, rather than a simple effect,
such as an increase/a decrease of abundance in all
people.
In general, ZINQ can be applied to low-frequency

taxa as well as more common taxa. However, for low-
frequency taxa, we suggest using ZINQ-Cauchy and
restricting the quantile levels to central ones, such as τ =
0.2, 0.4, 0.5, 0.6, 0.8, the quartiles or even just the median.
Here, “low-frequency” is an operational term that depends
upon sample size: taxa with a prevalence of 5% will be
observed 50 times if the sample size is 1000, but only 2–
3 times if the sample size is 50. In practice, a threshold
of 15 non-zero observations may be sufficient to apply
ZINQ (given there is no high-dimensional problem due
to too many covariates), regardless of sample size. The
reason behind this restriction is that if the number of non-
zero measurements is small (a concern for small sample
sizes), then quantile regression is not stable at quantiles
far from the median of the distribution (i.e., the 10th
or 90th percentiles). Similarly, ZINQ-Cauchy approach
tends to offer better error control for low-frequency taxa
due to its finite sample characteristics. Accordingly, for

low-frequency taxa below the threshold, specially tailored
approaches such as the LDMmay offer improvements.
A characteristic of ZINQ is that it can, in principle,

be applied to any normalization or transformation of the
original count or relative abundance data. Our results
demonstrate that it often produces qualitatively similar
results across different normalizations: when analyzing
the CARDIA data, ZINQ-Cauchy detected 49 and 41 dif-
ferentially abundant taxa on rarefied and CSS normalized
data, respectively, and most of them overlap. The discrep-
ancy only occurs for a taxon when the effect size is small
and its statistical significance is borderline.
Despite the many strengths of ZINQ, it does not serve

as a panacea for all issues in microbiome association anal-
ysis. For example, when library size is heavily confounded
with the variable of interest, as with other approaches that
consider zero inflation, ZINQ cannot determine whether
differences in proportions of zero are due to the vari-
able or caused by the imbalanced sequence depths. For
this case, incorporate library size as a covariate in ZINQ
may help, though we would suggest using approaches that
treat the relative abundance quantitatively, such as linear
regression or LDM.
There are various directions to extend ZINQ. First, as

the taxa in microbiome data are highly correlated, we can
incorporate information from others when analyzing one
taxon to achieve a more meaningful and possibly more
powerful result. Second, to save computational cost, we
can develop an efficient procedure to select the optimal
grid of quantile levels.
We only compare approaches under the same normal-

ization in this paper. If one is interested in consolidating
results across various normalizations, to control false pos-
itive calls, we suggest constructing an omnibus test using
theMinP or Cauchy combination approaches. This entails
analyzing the data under multiple normalizations meth-
ods and then combining the p-values for each taxon under
the different normalizations.

Conclusions
We present ZINQ, a quantile-based approach to test
taxon-level association of microbiota with dichotomous
or quantitative clinical variables. Existing methods suffer
from either inflated type I error or loss of power. The tai-
lored methods for genomic or microbiome analysis usu-
ally impose strong parametric assumptions, which rarely
hold due to the complex distributional attributes of micro-
biome data, leading to type I error inflation. Classical
statistical methods such as linear regression andWilcoxon
tests control type I error but reduce testing power since
they miss characteristics of microbiome data. We use
the quantile regression framework, which is a robust
non-parametric alternative, to handle the complicated
distributional features of microbiome data. Also, by a
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comprehensive investigation of the association over dif-
ferent quantile levels of a taxon’s abundance, we can
improve the testing power, and also detect complex
mechanisms which might be of interest for biologi-
cal researchers. Therefore, ZINQ provides a powerful
and robust approach to microbiome differential abun-
dance analysis, improving and complementing existing
approaches.

Appendix 1 – quantile rank-score based test with
zero inflation
Rank-score test for β(τ) = 0 adjusting for zero inflation
Existing quantile regression inference tools will under-
estimate the uncertainty that the “non-zero subset” is
observed by chance (i.e., underestimate the variance) and
lead to biased tests. Therefore, we introduce a novel
rank-score test of β(τ) to tackle zero inflation under the
two-part quantile regression model.
Let C̃i = Ci ·I(Yi > 0) be the nominal clinical variable of

interest, and let Z̃i = Zi ·I(Yi > 0) be the nominal remain-
ing covariates. Then C̃n×1 = (C̃1, · · · , C̃n)�, Z̃n×p =
(Z̃1, · · · , Z̃n)� are the design vector and matrix associ-
ated with C̃i’s and Z̃i’s, respectively. We further define
C̃∗ = (I − Z̃(Z̃�Z̃)−1Z̃�

)C̃, where I is the n × n identity
matrix. This transformation ensures that C̃∗ exclusively
contains the information about the clinical variable, since
it is the vector of the least square residuals from regressing
C̃ on Z̃. Then, we construct a rank score for β(τ) = 0 by

SQn,τ = n− 1
2

n∑

i=1
ψτ {Yi − Z̃�

i α̂n(τ )}I(Yi > 0)C̃∗
i , (5)

where ψτ (u) = τ − I(u < 0) is the piecewise first
derivative of the quantile loss function ρτ (u), α̂n(τ ) is the
minimizer of (1) with β = 0, and C̃∗

i is the ith element
of C̃∗. SQn,τ measures the independent contribution of the
clinical variable to the τ th percentile of the non-zero nor-
malized microbial abundance. As an analogy to the Rao’s
score under likelihood-based models, it assesses the con-
straint β(τ) = 0 based on the gradient of quantile loss
function. When β(τ) = 0, SQn,τ is close to zero, while
its substantial deviation from 0 indicates a significant
effect of the clinical variable. Note that the zero-positive
uncertainty is incorporated into the rank-score (5).
Finally, we define the rank-score test statistic at the τ th

quantile as

TQ
τ = SQn,τ√

n−1τ(1 − τ)C̃∗�C̃∗
. (6)

Under the null hypothesis (2), TQ
τ asymptotically follows

a standard normal distribution, and the p-value pQτ can be
obtained accordingly. The novel test has two major dif-
ferences compared to the standard rank-score test. First,

the rank-score (5) is computed based on the subset of
data with non-zero Yi’s. Second, to correct the biases
caused by zero inflation, we incorporate the zero-positive
uncertainty in estimating the variance of the rank-score
by introducing the zero-truncated nominal covariates. As
E(C̃2

i ) = E{C2
i P(Yi > 0|X i)}, the variance term in (6)

implicitly incorporates a “propensity score” of each sam-
ple, compensating for the variability due to the random
status of the taxon being sampled or not.

Dependence structure of the novel rank-scores at multiple
τ ’s
We can compute a sequence of p-values pQτk , k = 1, · · · ,K
independently based on TQ

τk , k = 1, · · · ,K at the quan-
tile levels 0 < τ1 < · · · < τK < 1. Next, under the null
hypothesis (2), we can derive that SQn = (SQn,τ1 , · · · , SQn,τK )

follows a multivariate normal distribution with mean 0
and covariance �, where the (k, k)th diagonal element of
� can be estimated by n−1τ(1− τ)C̃∗�C̃∗, the (k, l)th off-
diagonal element can be computed by n−1(min{τk , τl} −
τk τl)C̃

∗�C̃∗. This test dependence structure will be used
to combine the marginal p-values.

Appendix 2 – resampling in MinP procedure
Let qLmin denote the (1 − TZINQ-MinP)th percentile of the
distribution of TL, and qQmin denote the (1−TZINQ-MinP)th
percentile of the distributions of TQ

τk , k = 1, · · · ,K . The
p-value based on TZINQ-MinP is

P
{

∃ TQ
τk

≥ qQmin, k = 1, · · · ,K or TL ≥ qLmin | H0
}

= 1 − P
{
TL < qLmin |H0

}

P
{

∀ TQ
τk

< qQmin, k = 1, · · · ,K |H0
}

= 1 − (1 − TZINQ-MinP)

P
{

∀ TQ
τk

< qQmin, k = 1, · · · ,K |H0
}
,

where the first equality is based on the conditional inde-
pendence between TL and TQ

τ . The joint probability
P

{
∀TQ

τk < qQmin, k = 1, · · · ,K |H0
}
can be computed via

resampling SQn,τk ’s from the joint limiting distribution of SQn
under the null, and calculating the realizations of TQ

τk ’s.
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40. Gutenbrunner C, Jurečková J, Koenker R, Portnoy S. Tests of linear
hypotheses based on regression rank scores. J Title Nonparametric Stat.
1993;2(4):307–31.

41. Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M,
Vaneechoutte M. Longitudinal analysis of the vaginal microflora in
pregnancy suggests that l. crispatus promotes the stability of the normal
vaginal microflora and that l. gasseri and/or l. iners are more conducive to
the occurrence of abnormal vaginal microflora. BMC Microbiol. 2009;9(1):
116.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Notation
	Two-part quantile regression model
	Zero-inflated quantile rank-score based test (ZINQ)
	Fine tuning on the grid of quantile levels
	Overview of CARDIA data
	Simulation scenarios
	Simulation 1 - unadjusted analysis on a single taxon
	Simulation 2 - adjusted analysis on an OTU table
	Simulation 3 - unadjusted analysis on a DM OTU table
	Simulation 4 – null distribution in permuted CARDIA data


	Results
	Type I error and power in Simulation 1
	Type I error and power in Simulation 2
	Type I error and power in Simulation 3
	Type I error in Simulation 4
	CARDIA data analysis

	Discussion
	Conclusions
	Appendix 1 – quantile rank-score based test with zero inflation
	Rank-score test for ()=0 adjusting for zero inflation
	Dependence structure of the novel rank-scores at multiple 's

	Appendix 2 – resampling in MinP procedure
	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s40168-021-01129-3.
	Additional file 1

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

