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Abstract

Background: Methane is an end product of microbial fermentation in the human gastrointestinal tract. This gas is
solely produced by an archaeal subpopulation of the human microbiome. Increased methane production has been
associated with abdominal pain, bloating, constipation, IBD, CRC or other conditions. Twenty percent of the
(healthy) Western populations innately exhale substantially higher amounts (>5 ppm) of this gas. The underlying
principle for differential methane emission and its effect on human health is not sufficiently understood.

Results: We assessed the breath methane content, the gastrointestinal microbiome, its function and metabolome,
and dietary intake of one-hundred healthy young adults (female: n = 52, male: n = 48; mean age =24.1). On the
basis of the amount of methane emitted, participants were grouped into high methane emitters (CH,4 breath
content 5-75 ppm) and low emitters (CH, < 5 ppm).

The microbiomes of high methane emitters were characterized by a 1000-fold increase in Methanobrevibacter
smithii. This archaeon co-occurred with a bacterial community specialized on dietary fibre degradation, which
included members of Ruminococcaceae and Christensenellaceae. As confirmed by metagenomics and
metabolomics, the biology of high methane producers was further characterized by increased formate and acetate
levels in the gut. These metabolites were strongly correlated with dietary habits, such as vitamin, fat and fibre
intake, and microbiome function, altogether driving archaeal methanogenesis.

Conclusions: This study enlightens the complex, multi-level interplay of host diet, genetics and microbiome
composition/function leading to two fundamentally different gastrointestinal phenotypes and identifies novel
points of therapeutic action in methane-associated disorders.
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Background

Methane is the metabolic end-product of a non-bacterial
sub-population of the gastrointestinal microbiome,
namely the archaeome [1]. Although methane is not uti-
lized by the human itself, elevated methane levels, mea-
sured in breath, have been linked with small intestinal
bacterial overgrowth, colorectal cancer, diverticulosis
and other gastrointestinal disorders (summarized in [2]).
While its role as a gasotransmitter is controversially dis-
cussed [3], methane is causally linked to a slowed gastro-
intestinal motility (transit time slowed down by up to
59%), probably caused by the direct action of methane
on the cholinergic pathway of the enteric nervous system
[4].

Methane-forming archaea (‘methanogens’) in the
gastrointestinal tract (GIT) were first observed long
ago—through the detection of methane in the human
breath and flatus (see also [5, 6]). Although not a single
pathogenic archaeal representative has been identified,
human-associated archaea are widespread in the GIT as
well as other body sites (e.g. skin, respiratory tract) [1, 7,
8]. The role of methanogens per se in health and disease
is not yet clear, and analyses suffer from methodological
pitfalls to correctly detect and characterize the human
archaeome as well as the contradictory information that
appears in the literature (reviewed in [1]).

Although the average abundance of archaea in human
fecal samples is low as compared to bacteria [1], metha-
nogens are considered to represent key-stone species in
the GIT. By maintaining numerous syntrophic relation-
ships with bacteria, methanogens control the efficiency
of the bacterial primary and secondary fermentation of
complex organic molecules. By consuming by-products
of bacterial metabolism (H,, CO,, formate, methyl-
compounds, acetate), they particularly contribute to
keeping the hydrogen concentration low, which would
inhibit the fermentation activity and reduce the overall
energy yield [1].

In the human GIT, methanogens are mainly repre-
sented by the Methanobacteriales (M. smithii, Methano-
sphaera stadtmanae) and Methanomassiliicoccales (Ca.
Methanomassiliicoccus and Ca. Methanomethylophilus
representatives). These methanogens contribute to an
average human body methane emission of about 0.35 1
per day [9], released through the breath and flatus. In
general, clinical breath tests (mainly focussing on hydro-
gen content) are widely distributed in clinical diagnosis
of gastrointestinal conditions, including irritable bowel
syndrome, maldigestion or small intestinal bacterial
overgrowth [10]. Based on such breath tests, increased
methane content has been associated in some reports
with colorectal cancer or diverticulosis [2]. However, a
substantial proportion of the human population (approx.
20% of the Western adult population) has been shown
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to naturally emit methane in concentrations above 5
ppm, measured in breath, whereas the remaining popu-
lation emits methane in concentrations close to or below
the detection limit (for details see [1]). Although in-
creased methane emission has been linked to the suc-
cessful cultivation and increased molecular detection of
methanogenic archaea from stool [11, 12], the under-
lying reason for archaeal differential abundance in hu-
man methane producers and non-producers is largely
unclear to date.

In this publication, we identify the driving forces sup-
porting methane emission through breath by a systematic
comparison of high methane-emitting young subjects vs.
low-emitters with respect to diet, GIT microbiome and
archaeome (amplicon- and shotgun metagenome-based
analyses), and metabolome.

Methods
All key resources and PCR conditions are listed in the
Supplementary Methods file.

Subject details

One-hundred participants between 18 and 37 years were
recruited at the University of Graz. Following exclusion
criteria were set: smoker, intake of antibiotics and pro-
biotics within the last 3 months before sampling and
neurological, psychiatric or internal diseases. The study
was evaluated and approved according to the Declar-
ation of Helsinki by the local ethics committee of the
University of Graz (EK-Nr. GZ. 39/44/63 ex 2017/18).
Before participation, all participants signed an informed
consent.

Methane measurement

All volunteers were asked to inhale deeply through the
nose and hold their breath for 15 s before complete ex-
halation into the GastroCH,ECK breath bags (Bedfont
Scientific Ltd., UK). Breath was collected on the same
day as the stool sample in the morning before brushing
their teeth and eating breakfast. Methane in the breath
was measured by GastroCH,ECK Gastrolyzer (Bedfont
Scientific Ltd., UK). In order to define a cut-off value for
high- and low-methane-producing individuals, we
adopted a conservative cut-off, proposed after analysis of
a large North American dataset of methane measure-
ments in breath (4-5 ppm [13]). Based on these consid-
erations, participants with CH, values above 5 ppm were
stated as methane producers in our study. The median
of high-methane-producing individuals was 14 ppm
(ranging from 7 to 75 ppm), whereas the median of the
low-methane-emitting individuals was found to be 1
ppm (ranging from 1 to 4 ppm; Supplementary Table 1).
With these measurements, 15% of the study group (n=
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15) were classified as high methane emitters (CH, value
> 5 ppm).

Matched subset (n=30)

Fifteen high-methane emitters were matched to 15 low-
methane emitters by sex (same sex), age (max. 7 years
difference), hormonal contraception (both either yes or
no), and vegetarianism (both either yes or no) (Supple-
mentary Table 2, column D-H). All other participants
were excluded in this subset.

Nutritional assessment

Dietary habits and food intake information of the 4
weeks before the investigation were collected by a vali-
dated food frequency questionnaire (‘German Food Fre-
quency Questionnaire (FFG) of the Robert Koch
Institute) [14]. The diet’s nutritive composition (e.g. in-
take of fat, protein, magnesium, zinc, etc.) and dietary
diversity indices were analyzed by a specific nutrition
software using food and nutritive values specific for
Austria [15]. The dietary intake information is included
in Supplementary Table 2.

Sample collection, DNA extraction and amplicon
sequencing

Collection and PMA treatment

Every participant had to collect a stool sample in a stool
collection tube (VWR) and bring it to the laboratory.
After arrival, stool samples were placed on ice immedi-
ately. Before storage at -20°C, samples were prepro-
cessed with propidium monoazide (PMA) to make sure
that we analyze intact cells. Therefore, a 10% stool (0.1g
stool) suspension with 0.9% sodium chloride was treated
with PMA solution to mask freely accessible DNA. Dur-
ing PMA treatment, all steps were performed in the
dark. PMA solution (final concentration: 50 pM) was
added to the stool samples. Samples were vortexed
briefly, incubated for 10 min on a shaker and 15 min in
a PMA-Lite™ LED Photolysis Device (Biotum) after-
wards. Samples were stored at —20°C until further use.

DNA extraction

300 pl of PMA-treated stool samples were used to ex-
tract microbial genomic DNA by using the DNeasy
PowerSoil Kit (QIAGEN, USA) according to manufac-
turer’s protocol. The only modification was the use of
MagNaLyser at 6500 rpm for 2 times 30 s instead of vor-
texing the samples. DNA concentration of extracted
DNA was quantified via Qubit dsDNA HS Assay Kit
(Thermo Fisher Scientific, USA).

Quantitative PCR
The absolute number of bacterial and methanogenic 16S
rRNA gene copies in the samples was assessed using a
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SYBR-based procedure. One-microliter template was
added to SYBR Green Supermix (BioRad). The primer
pairs 331F and 797R and M1F and MI1R were used for
bacterial and methanogenic (mcrA gene) qPCR, respect-
ively. The PCR reagents and conditions are given in the
Supplementary Methods file.

Crossing point (Cq) values were determined by the
Bio-Rad CFX Manager Software version 3.1 (regression
method). Absolute copy numbers of bacterial and meth-
anogenic 16S rRNA genes were calculated using the Cq
values and the reaction efficiencies based on standard
curves obtained from defined DNA samples from
Escherichia coli and the gene of the alpha subunit of the
methyl coenzyme M reductase (mcrA) [16, 17]. The
average Cq values of our non-template controls were
used to define the detection limits. All reactions have
been performed in triplicates. For further analysis, only
samples with positive results in at least 2 out of 3 repli-
cates were used. The qPCR efficiency and R* values
yielded 93.6% and 0.997 in bacterial approach and 70.0%
and 0985 in methanogen-targeting approach,
respectively.

16S rRNA gene-based next-generation sequencing (NGS)
and sequence data processing

To determine the microbial diversity, the variable region
V4 of 16S rRNA gene was amplified using universal PCR
primers 515FB and 806RB. For the archaea-targeted set-
up, a nested PCR approach was used, using the primer
pair 344F and 1041R at the first and 519F and 806R for
the second PCR. For detailed protocol and primer se-
quences, see [18]. Each PCR reaction was performed in
triplicates. Triplicates were pooled after visualization in
3% (w/v) agarose gel. Fragments were sequenced using
the Illumina MiSeq sequencing platform (Illumina, Eind-
hoven, the Netherlands) performed in cooperation with
the Core Facility for Molecular Biology of the Center for
Medical Research in Graz [19].

Raw reads were analyzed with QIIME2 (Quantitative
Insights Into Microbial Ecology) version 2019.1 using
DADA2 (Divisive Amplicon Denoising Algorithm) to
denoise sequences [20, 21]. Briefly, paired end reads
were joined together before a quality check of the pro-
duced sequences was performed. Afterwards, taxonomic
assignment was realized with a Naive-Bayes classifier
trained on the SILVA v128 (universal approach) and
SILVA v132 (archaeal approach) reference database [22,
23]. For phylogenetic metrics and analysis, a rooted tree
was generated with FastTree 2 [24].

LEfSe (LDA Effect Size) [25] was used to identify fea-
tures characterizing the differences between two given
conditions. In our case, the LEfSe tool was integrated in
a user-friendly Galaxy set-up provided by the Core Facil-
ity Computational Biology at the Medical University of
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Graz. The cladogram was created by the ‘Plot Clado-
gram’ function and curated using Inkscape (inkscape.

org).

Controls

Extraction blanks and PCR negative controls were proc-
essed in parallel. All controls were removed using the R
package decontam [26] with the prevalence method and
threshold set to 0.5 (https://github.com/benjjneb/
decontam). Unassigned sequences mitochondrial and
chloroplast signatures as well as features with zero or
only one read were also removed. Remaining RSV tables
(Supplementary Datasets 1, 2 and 3) were processed in
Calypso [27] to generate RDA, Shannon, PCoA, ANOVA
plots as well as co-occurrence plots based on Spearman
correlation analysis.

BioEnv

R Studio version 1.2.1335 (2018-07-02) and R package
vegan 2.5-5 [28] was used to generate a BioEnv diagram
with environmental variables (dietary information, CH,
emission) with a maximum correlation with microbial
community dissimilarities.

Metagenome analysis

Shotgun metagenome sequencing

200 ng extracted DNA (PMA treated) of each of the 30
matched samples was sent for sequencing to Macrogen
(Seoul, South Korea). Library was extracted via Nextera
XT Library construction kit (Illumina, Eindhoven, the
Netherlands; Library Reference Guide: #15031942 v03)
and sequenced without a prior ribosomal depletion step
(150 bp paired end) using one lane with the I[llumina
HiSeq platform (Illumina, Eindhoven, the Netherlands).
Fastq files were received as output after sequencing. On
average, 2,741,962 + 795,487 sequences per sample were
obtained (Supplementary Table 8).

Metagenomics analysis via MG-Rast

Raw data (fastq files) was quality controlled, and se-
quences were paired and analyzed with the open-
submission data MG-Rast platform (server running ver-
sion 4.0.3.) [29]. 85.99 + 4.1% (1,890,579 + 536,553 se-
quences) of the obtained reads were successfully
mapped (Supplementary Table 8). Features with zero or
one read were removed before feature tables (RefSeq
and SEED) were uploaded in Calypso [27].

Metagenome assembled genomes (MAGs)

After checking quality with fastqc (v0.11.8) [24], raw
shotgun reads were filtered accordingly with trimmo-
matic (v0.38) [30] by using a minimal length of 50 bp
and a Phred quality score of 20 in a sliding window of 5
bp. Quality-filtered sequences were then mapped against

Page 4 of 18

the human chromosome hgl9 with bowtie2 (v2.3.5) [31]
to remove sequences of the human host by retaining all
unmapped reads with samtools (v1.9, settings: -b -f 12 -F
256) [32]. Host removed forward and reverse fastq files
were then extracted from sorted bam files with bedtools
(v2.29.0) [33]. Reads were then analyzed in a genome-
centric manner. In a first step, quality-filtered reads were
co-assembled in Megahit (v1.1.3) [34] by using the pre-
set meta-sensitive. Resulting contigs were binned with
MaxBin v2.2.4 [35]. Further on, bins were quality scored
(based on CheckM [36] estimates for completeness, con-
tamination and strain heterogeneity as well as N50 based
assembly continuity) and de-replicated to pick represen-
tative MAGs (metagenome assembled genomes) with
dRep (v2.0.5) [37]. Quality MAGs were then classified
with GTDBtk (v1.2.0) [38]. Identified key MAGs were
further annotated and analyzed including gene synteny
in MaGe [39]. Finally, replication rates were determined
with iRep (v1.1.9) [40].

Prediction model, supervised metadata classifications and
regressions

Raw metagenome data was used to create prediction
models in QIIME2 [41]. The q2-sample-classifier-plugin
[42] was used to predict high- and low-methane emitters
from feature table compositions. To determine accuracy
by comparing predicted values, the data set was ran-
domly split by 5 into a training set (4/5) and a test set
(1/5). The training set was used for the learning model
including settings for optimized feature-selection, par-
ameter tuning and K-fold cross-validation based on Ran-
domForest. The resulting sample estimator (trained
classification model) was also used to predict methane
emissions between the shotgun (RefSeqs) and amplicon
dataset.

Krona charts

Datasets (amplicon and metagenome) were normalized
and Krona chart templates [43] were used to visualize
the differences between high- and low-methane emitters.

Metabolic quantification using NMR

Nuclear magnetic resonance spectroscopy (NMR) ana-
lysis was used to analyze concentrations of acetate, suc-
cinate, formate, lactate, butyrate and propionate in stool
samples (PMA untreated) performed at the Gottfried
Schatz Research Center for Cell Signaling, Metabolism
and Aging, Molecular Biology and Biochemistry, Medical
University of Graz. To quench enzymatic reactions and
remove proteins, methanol-water solution was added to
the stool sample (2:1), cells were lysed using a Precellys
homogenizer and stored at -20°C for 1 h until further
processing. Samples were centrifuged (4°C, 30 min,
17949 rcf), and supernatants were lyophilized afterwards.
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Samples were then mixed with 500 pl NMR buffer in
D,O (0.08 M Na,HPO,, 5 mM 3-(trimethylsilyl) propio-
nic acid-2,2,3,3-d, sodium salt (TSP), 0.04 (w/v) % NaNj
in D,O, pH adjusted to 7.4 with 8 M HCl and 5 M
NaOH) and transferred into 5-mm NMR tubes. NMR
was performed on an AVANCE™ Neo Bruker Ultrashield
600 MHz spectrometer equipped with a TXI probe head
at 310 K and processed as described elsewhere [44].

The 1D CPMG (Carr-Purcell_Meiboom_Gill) pulse se-
quence (cpmgprld, 512 scans, 73728 points in FI1,
11904.76 HZ spectral width, 512 transients, recycle de-
lays 4 s) with water suppression using pre-saturation
was used for "H 1D NMR experiments. Bruker Topspin
version 4.0.2 was used for NMR data acquisition. The
spectra for all samples were automatically processed (ex-
ponential line broadening of 0.3 Hz), phased and refer-
enced using TSP at 0.0 ppm using Bruker Topspin 4.0.2
software (Bruker GmbH, Rheinstetten, Germany).

Spectra pre-processing and data analysis have been
carried out using the state-of-the-art data analysis pipe-
line (group of Prof. Jeremy Nicholson at Imperials Col-
lege London) using Matlab® scripts and MetaboAnalyst
4.0 [45]. NMR data were imported to Matlab® vR2014a
(Mathworks, Natick, Massachusetts, USA), regions
around the water, TSP, and remaining methanol signals
excluded, and to correct for sample metabolite dilution
probabilistic quotient normalization [46] was performed.

Stated concentrations correspond to normalized con-
centrations after probabilistic quotient normalization.
Concentrations of metabolites of interest are found in
Supplementary Table 5.

Metabolic predictions

Potential metabolites were predicted with the q2-micom
plugin (v. 0.8.0) [47]. All analysis were conducted with
the AGORA genus model database (v1.03) [48] and cov-
ered the entire dataset (#7=100) and the matched dataset
(n=30) as well as all and selected key features. In
addition, the standard western diet gut medium was
adapted with the help of these tutorials (https://github.
com/micom-dev/media and https://micom-dev.github.
io/micom/media.html) according to measured nutrients
to provide a per sample diet model as well. No abun-
dance cutoff was used for all and selected features. In
addition, a leave one out strategy was included for se-
lected features to determine the behaviour of the estab-
lished metabolic models in the absence of a potential
microbial key-player. The growth simulation was per-
formed with individual settings for the tradeoff between
community growth rate and individual taxon growth
rate. This pressure to the model was determined by an
evaluation of the tradeoff from 0 to 1 (zero to maximum
enforced growth) and was set between 0.1 and 0.7 ac-
cordingly (all features and selected features,
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respectively). Resulting growth rates could be partly veri-
fied with calculated replication rates using iRep of repre-
sentative key MAGs. Subsequent visualizations and
analysis included potential metabolite consumptions,
growth niches and metabolite fluxes in dependence of
measured methane emissions for all datasets; however,
for improved clarity, the displayed metabolite flux ana-
lysis (Fig. 7) was based on 16S rRNA gene amplicons of
the matched cohort (#=30) and selected keystone taxa.
Finally, a minimal medium was determined for selected
key features of matched samples.

Quantification and statistical analysis

Statistical tests (Spearman rho’s and Pearson’s correl-
ation) were performed using IBM SPSS Amos version
26. Different parameters were checked for normal distri-
bution. Correlations were calculated based on distribu-
tion of the compared parameters via Spearman’s rho and
Pearson’s correlation, respectively. In the manuscript,
non-corrected p values were used to describe specific
trends; however, Bonferroni corrected p values can be
found in Supplementary Table 6.

Data and software availability

Raw sequencing data obtained from amplicon-based se-
quencing and metagenomics sequencing data (technical
sequences including adaptor sequences, linker sequences
and barcode sequences as well as human reads were re-
moved) used in this paper can be found in the European
Nucleotide Archive (ENA): PRJEB41867. Supplementary
Datasets (after decontam and removal of features with
zero and one reads) and all Supplementary figures, tables
and items were deposited on Mendeley at https://doi.
org/10.17632/hjj3tx7n84.1. Software and algorithms used
are listed in detail in the Supplementary Methods file.

Results

Study overview

In total, 100 participants (female: n = 52, male: n = 48;
mean age =24.1) were recruited in this study. Metadata
information (sex, age, vegetarian yes/no, contraception
yes/no, breath methane content as well as metabolite in-
formation) of all participants is provided in Supplemen-
tary Table 1. All participants provided one stool sample,
one breath sample for methane measurements and a
completed dietary questionnaire. Based on the amount
of methane emitted, participants were grouped into
high-methane emitters (HE; CH, value: 5-75 ppm) and
low emitters (LE; CH, value < 5 ppm). Fifteen percent of
the participants were categorized as HEs (Supplementary
Table 2), with the percentage in congruence with known
levels of methane emission of young adult European co-
horts [9]. For specific scientific questions, 15 high-
methane emitters were matched to 15 low-methane


https://github.com/micom-dev/media
https://github.com/micom-dev/media
https://micom-dev.github.io/micom/media.html
https://micom-dev.github.io/micom/media.html
https://doi.org/10.17632/hjj3tx7n84.1
https://doi.org/10.17632/hjj3tx7n84.1

Kumpitsch et al. Microbiome (2021) 9:193

emitters by sex, age, hormonal contraception and vege-
tarianism (Supplementary Table 2; n=30).

The following data sets were obtained: ‘universal’ and
archaeal 16S rRNA gene profiles for all stool samples, a
metagenomics dataset as well as metabolomic informa-
tion (e.g. acetate, succinate, formate) and detailed dietary
information (e.g. diversity, energy, protein, fat, carbohy-
drates) from matched participants (Supplementary Data-
sets 1, 2, 3 and 4; Supplementary Tables 1, 2 and 5).

High-methane microbiomes are characterized by a
specific microbial community and a 1000-fold increase in
Methanobrevibacter signatures

The microbiomes of high-methane emitting subjects
(HEs) were characterized by significantly higher alpha
diversity (Fig. 1A.I) and a substantially different micro-
biome composition, compared to low-methane-emitting
persons (LEs). Although the HE microbial profiles did
not group separately in the PCoA plot (Supplementary
Figure 1A.I), the parameter ‘methane production’ had a
significant impact on the microbiome composition in re-
dundancy analysis (RDA; Fig. 1A.II). Methane-emitting
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microbiomes were significantly associated with Eur-
yarchaeota (Methanobrevibacter) and signatures of
Christensenellaceae R7 group, which formed a stable
network with different Ruminococcus/Ruminococcaceae,
Holdemanella and the Eubacterium ruminantium group
(Fig. 2). On the contrary, LEs were characterized by a
predominance of Bacteroidetes, and a stable network of
Bacteroides, Lachnoclostridium, Sutterella, Flavonifrac-
tor, Blautia and Anaerostipes (Figure 1B-C,2; Supple-
mentary Figures 1, 2 and 3). A Krona Chart overview of
the taxonomic composition of HE and LE samples is
provided in Supplementary Item 1, displaying the
1000-fold increase of relative abundance of Methano-
brevibacter signatures in high methane emitters (HE:
2%, LE: 0.002%; for comparison: Bacteroides (HE:
19%, LE: 28%), Christensenellaceae R7 group (HE: 6%,
LE 2%), and Ruminococcaceae UCGs (HE: 22%, LE:
20%)). Notably, a similar increase of archaeal signa-
tures compared to overall bacterial 16S rRNA gene
copies was observed using quantitative PCR (HE:
0.78%, LE: 0.002%; Supplementary Figure 4; Supple-
mentary Table 7).
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VII. ANOVA plots of selected genera and statistical significance

Fig. 1 Differences in alpha and beta diversity based on the ‘universal’ approach of 16S rRNA gene sequencing between high (HE) and low-
methane emitters (LE). Profiles of the whole study cohort (n=100) are shown. The profiles of the matched study subset (n=30) are shown in
Supplementary Figure 1. A.l. An examination of Shannon diversity index revealed significant differences in alpha diversity (RSV (ribosomal
sequence variants) based; analysis of variance, ANOVA). A.ll. The microbiome of HEs clustered significantly differently in the RDA plot (RSV based).
B.l LEfSe (Linear Discriminant Analysis Effect Size) analysis of the 100 most abundant phyla and B.II-lll. Relative abundance of selected phyla in
ANOVA plots. C.l. LEfSe analysis of the 100 most abundant genera. LEfSe determines taxonomic features which are most likely to explain
differences between groups by coupling tests for statistical significance with other tests for biological consistency and effect relevance [25]. C.ll-
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Notably, methane emission and the associated increase
of Methanobrevibacter signatures were solely driven by a
single M. smithii ribosomal sequence variant (RSV; Sup-
plementary Dataset 2). Besides that, the archaeal com-
munities of high- and low-methane emitters were not
significantly different with respect to their alpha or beta
diversity (Fig. 3). Samples from high methane emitters
did not contain any archaeal signatures apart from the
Euryarchaeota, ie. Methanobrevibacter and Methano-
sphaera. In the entire dataset, 21 Methanobrevibacter
RSVs were observed, whereas Methanosphaera was rep-
resented by only two RSVs (both genera are represented
by one RSV each in the universal dataset).

The microbiome profile of the matched study subset
(n=30) was highly similar to the profiles revealed for the
non-matched volunteers, and the same characteristics,

with respect to microbiome composition, alpha diversity,
co-occurrences, etc., was observed (Supplementary Data-
set 1; Supplementary Figure 1B, 2B, 3B-D, 5; Fig. 2; Fig.
3B)

High-methane emitter microbiomes are specialized on
C1-C3 compound turnover
The functional analysis of the metagenomics dataset was
based on 14,616,890 sequences, which were categorized
into 28 SEED subsystems and contained 6956 actual
function assignments and 6589 unique features. The
output was organised hierarchically into four levels; level
one represented the SEED subsystem and level four rep-
resented the most detailed functional information.

An overview on the detected functions is available in
Supplementary Item 3 and Supplementary Figure 6
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(Supplementary Dataset 3). Like the profile information
derived from 16S rRNA gene data, the diversity of
unique functions was significantly higher in samples
from high-methane emitters as compared to low me-
thane emitters (Fig. 4A). The impact of methane emis-
sion on the overall functions was also found to be
significant (Fig. 4A). At level 1, LEfSe analysis identified
LE microbiomes to be significantly associated with ‘iron
acquisition and metabolism’ (p=0.007), ‘carbohydrates’
(p=0.034) and ‘sulfur metabolism’ (p=0.028; all tests: ¢
tests due to normal distribution; Fig. 4B; Supplementary
Figure 7). Overall, the microbiomes from low-methane
emitters were functionally specialized on turnover of Cg
and Cs carbohydrate components. Among the functions
associated with ‘carbohydrate,” a particular increase in
the LE dataset was observed in the ‘monosaccharide’
(level 2) turnover-associated genes (p=0.009, Mann-
Whitney U; HE: 3%, LE: 4%) (e.g. in D-galacturonate, L-
rhamnose, xylose, L-arabinose and L-fucose metabolism)
as well as in the uptake of lactose and galactose (p=
0.009, ¢ test). Especially mannose metabolism (level 3;
HE: 0.8%, LE: 1%; p=0.026, Mann-Whitney U), including
the metabolism of alpha-1,2-mannosidase (level 4; HE:
0.6%, LE: 0.9%; p=0.015, Mann-Whitney U), was found
to be increased in LE samples (Supplementary Figure 7).
Indeed, gut-associated Bacteroides species carry a

specific genetic machinery to degrade plant-derived
mannans or human high-mannose-type N-glycans, stem-
ming from mucosal secretions and secreted epithelial
cells [49, 50].

The microbiomes from high methane emitters, how-
ever, were more directed towards the turnover of C3- C;
compounds. For instance, the ‘pyruvate ferredoxin oxi-
doreductase’ (HE: 0.4%, LE: 0.3%; alpha and beta sub-
units; HE: 0.04% LE: 0.01% (p=0.026, ¢ test) and HE:
0.02% LE: 0.01%, respectively), which is part of the ‘cen-
tral carbohydrate metabolism’ of pyruvate, propanoate,
and butanoate, and the reductive tricarboxylic acid cycle,
was found to be increased in HE samples. This enzyme
(also known as pyruvate synthase) catalyzes the inter-
conversion of pyruvate and acetyl-CoA and thus is re-
sponsible for the incorporation or release of CO, with
the help of ferredoxin. Moreover, the functional gene in-
volved in formate efflux transportation were as well in-
creased in high-methane emitter microbiomes (0.02% vs.
0.005%; p=0.03, Mann-Whitney U) (Supplementary
Dataset 3).

Genes involved in ‘methanogenesis’ were almost ab-
sent in the LE dataset (0.00004%), but reached a 0.1%
overall relative abundance in the HE dataset (p=0.0086,
Mann-Whitney U). This was also reflected by the
methyl-coenzyme M reductase, which is responsible for
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the release of methane in the last step of methanogen-
esis, and whose alpha subunit was represented in a pro-
portion of 0.01% in the HE dataset but only of 0.00001%
in the LE dataset (p=0.000012, Mann-Whitney U). Not-
ably, genes involved in ‘methanogenesis from methylated
compounds’ comprised 0.01% in the HE dataset, and
0.005% in the LE dataset, indicating that a similar pro-
portion of these genes existed in both datasets, largely
independent of methane emission (Supplementary Data-
set 3).

Taxonomic information derived from shotgun metage-
nomics was highly similar to the information that was
derived from 16S rRNA gene amplicon sequencing and
confirmed the differences between high- and low-
methane emitter microbiomes (for details see: Supple-
mentary Dataset 4; Supplementary Item 4; Supplemen-
tary Figures 8, 9, 10 and 11). Notably, signatures of
Christensenellaceae, which were associated with Metha-
nobrevibacter occurrence in the amplicon dataset, could
not be retrieved from the metagenomics dataset, a
phenomenon that has been reported earlier [51]. Net-
work analyses of the archaeome profile in high- and

low-methane emitters on the species level revealed again
the predominance of Methanobrevibacter species under
HE conditions (amongst all archaeal signatures 70% M.
smithii, 1% M. stadtmanae), whereas LE samples were
characterized by a more diverse but rarely abundant
archaeome (9% M. smithii, 3% M. stadtmanae; Supple-
mentary Figure 12 and 13; Supplementary Dataset 4;
Supplementary Item 5).

Of note, using these initial datasets, methane emission
above 5 ppm appeared to be predictable from the RefSeq
shotgun dataset (up to 100% prediction accuracy) using
a sample classification approach. Specifically, we applied
supervised learning methods that had been trained on
the amplicon and metagenomic datasets. Although the
individual datasets were rather small, which increases
the risk of overfitting the learning model, the overall
prediction accuracies reached 63.6% in case of 16S rRNA
gene amplicons and up to 100% for RefSeq in the shot-
gun dataset. When we applied the latter classification
model to the larger dataset from 16S rRNA gene ampli-
cons, the estimators achieved 85% prediction accuracy.
Hence, despite the obvious limitations of our
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classification model due to sample size and likely overfit-
ting, these results indicate that it has a high potential for
predicting methane emissions above 5 ppm.

High-methane emitter keystone taxa drive nutrient break-
down towards C1-C3 compounds

As indicated above, we identified a number of represen-
tative bacterial and archaeal genera, which were indica-
tive for high- and low-methane emission, respectively.
To perform more detailed analyses on the RSV level, we
proceeded with amplicon data (matched dataset) because
taxonomic information for Christensenellaceae was
missing from the metagenomics dataset. We identified
21 RSVs, revealing significantly discriminative (identified
through LEfSe analyses) and substantial mean abun-
dances (top 600 taxa). We found that the LE profile was
mainly defined by four RSVs of Bacteroides, four RSVs
of Butyricicoccus and one RSV each of Flavonifractor,
Blautia, ‘Tyzzerella, Ruminococcus (R. gnavus group),
and Roseburia, whereas the HE profile was driven by
one RSV of Methanobrevibacter, three RSVs of the
Christensenellaceae R7 group, two RSVs of Ruminiclos-
tridium, one RSV of Ruminococcaceae UCGO010 and one
RSV of Eubacterium (E. ruminantium group) (Fig. 5,
Supplementary Table 3). These taxa are lateron referred
to as keystone taxa.

This selection for keystone taxa was further supported
by 84 dereplicated high-quality MAGs (metagenome as-
sembled genomes; mean completeness 90%, mean con-
tamination 7%, Supplementary Table 4) with replication
rates in the range of 1.3 to 2.6 (Methanobrevibacter
smithii: 4 MAGs, Bacteroides: 32, Christensenellales: 19,
Ruminococcaceae: 19, Ruminiclostridium: 2, Ruminococ-
cus: 4).

Based on literature information available for the key-
stone taxa [52—54], microbial communities of high- and
low-methane emitters are each metabolically highly
interwoven. In both cases, degradation of nutrients re-
sults in metabolic cycles of short chain fatty acids and
CO,/H, (Fig. 6). Under LE conditions, these metabolites
are trapped in the cycle until they are uptaken by the
host or used for microbial biomass production. The con-
version of H,/CO,/formate into methane by Methano-
brevibacter under HE conditions, however, results in a
metabolic ‘dead end’ as methane cannot further be me-
tabolized by gut microbiota or human epithelial cells.

Formate-based methanogenesis is widely distributed
amongst human-associated methanogens, as e.g. all
Methanobrevibacter species detected in a catalogue of
1167 genomes have the capability to use formate for
methanogenesis [55]. The ability to consume formate
appears to be an important specialization displayed by
methanogens in the human gastrointestinal tract and
under symbiotic conditions [55]. This hypothesis is
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supported by the observation that M. smithii upregulates
formate utilisation gene clusters in syntrophic relation-
ships [56], and methano-archaeal adhesin-like proteins
are expressed differently in response to formate, indicat-
ing that the physical relationship with bacterial partners
changes when different amounts of different metabolites
are available [57]. It shall be noted that human-
associated Methanobrevibacter species are not auto-
trophs per se but require acetate for biomass production
as they generally lack the CODH-ACS complex [58].
Therefore, a higher availability of formate and acetate
would support the growth of M. smithii.

To characterize the role of the metabolites in more de-
tail and to confirm our assumptions, we performed
NMR-based metabolomic analyses of the stool samples
(subset, 7=30). Indeed, we measured an increase in for-
mate concentrations (1.5-fold, based on median concen-
trations per group) and acetate (1.35-fold) under HE
conditions (Fig. 6, Supplementary Table 5; both p values
> 0.05, ¢ test). Propionate was as well increased under
HE conditions (1.17-fold), whereas the butyrate, lactate
and succinate concentrations remained largely equal
(Supplementary Table 5). Formate concentration and
methane emissions were significantly correlated (in ppm,
Spearman’s rho correlation coefficient 0.491, p=0.006).
Moreover, formate concentration was significantly corre-
lated with acetate (Spearman rho correlation coefficient
0.785), butyrate (0.416) and propionate (0.447) abun-
dance, whereas no correlations were found for lactate
and succinate (0.204 and 0.258, respectively). We can
state that the consumption of formate and acetate by
Methanobrevibacter has large-scale influence on the
microbiome composition and functionality, pulling the
metabolism strongly towards small carbon compounds
in high-methane emitters (see also [51]). In a subsequent
step, we were interested in whether subjects’ diet has an
influence on these microbial metabolism patterns.

B12, fat and fibre intake have strong impact on methane
microbiomes

A Food Frequency Questionnaire (FFQ) [14] was used to
assess the food habits of each participant during the 4
weeks prior to sampling. Overall, the daily intake of 19
nutrients was tracked (Supplementary Table 2). Correla-
tions of all dietary parameters with microbiome and me-
tabolome characteristics is available in Supplementary
Table 6 (see also BioEnv plot, Supplementary Fig. 13).
Methanobrevibacter was negatively correlated with total
fat (rs=-0.435, p=0.016; if not stated otherwise a Spear-
man’s correlation analysis was performed), saturated fat
(rs=-0.421, 0.021) and omega-3 fatty acids (rs=-0.407,
p=0.026). Trends indicating a correlation were observed
for vitamin B12 intake (rs=-0.355, p=0.054). Similar
negative trends for vitamin B12 (rs=-0.465, p=0.01) and
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omega-3 fatty acid (rs=-0.349, p=0.059) intake were seen
when examining the relative abundance of the Christense-
nellaceae R7 group. Vitamin D intake was negatively corre-
lated with the Christensenellaceae R7 group relative
abundances (rs=—0.345, p=0.062) (Supplementary Table 5).

Within the LE community cluster, an analysis of the
genera Bacteroides, Flavonifractor and the Ruminococcus
gnavus group revealed a trend with respect to a negative
correlation with dietary fibre intake (rs=-0.379, p=0.039;
rs=-0.517, p=0.003 and rs=-0.382, p=0.037,

respectively). The relative abundance of Blautia posi-
tively correlated with vitamin B12 levels (rs=0.505, p=
0.004) and protein intake (rs=0.422, p=0.020). Vegetar-
ianism correlated with different dietary compound in-
take, namely, vitamin C and sugar intake was positively
correlated (rs=0.490, p=0.006 and rs=0.441, p=0.015, re-
spectively), whereas food diversity and vitamin B12 levels
(rs=-0.473, p=0.008 and rs=-0.449, p=0.013, respect-
ively) were negatively correlated with vegetarianism
(Supplementary Table 5).
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Based on dietary information, vitamin B12 (cobalamin)
appeared to be an important modulatory factor. The
key-role of vitamin B12 was further supported by the
significant negative correlation of formate concentration
in the fecal samples and vitamin B12 uptake (p=0.038,
R=-0.380).

Vitamin B12 (cobalamin) is an important micronu-
trient, as it is involved in a number of homeostatic func-
tions of host and microbiome. The host absorbs
cobalamin solely in the small intestine, not disturbing
the metabolic cycle of microbial cobalamin-producers
(approx. 25% of all gut bacteria) and —consumers (par-
ticularly Bacteroides) in the large intestine [59]. Follow-
ing our observations on the negative correlation of B12
and methanogenesis, indeed, functions involved in B12
binding and transportation were significantly increased
in LE metagenomes (B12-binding component BtuF, p=
0.004, ¢ test; Supplementary dataset 3).

Notably, formate and vitamin B12 (cobalamin) metab-
olism are closely connected also in humans. Cobalamin
deficiency was associated with increased formate con-
centrations in urine and plasma (in rats, [60]), due to the
so-called methyl-folate trap [61-63]. Under these condi-
tions, the cytosolic folate accumulates as 5-methyl-THF
(thus reducing the concentration of THF), which im-
pedes the incorporation of formate into the folate pool,
and results in formate accumulation. In general, replen-
ishing the THF pool also involves ALDH1L1 (10-formyl-
tetrahydrofolate dehydrogenase), an enzyme involved in

formate oxidation, which converts 10-formyl-THF to
THF and CO,. Notably, an association between the
Christensenellaceae/Methanobrevibacter abundance and
the abundance of a certain SNP (rs2276731) in the
ALDHI1L1 gene was observed when genetic correlations
with microbiome profiles were analysed in a large UK
twin study [64]. SNP rs2276731 is characterized by a nu-
cleotide exchange towards C (instead of G, T) in approx.
17% of the population [65]. This ratio is in high agree-
ment with the percentage of methane producers ob-
served in our (15%) and other studies [9].

As Methanobrevibacter appears to be able to grow in-
dependently from cobalamin availability [56], it could
benefit from the increased formate (and acetate) concen-
trations in the GIT, without being influenced by possible
vitamin B12 shortage.

Individual diet-adapted flux balance analysis confirms the
vitamin-independent, maximal breakdown of fibre to C1
metabolites under HE conditions

In order to draw an analogy of dietary information and
the identified key taxa, we performed a flux balance ana-
lysis with MICOM [47]. To optimize this approach to
our scientific question, we included the individual diet-
ary information obtained from the donors in our model
(Supplementary Dataset 7). The community models were
based on the AGORA 1.03 genus model [48]. Growth
simulations resulted in information on growth rates,



Kumpitsch et al. Microbiome (2021) 9:193

growth niches, metabolite consumptions and phenotype
associated fluxes (Supplementary Dataset 5 and 6).

The results of the analysis performed on previously
identified keystone taxa confirmed a significant associ-
ation between the HE conditions and an increased flux
of C1 metabolites, such as methanol, formaldehyde, car-
bon dioxide and formate (Fig. 7), as well as acetate and
propionate. LE conditions were associated with D-man-
nose, lactate, ribose levels and overall a greater complex-
ity of organic molecules. Notably, the hydrogen flux was
only minimally associated with HE (-0.021595761).
Fluxes in vitamin compounds (nicotinamide, riboflavin,
thiamine, pyridoxin, menaquinone 8) were strongly asso-
ciated with the LE conditions. The outcome of the mod-
elling approach strongly confirmed our above-made
observations based on functional microbiome and me-
tabolome analyses and indicated the further involvement
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of other components, such as methanol or indole, which
require further investigation.

Discussion

In this study, we analyzed the underlying principle of
human methane emission. We were able to show the
following:

i) High-methane emission is correlated with a more
complex microbiome in the GIT

ii) The microbial community composition and
function differs significantly between high- and low-
methane emitters and is pronounced in specific ar-
chaeal and bacterial key-taxa

iii) Methanobrevibacter smithii, whose abundance is
increased by a factor of 1,000 under HE conditions,
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Fig. 7 MICOM model-based flux balance analysis of keystone taxa. The 40 most predictive production fluxes (metabolites) are shown for high-
methane emitters on the left and low-methane emitters to the right using L1 penalized logistic regression. Black dots underneath are used to
display the categorization of each metabolite into different types of metabolites. The analysis was based on 16S rRNA gene amplicon data of the
matched cohort (n=30) and the identified keystone taxa
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pulls microbiome function towards acetate and
formate production

iv) Dietary habits, including low B12 uptake, support
optimal gastrointestinal conditions for a complete
and efficient break-down of fibres to C1 compounds
with a low need for vitamins.

The abundance of Methanobrevibacter was strongly
correlated with a core group of keystone species, includ-
ing various Ruminococcaceae and Christensenellaceae
(see also [66]). The interplay between Methanobrevibac-
ter and Christensenellaceae is of great interest, as this
syntrophic partnership has been associated with a lean
phenotype [67] and a reduced gain of fat tissue [68, 69]
in earlier publications. Notably, both taxa are considered
to be highly inheritable [53, 67]. In co-culturing studies,
the methanogenic partner shifted the Christensenella
minuta metabolism, probably due to its potent hydrogen
consumption, toward acetate production rather than to-
ward butyrate production, leading to increased H, and
CO, production [51, 67]. Although this observation
would indicate a bilateral syntrophic relationship of both
microorganisms, we observed in our study that both
partners were unevenly affected by LE and HE condi-
tions: Christensenellaceae were present in both commu-
nities (2% in LE), and signatures increased only three-
fold towards HE conditions, whereas Methanobrevibac-
ter signatures increased 1,000-fold, probably indicating a
more complex underlying principle. Indeed, we could
not identify any dietary-derived compound which had a
direct, significantly stimulating or inhibiting effect on
the Christensenellaceae population.

The complexity of ingested saccharides is an import-
ant modulator for the composition and functionality of a
gastrointestinal microbiome, and an interesting link be-
tween cellulose degradation and methane emission was
observed by other researchers. Chassared et al. (2010)
described that dominant cellulose degraders isolated
from non-methane-excreting subjects are mainly affili-
ated with Bacteroidetes, while they are predominantly
represented by Firmicutes in methane-excreting individ-
uals [70]. In our study, we also identified Bacteroides
(Bacteroidetes) and Roseburia (Firmicutes), as well as
Christensenellaceae, Ruminiclostridium and Ruminococ-
caceae (Firmicutes), as important key taxa in LE and
high-methane-emitting subjects, respectively. Notably,
Bacteroides (which was shown to be significantly nega-
tively correlated with dietary fibres in our study) and
Roseburia, unlike Ruminococcus sp., are not able to di-
gest e.g. microcrystalline cellulose [70-72]. This indi-
cates that the type of dietary fibre has a potential
modulating impact on methane production.

The negative correlations observed for fat intake and
methanogen abundance are highly congruent with
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previous observations made in ruminants, where an in-
creased fat (oil) concentration in the diet led to a re-
duced enteric methane production of up to 36% ([73]
and references therein). It is considered that dietary fat
affects methane production in rumen because it reduces
the hydrogen accumulation through fatty acid biohydro-
genation, leading to the conversion of unsaturated fatty
acids to saturated fatty acids, reducing the intake of fer-
mentable organic matter and fibre digestion [73].

Study limitations

The findings of this study are based on a homogenous
study group (e.g. neither elderly persons nor children
were recruited), and thus, no general conclusions can be
drawn regarding the impact of methanogen presence on
aging, health status or obesity. Future studies are needed
to collect data from more variable study groups with
more individuals and to examine the longitudinal dy-
namics of the HE microbiome in more detail in terms of
its correlation with additional parameters (e.g. blood me-
tabolites). Although we were able to partially confirm
the information derived from 16S rRNA gene-based
metabolic flux analysis, other identified metabolites re-
quire as well confirmation via metabolomics or other
means. One of these examples is indole, for which a sub-
stantial role was proposed in HEs (Fig. 7). Indoles are
usually derived from gut microbial conversion of trypto-
phan and have a variety of important functions, includ-
ing host defense and fortifying the gut barrier.
Moreover, indoles are important, dose-dependent signal-
ing molecules for bacteria, with effect on motility, bio-
film formation, antibiotic resistances and virulence [52,
74]. As this might have large physiological and maybe
medical effects on the host, this aspect certainly warrants
additional studies in future.

Conclusions

High-methane baseline emission in breath mirrors a com-
plex situation of the human physiology, including vitamin
B12 shortage and increased formate levels in the GIT.
Higher formate levels were earlier, and independently
from methane breath analyses, correlated with positive
foetal development, T cell activation, a lean phenotype,
and cardiovascular function [75]. Thus, the correlation of
high-methane emission and formate concentration war-
rants future research. Moreover, as we revealed the impact
of dietary fibre, vitamin and fat uptake on methanogenic
activity, dietary modulations (e.g. vitamin B12 supplemen-
tation) could be used for the mitigation of methane-
associated disorders, such as constipation. Our study and
its results emphasize the importance of archaeome activity
in the human body. This activity serves as an important
mirror, modulator and regulator of the microbiome and
overall body processes.
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