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Trophic level drives the host microbiome of
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Abstract

Background: Increasing our knowledge of soil biodiversity is fundamental to forecast changes in ecosystem
functions under global change scenarios. All multicellular organisms are now known to be holobionts, containing
large assemblages of microbial species. Soil fauna is now known to have thousands of species living within them.
However, we know very little about the identity and function of host microbiome in contrasting soil faunal groups,
across different terrestrial biomes, or at a large spatial scale. Here, we examined the microbiomes of multiple
functionally important soil fauna in contrasting terrestrial ecosystems across China.

Results: Different soil fauna had diverse and unique microbiomes, which were also distinct from those in surrounding
soils. These unique microbiomes were maintained within taxa across diverse sampling sites and in contrasting
terrestrial ecosystems. The microbiomes of nematodes, potworms, and earthworms were more difficult to predict using
environmental data, compared to those of collembolans, oribatid mites, and predatory mites. Although stochastic
processes were important, deterministic processes, such as host selection, also contributed to the assembly of unique
microbiota in each taxon of soil fauna. Microbial biodiversity, unique microbial taxa, and microbial dark matter (defined
as unidentified microbial taxa) all increased with trophic levels within the soil food web.

Conclusions: Our findings demonstrate that soil animals are important as repositories of microbial biodiversity,
and those at the top of the food web harbor more diverse and unique microbiomes. This hidden source of
biodiversity is rarely considered in biodiversity and conservation debates and stresses the importance of
preserving key soil invertebrates.

Keywords: Soil food web, Host microbiome, Unique microbial taxa, Biodiversity, Microbial dark matter,
Continental-scale survey, Trophic dynamics, Deterministic process, Network analysis

Background
Soil fauna are critically important for life on Earth [1–4].
They account for over one fifth of known animals and
support key soil processes such as decomposition,
nutrient cycling, and climatic influences by regulating
the inputs and outputs of energy and matter within the
soil food web [1, 5–7]. However, soil organisms are also

highly vulnerable to global change. A number of recent
studies indicated that they are facing a quiet extinction
in terrestrial ecosystems across the globe, and especially
so for the soil invertebrates at the top of the food
web [8–11].
These animal extinctions might hide a deeper crisis,

involving the potential loss of thousands of unique mi-
crobial species living within the microbiome of these soil
fauna (Scenarios 1 and 2; Fig. S1), because recent studies
have shown that diverse microbial communities inhabit
soil fauna [12–15]. The impact of invertebrate extinc-
tions would not be as severe for microorganisms if
different soil invertebrates shared similar microbiomes
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(Scenario 3; Fig. S1) or if faunal microbiomes simply
reflected the microbial communities in soil (Scenario 4;
Fig. S1).
However, we lack even the most basic information on

the identity and diversity of the microbiome for most
soil invertebrates. Further, comprehensive studies evalu-
ating the soil invertebrate microbiome across contrasting
ecosystems and over large spatial scales have not been
conducted. This hampers our ability to predict the con-
sequences of soil faunal extinction on microbial bio-
diversity. We argue that investigating the biodiversity
and identity of microbial taxa within the microbiome of
functionally important and widely distributed soil inver-
tebrates is fundamental to a complete understanding of
food webs and biodiversity.
The soil fauna microbiome plays an important role in

the health of its host and also affects ecosystem function
[16–19]. Since the majority of the microbial taxa in soil
fauna remain uncharacterized, this poses a major chal-
lenge to our understanding of their function. A network
approach has been used to reveal the ecological contri-
butions of this microbial dark matter. This identified a
group of unknown taxa that clustered together, suggest-
ing they performed essential ecological roles within the
microbial community networks of the four extreme
aquatic habitats examined [20]. We argue that soil ani-
mals also provide unique and distinct niches which can
offer a habitat for low abundance environmental micro-
biota. While the functions of these microbiota are still
poorly understood, they are likely to play critical roles in
ecosystem function.
In addition, understanding the assembly of microbial

communities is critical in microbial ecology [21–23].
Previous studies have showed that substantial microbial
variation occurs among individuals in the soil fauna
microbiome [12, 14, 15]. However, few studies consider
how microbial communities are assembled in the wild
soil fauna. A neutral community model was usually
employed to assess microbial assembly [24, 25]. This
model assumed (1) random sampling of OTUs from an
equivalent microbial source pool, (2) equivalent immigra-
tion of OTUs among animals, and (3) equivalent microbial
birth and death rates within animals. Collembolans, oriba-
tid mites, and predatory mites live mainly in the pores of
the soil, and nematodes, potworms, and earthworms de-
pend on soil water for their activities. This indicates that
environmental selection for microbiota within the collem-
bolans, oribatid, and predatory mites may be different
from nematodes, potworms, and earthworms due to
differences in habitat. Differences in the environmental
selection could affect random sampling and immigration
of OTUs within soil fauna. Therefore, we hypothesized
that the contribution of neutral processes to microbial
assembly in collembolans, oribatid, and predatory mites

would be different from that in nematodes, potworms,
and earthworms.
Trophic levels of organisms are defined by diet [26–31],

which in turn is known to influence the faunal micro-
biome [32–35]. Consequently, the complexity and identity
of the microbiome of soil invertebrates could be strongly
influenced by their hierarchical position within the food
web. For example, predators in soil food webs might be
generalists [28, 30, 36], which could ingest multiple low
trophic organisms. This means that, apart from the
environment, they could acquire microbiota from mul-
tiple low trophic organisms, and some microbes unique
to different low trophic organisms might coexist within
predators. Therefore, the predator might have a more
diverse microbiome compared to a lower trophic or-
ganism. In addition, animals feeding on soil or plants
might carry microbial communities that are similar to
those in these environments [37]. Thus, identifying as-
sociations between trophic levels and microbial traits
will be fundamental to understanding the real conse-
quences of invertebrate extinctions (Scenarios 1 and 2;
Fig. S1). Natural variations in stable isotope ratio of ni-
trogen (δ15N values) are commonly used to determine
the trophic level of an organism in the food web.
Because the information about what an animal ate at a
certain time period is integrated in stable isotope
values. The δ15N value of animals has a constant en-
richment compared to their prey due to the preferential
excretion of lighter isotope 14N. This stable isotope
method is particularly useful for the soil ecosystem
(cryptic system).
Here, our aims were to (1) examine the composition,

diversity, and variation in the microbiome of each soil
faunal group across different species, trophic levels, sam-
pling sites, and landuse patterns; (2) elucidate ecological
roles (e.g., within ecological networks) of microbial dark
matter (defined as unidentified microbial taxa) in soil
faunal microbiomes using network analysis; (3) reveal
the assembly of soil faunal microbiome; and (4) explore
the relationship between host microbiota and trophic
levels within the soil food web, by employing bacterial
16S rRNA gene sequencing and nitrogen stable isotopes.
To address these aims, we analyzed the microbiomes of
six groups of invertebrate soil fauna from contrasting
ecosystems across China. Both farmland and forested
lands were covered. The six groups included some of the
most dominant and functionally important soil inverte-
brates on Earth (see Additional file 3): collembolans
(springtails), nematodes, potworms, earthworms, oribatid
mites, and predatory mites [3, 4, 30]. Each of these have
very different diets and positions within the soil food
web. The study spanned a north/south gradient that
covered most climatic zones in China (Fig. S2) and
consequently was a cross-biome investigation.
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Methods
Collection sites and sampling procedure
Sampling was performed at six sites during October and
November 2017, at locations between 24.9° and 41.7° N
and between 102.95° and 123.72° E, covering most cli-
matic zones from north to south in China (Fig. S2). Two
contrasting terrestrial ecosystems (farmland and natural
forest) adjacent to each other were sampled at each site.
At each location, five replicate soil and faunal samples
were collected from the top 0–6 cm surface layer of soil.
For animal samples, a block of soil (length 50 cm, width
35 cm, and depth 6 cm) was taken, stored at 4oC, and
brought back to the laboratory within 24 h. Since soil
animals are mobile, they can “collect” microorganisms
from the possible range of soil animal activity (16 m2).
Consequently, we collected soil samples, which also cov-
ered basically this range. Soil samples were preserved in
dry ice and taken back to the lab within 24 h.

Isolation of soil fauna and DNA extraction
After samples were transported to the lab, extraction of
all soil animals was conducted within 8 h to minimize
variation in microbial communities. Earthworms were
collected from soil by hand, using gloves. Earthworms
were successfully collected at five sites (expect for Shen-
yang), and fifty earthworm community samples were ob-
tained in all. Due to the sensitivity of soil collembolans
and mites to heat, a controlled-temperature gradient
extractor was used to isolate them from soil [13], which
is an improvement on the Berlese dry extraction. To
minimize potential shifts in the host microbiome, the
temperature of the receiver (containing 2-cm depth of
absolute alcohol) was set at 4°C, where collembolans and
mites were collected. The extraction procedure was con-
ducted over 6 h. A modified Baermann wet funnel was
used to extract potworms and nematodes, also across a
6-h period [12].
Communities of collembolans, nematodes, potworms,

earthworms, and mites were successfully collected, with
a large number of individuals obtained (7200 collembo-
lans, 18000 nematodes, 3000 potworms, 2000 earthworms,
8000 oribatid mites, and 4000 predatory mites). In our
study, the predatory mite that feeds on other animals in-
cluded mesostigmatids and predatory prostigmatids. Each
faunal category contained many species. Considering the
objective of our study and the biomass of some species,
we only selected some dominant species of soil fauna at
each site to further analyze their microbiomes and to
analyze 15N isotope signatures. Since the collembolan and
mite commonly occupied multiple trophic levels, we
analyzed more than one species at each site in our study.
Although the nematodes also occupied different trophic
levels in the soil food web, the biomass of many nematode
species was too low to meet the analysis requirements.

Thus, we only selected one dominant species per site from
obtained nematode communities for downstream analysis.
The dominant soil fauna was identified to the species level
using morphological features and were stored in the abso-
lute alcohol until DNA extraction. DNA barcoding was
then used to confirm species identity as a supplement to
morphological identification. Soil faunal DNA was ampli-
fied from each sample using universal primers (see Table
S1), sequenced at the Beijing Genomics Service, edited
using Genious, and then used to interrogate the NCBI
database using BLASTn. Sequence matches greater than
97% were taken as species identities. Since the diversity of
dominant species of soil fauna was different at each site,
we obtained different number of soil animal samples. The
list of sampling information and soil animal species used
in our study were given in the Additional file 2. The de-
scription of how our soil fauna samples correspond to
each of the five fauna samples collected per site was also
provided in the Additional file 2, and the numbers of soil
fauna samples from each extraction varied per collected
site. In total, 238 collembolan samples (about 3600 indi-
viduals), 60 nematode samples (about 6000 individuals),
62 potworm samples (about 1500 individuals), 146 oriba-
tid mite samples (about 4000 individuals), 122 predatory
mite samples (about 2000 individuals), 50 earthworm
samples (about 1000 individuals), and 60 soil samples
were analyzed, and microbial communities and 15N iso-
tope signatures were also determined. Each soil fauna
sample was analyzed at the species level, and five soil sam-
ples were analyzed for each site.
After species identification based on morphology and

DNA barcoding, individuals of each selected species
were pooled to isolate DNA. Soil fauna (nematodes 30
individuals, collembola 5 individuals, potworms 3 individ-
uals, oribatid mites 5 individuals, predatory mites 5 individ-
uals, and earthworms 3 individuals per sample) were surface
sterilized by washing three times in 0.5% sodium hypochlor-
ite, and rinsed five times with sterile ultrapure water before
DNA extraction [38]. The surface-sterilized animals were
transferred into a sterile centrifuge tube and were homoge-
nized using a micro-electric tissue homogenizer. Finally, a
DNeasy Blood and Tissue Kit (QIAGEN, Germany) was
used to isolate DNA of the soil fauna microbiome based on
the manufacturer’s instructions. At least 30 ng of DNA was
extracted from each soil faunal sample, and the DNA con-
centration of different animals was unified to 1 ng μL-1 be-
fore PCR. We obtained soil DNA using a FastDNA® Spin
Kit for Soil (MP Biomedical, USA), following the manufac-
turer’s instructions. DNA was stored at −20°C.

16S rRNA gene amplification, library preparation, MiSeq
sequencing, and bioinformatics analysis
The 515f/806r primer set was used to amplify the V4 hy-
pervariable region of the 16S rRNA gene, in triplicate,
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from the extracted DNA. Primers were barcoded to dis-
tinguish samples. PCR was conducted in 50 μL volumes,
including 1 μL each of primers (5 μM), 1 μL animal
DNA template (1 ng), 22 μL sterile ultrapure water, and
25 μL ExTaq (2×). Reaction conditions for DNA amplifi-
cation and purification of the product were based on
previously published methods [38, 39]. We determined
the concentration of purified PCR products using a
Qubit™ 3.0 fluorometer (Invitrogen, USA). Equal concen-
trations of PCR products (300 ng) were used in library
construction, and each library contained 30 samples.
Finally, we used the Illumina MiSeq platform to
sequence the PCR libraries at the Meiji Biological Medi-
cine Company, Shanghai, China.
Bacterial 16S rRNA gene data were processed using

Quantitative Insights Into Microbial Ecology (Qiime
version 1.9.1) according to the online instructions [40].
In short, high-quality sequences were obtained by
removing labelled barcodes, low-quality reads, and
ambiguous nucleotides. We combined the obtained
sequences to operational taxonomic units (OTUs) based
on 97% sequence similarity using open-reference OTU
picking [41]. Singletons were removed, and PyNAST
used to align representative sequences to each OTU
[42]. The phylogenetic tree of representative sequences
was constructed by using the Fast tree algorithm. The
SILVA (v138) SSU reference database was selected to
assign the taxonomy of each OTU using the RDP Classi-
fier 2.2 [43]. OTUs with <100 reads across all samples
(including soils and animals) were removed to minimize
potential errors in sequencing [39]. Finally, we rarefied
samples to a depth of 13,551, which discarded eight
samples and produced a total of 730 samples used for
downstream analyses. Basic characterizations of micro-
bial community in the soil food web were summarized
in the Supplementary Text (Figs. S3 and S4).

Measurement of nitrogen stable isotope
We used a Delta V Advantage isotope ratio mass
spectrometer (Thermo Finnigan, USA) to detect 15N
isotope signatures of soil faunal whole bodies (at the
species level) and plant litter [29]. For soil faunal sam-
ples, the number of each selected species (nematodes 50
individuals, collembola 10 individuals, potworms 8 indi-
viduals, oribatid mites 10 individuals, predatory mites 5
individuals, and earthworms 5 individuals) was different.
For soil fauna with large biomass, we ground them into
powder and took part of them to determine 15N isotope
signatures. Plant litter was collected from each sampling
site to determine the 15N isotope signature of primary
producers. The urea was used as an internal reference
for the quality control and measured once per 10
samples. The measured precision was < 0.10‰. The 15N
isotope natural abundance was expressed using δX

notation which indicates the deviation from the
reference in parts per thousand (‰). The calculation of
δX value was used the following formula [29]: δN =
((Rsample – Rreference)/Rreference) × 1000. The Rsample indi-
cates 15N/14N of the sample, and Rreference indicates
15N/14N of the reference. In this study, we used atmos-
pheric N2 (air) as the reference value of 15N. Natural 15N
fractionation of animal body tissue (δ 15N value) is usu-
ally used to represent the trophic level of animal in the
ecosystem. According to previous studies, we set 3.4 (the
difference of δN value between samples) as the limit of
different trophic level [29, 44]. In other words, we de-
fined the difference of δN value between each tier of
trophic level as 3.4. To ensure the comparability of δ
15N values between different sites, we determined δ 15N
value of litter at each site and then obtained the adjusted
δ 15N value by the measured δ 15N value of animal
minus δ 15N value of litter. The adjusted δ 15N value
was used in the downstream analysis.

Statistical analysis
Alpha diversity (observed species and Shannon index) of
bacterial communities were calculated using alpha_
diversity.py in Qiime with version 1.9.1 [40], and the
data were presented with mean ± standard error (SE).
The adipart function of vegan 2.5–6 package of R [45]
was used to perform additive diversity partitioning [46],
which could reveal the relative contribution of individ-
ual, soil faunal group, sampling site, and landuse to soil
faunal microbial diversity. Principal coordinates analysis
(PCoA) was selected to reveal the difference in bacterial
communities between different samples using the
weighted unifrac distance based on the relative abundance
of bacterial OTUs and the unweighted unifrac distance
based on the presence/absence of bacterial OTUs, which
was conducted in Qiime with version 1.9.1 using beta_di-
versity_through_ plots.py [40]. Enterotyping of each soil
faunal group was clustered using the Jensen–Shannon dis-
tance and partitioning around medoids method based on
the relative abundance of bacterial genera, which reveals
differences in microbial community structure among soil
faunal individuals not directly associated with environ-
mental factors and faunal species [47–50]. We used the
PERMANOVA (Adonis test) to assess significant differ-
ences in bacterial communities between different groups
of samples. Analysis of variance (ANOVA) with the linear
mixed model was used to compare differences in alpha di-
versity, δ 15N values, and community dissimilarity between
different groups of samples by the IBM SPSS with version
22. If the data did not fall into a normal distribution, we
used the generalized linear model with Poisson distribu-
tion to compare differences between samples. Venny 2.1
on-line was used to obtain OTUs shared between different
animal groups and all soil samples.
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We used the neutral community model of Sloan et al.
[25] to assess the contribution of neutral processes to
each soil faunal group microbial assembly, which was
calculated via the R code of Burns et al. [24]. The phylo-
genetic bin-based null model analysis (iCAMP) was se-
lected to quantify the relative importance of different
ecological processes in the soil food web microbial as-
sembly [51]. Violin plots showed unique bacterial taxa in
different soil fauna microbiomes by filtering all collected
soil microbial species from the faunal microbiome using
the ggplot2 package of R. The composition of the 50
most abundant unique bacterial taxa in different soil
fauna microbiomes was presented using the pheatmap
package of R. FEAST (fast expectation-maximization for
microbial source tracking) was used to estimate the con-
tribution of source to the sink (predatory mite) in each
sampling site [52]. The functional profile of the soil food
web microbiome was predicted using Tax4Fun2 [53].
Linear fitting between trophic level (δ 15N value) and
microbial diversity and predicted microbial functional
diversity (Shannon index) was performed in Origin 2017.
We employed the most abundant 258 unique bacterial
taxa (maximal read abundance > 5%) to build a phylo-
genetic tree using Qiime and iTOL and used representa-
tive sequences of 258 unique bacterial taxa to compare
with sequences that exist in the database via BLASTn to
obtain the information of genome match at > 97% 16S
rRNA sequence similarity level. We analyzed the change
in dominant unique bacterial taxa (maximal relative read
abundance > 1% and those found in more than 50% of
soil fauna samples) along with the alteration of soil fauna
trophic level using the pheatmap package. We also iden-
tified 26 dominant bacterial taxa based on a relative read
abundance > 0.1% and being found in more than 80% of
soil fauna samples, mainly focusing on those bacterial
taxa that were high abundance and reasonably ubiquitous
in multiple fauna [54]. We used random forest modeling to
determine the accuracy with which soil fauna microbiomes
could be assigned to their own type or trophic level accord-
ing to 57 bacterial taxa (maximal relative read abundance >
0.3% and those found in more than 70% of soil fauna sam-
ples), which was performed in the randomForest 4.6–14
package with 1000 trees per model [55]. The confusion
matrix of random forest modeling was presented with a
heatmap in the pheatmap package of R. The Unknown taxa
(including “unknown,” “unassigned,” “ambiguous taxa,”
“uncultured,” “uncultured bacterium,” or “NA”) network
was constructed using the package SpiecEasi (version 1.0.7)
of R, and significant difference of betweenness, degree, and
closeness between different networks was analyzed using
the Wilcox test [20]. According to the measured δ 15N
value, five trophic levels were determined in all soil fauna
samples. We set significant difference (P) at 0.05 level.
Other graphics were all produced in Origin 2017.

Results
The variation of microbial community among soil faunal
microbiomes
The total microbial diversity was partitioned to reveal
the contribution of each sampling level to the diversity.
The majority of soil faunal microbial diversity was parti-
tioned at the individual level (66.7%; Table 1). The
contribution of soil fauna group (10.6%), sampling site
(8.2%), trophic level (5.1%), and landuse (1.2%) to micro-
bial diversity were all significant (P < 0.01; Table 1).
Some clustering of samples by types of samples was
observed in the principal coordinate analysis, more dis-
tinctly for the weighted unifrac distance (F6,723 = 497.6,
P < 0.001; Fig. 1a) than the unweighted unifrac distance
(F6,723 = 43.67, P < 0.001; Fig. 1b). Along the PC1 axis,
soil, earthworm, and collembolan samples were clustered
and separated distinctly from other soil faunal samples
(Adonis, P < 0.001; Fig. 1a, b). This was consistent at
each sampling site (Figs. S5 and S6). We also found that
collembolan and earthworm microbiomes shared more
OTUs with soil than did other soil fauna (Fig. S7). The
distance of microbial community between soil fauna and
soil samples was significantly greater than that between
soil samples (P < 0.001; Fig. 1c, d). Host group, species,
and trophic level all had a strong and significant impact
on the variation of soil faunal microbiomes (P < 0.001;
Table S2). A small but significant effect on variation
among microbiotas was observed from the sampling site,
only explaining < 2% of the variation (P < 0.001; Table S2).
For each soil faunal group, the principal coordinate

analysis revealed many samples clustered by sampling
site (Figs. S8 and S9). The Adonis analysis further indi-
cated that sampling site had a significant and strong ef-
fect on microbial variation (P < 0.001; Fig. S10). We also
found that host species and sampling site all had a
strong selection on the microbiome of each soil faunal
group (Fig. S10), and the order of strength of the host
selection was collembolan (41.84%) > potworm (31.50%)
> nematode (28.09%) > oribatid mite (27.07%) > earth-
worm (22.93%) > predatory mite (15.56%).
We further identified two enterotype clusters in

collembolan (Ca and Cw), nematode (Nc and Ng), earth-
worm (Ebu and Eba), and predatory mite (Pa and Pr)
microbiomes, and microbiomes of potworm (Pf, Ps, and
Pa) and oribatid mite (Os, Oa, and Og) were sorted into
three robust enterotypes (Fig. S11), respectively. Each
soil faunal group contained the enterotype, which over-
represented the bacterial genus Acinetobacter. For the
predatory mite, most samples (92.8%) were identified
into Enterotype Pa, including abundant Acinetobacter.
Enterotypes were overrepresented in the sampling
site. For example, all Enterotype Pr (Rickettsiella)
were found in the microbiome of predatory mites
collected from Kunming.
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Microbial dark matter in the soil food web
Class-level and genus-level network analysis all re-
vealed that unknown taxa presented distinctive clus-
ters in the soil food web microbial network (Fig. S12a
and S12b). More frequently shared edges were found
between unknown taxa than between unknown and
classified OTUs in the soil food web microbial net-
work (Fig. S12c). However, for each soil faunal group,
unknown taxa were all intermixed with known OTUs
at the genus level (Fig. S13). Removal of the unknown
taxa significantly reduced centrality scores of be-
tweenness and degree in the soil food web network
metric across all taxonomic levels compared to the
Original and Bootstrap networks (P < 0.01; Fig. S14
and Table S3). A significant increase in the closeness
was observed in the soil food web without unknown
taxa network at the genus level but reduction at the
other taxonomic levels (P < 0.001; Fig. S14 and Table
S3). For each soil faunal group, without unknown
taxa network metrics all had higher centrality values
of closeness and lower betweenness and degree than
those in the original network across multiple taxo-
nomic levels (P < 0.05; Table S3). At the genus level,
many top hub scores were unknown taxa for the soil
food web microbial network, and over half of the
nodes within the top 50 hub scores were unknown
OTUs for nematode, potworm, and predatory mite
networks (Table S3).

Microbial community assembly in the soil food web
The Sloan neutral community model was employed to
evaluate the effect of neutral processes on the assembly
of each soil faunal group microbiome. Lower Akaike in-
formation criterion (AIC) scores were observed in the
neutral model compared to the binomial model for all
soil faunal groups (Fig. 2a). The distribution of bacterial
taxa could largely be explained by neutral processes in
nematode (77.4%), potworm (71.7%), and earthworm
(71.6%) microbiomes in comparison to those in collem-
bolan (39.7%), oribatid mite (50.1%), and predatory mite
(52.1%) (Fig. 2b). The percent of OTUs below the neu-
tral model prediction was much lower than that above
in all soil faunal groups. The principal coordinates
analysis revealed that bacterial communities of above
neutral model predictions were distinctly separated from
those in the below (P = 0.007; Fig. 2c). The order of the
Nm-value for different soil faunal groups was
collembolan (4026) > predatory mite (2103) > earth-
worm (1802) > oribatid mite (1369) > potworm (999) >
nematode (667) (Fig. S15). We further used phylogenetic
bin-based null model analysis to quantitatively assess mi-
crobial assembly processes, which showed homogeneous
selection (31.41%) and dispersal limitation (61.02%)
played dominant roles in soil food web microbial assem-
bly (Fig.3). The relative importance of stochastic
processes (including dispersal limitation, homogenizing
dispersal, and drift) was 62.63% under forest and 64.02%

Table 1 Hierarchical partitioning of diversity within and among soil fauna microbiomes

Alternative hierarchy schemes Diversity
level

Description Shannon

Index % P

1. Unstructured Gamma Total diversity 7.72 100 -

2. Individuals and soil fauna groups Alpha Average alpha diversity of an individual 5.15 66.7 <0.01

Beta 1 Among individuals of a soil fauna group 1.75 22.7 <0.01

Beta 2 Among soil fauna groups 0.82 10.6 <0.01

3. Individuals and sampling sites Alpha Average alpha diversity of an individual 5.15 66.7 <0.01

Beta 1 Among individuals of a sampling site 1.94 25.1 <0.01

Beta 2 Among sampling sites 0.63 8.2 <0.01

4. Individuals and land use patterns Alpha Average alpha diversity of an individual 5.15 66.7 <0.01

Beta 1 Among individuals of a land use pattern 2.48 32.1 <0.01

Beta 2 Among land use patterns 0.09 1.2 <0.01

5. Individuals and trophic levels Alpha Average alpha diversity of an individual 5.15 66.7 <0.01

Beta 1 Among individuals of a trophic level 2.18 28.2 <0.01

Beta 2 Among trophic levels 0.39 5.1 <0.01

6. Individuals, sampling sites, and
land use patterns

Alpha Average alpha diversity of an individual 5.15 66.7 <0.01

Beta 1 Among individuals of a sampling site at
a land use pattern

1.95 25.2 <0.01

Beta 2 Among individuals of a land use pattern 0.53 6.9 <0.01

Beta 3 Among land use patterns 0.09 1.2 <0.01
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Fig. 1 Principal coordinates analysis (PCoA) revealing the distribution of soil and fauna bacterial communities using the weighted unifrac distance
based on the relative abundance of bacterial OTUs (a) and the unweighted unifrac distance based on the presence/absence of bacterial OTUs
(b). Different shapes and colors represented different types of samples. The variation explained by the PCoA axes is listed in parentheses.
Significant analysis of variance used distance matrices (PERMANOVA) via Adonis test (999 permutations). Boxplots presenting the distance of
bacterial communities between each soil fauna group and soil samples (c weighted unifrac and d unweighted unifrac), which reflecting the
similarity of bacterial community between treatments. Significance of results was evaluated using pairwise PERMANOVA and labeled using
different letters (significant level P < 0.05). The “n” indicated the number of distance between each soil fauna group and soil. Centre line, median;
box limits, first and third quartiles; whiskers, 1.5 × interquartile range

Fig. 2 Characteristics of neutral models for each soil fauna group. a The comparison of Akaike information criterion (AIC) scores between a
neutral model fit and fit of a binomial model. b The percent of OTUs from each soil fauna group that fall within, below, and above neutral model
prediction. c Principal coordinates analysis presenting the distribution of bacterial communities of partitions above and below neutral model
predictions, based on the presence/absence of OTUs using the Jaccard index
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under farmland (Fig. 3a and b). The relative importance
of stochastic processes was the highest in the sampling
site Changsha (67.29%; Fig. 3c) and earthworms (71.63%;
Fig. 3d), respectively. Overall, an increase in the stochas-
tic processes was associated with an increase in the
trophic level (Fig. 3e).

Change of soil faunal microbial traits with increasing
trophic level
The position of soil fauna within the food web was iden-
tified using nitrogen isotopes, since higher trophic levels
are enriched for δ 15N. The natural δ 15N value of soil
faunal body tissues showed a significant difference be-
tween different animals (Fig. S16; P < 0.001), ranging
from −0.25 to 16.79 (representing approximately five
trophic levels). Noteworthily, collembolans covered a
wide range of trophic levels (~5), and predatory mites
had the highest δ 15N value (mean 11.1) compared to
other soil fauna (P < 0.001; Fig. S16), suggesting that
predatory mites occupied the highest trophic level in the
selected soil food web. The FEAST analysis showed that
the sources of predatory mite microbiome exhibited dif-
ferences in different sampling sites, and collembolan,
nematode, potworm, earthworm, and oribatid mite all
had an important contribution to the predatory mite
microbiome, especially the oribatid mites (Fig. S17). The
Venn diagram also showed that most OTUs (98%) were

shared between different trophic levels of soil faunal
microbiomes (Fig. S18). The heatmap further revealed
that individual taxa of some dominant bacteria (e.g. the
dominant bacteria in the genera Acinetobacter and Rho-
doplanes) in the soil faunal microbiomes were consist-
ently associated with trophic level (P < 0.001; Fig. S19).
Therefore, we employed random forest modeling to
examine the predictive ability of the soil invertebrate
microbiome for the type (predictive accuracy: 91.9%)
and trophic level (predictive accuracy 66.7%), based on
58 dominant bacterial taxa (Fig. S20).
Microbial diversity (R2 = 0.826, P < 0.001; Fig. 4a) and

predicted microbial functional diversity (R2 = 0.256, P <
0.001; Fig. 4b) (Shannon index) had a positive significant
correlation with the δ 15N value of soil fauna body tis-
sues (trophic level), respectively. The number of unique
microbial taxa was lowest in collembolans and earth-
worms, intermediate in nematodes and potworms, and
highest in oribatid and predatory mites (Fig. 4c). Further,
the number of the unique microbial taxa increased with
the hierarchical position of the host within the food web
(Fig. 4d). A phylogenetic tree of the most abundant 258
unique bacterial taxa (maximal read abundance > 5%) in
the soil fauna microbiome was constructed (Fig. 5). Only
62% of these taxa had a genome match in the NCBI
database (> 97% 16S rRNA identify). We observed that
all unique microbial taxa belong to Verrucomicrobia

HoS: homogeneous selection

HeS: heterogeneous selection

DL: dispersal limitation

HD: homogenizing dispersal

DR: drift (and others)

a

b

c

d

e

Species

Trophic level

Fig. 3 Relative importance of different ecological processes in response to landuse (a, b), sampling site (c), soil faunal group (d), and trophic level
(e), which was estimated by phylogenetic bin-based null model analysis (iCAMP)
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were exclusively found in nematodes, all unique micro-
bial taxa belong to Bacteroidetes were only determined
in nematodes, oribatid mites, and predatory mites, most
of unique microbial taxa belong to Actinobacteria and
Tenericutes were exclusively observed in oribatid mites
and predatory mites, and many unique microbial taxa
belong to Proteobacteria were only detected in nema-
todes, potworms, oribatid mites, and predatory mites.
Some of these abundant and unique bacterial taxa were
also reported in previous studies [12–15, 19]. A collec-
tion of unassigned taxa with no genome representatives
were exclusively found in potworms, oribatid mites, and
predatory mites, which were highlighted by red dots in
Fig. 5. The majority of unmatched taxa had no cultivated
representatives (Fig. 6a). The Tax4Fun2 prediction
showed a total of 28 KEGG systems in the functional pro-
file of the uncharacterized taxa (“no match”), which were
involved in metabolism, cellular processes, environmental

information processes, genetic information processing,
and organismal systems (Fig. 6b). The heatmap showed
that the read abundance of most of the unique microbial
taxa was lower in collembola and earthworms than in the
other soil fauna (Fig. 6c). We also investigated changes in
the relative abundance of the 23 dominant, prevalent, and
unique bacterial taxa across trophic levels (maximal read
abundance > 1% and those found in more than 50% of soil
fauna samples) using a heatmap diagram (Fig. S21). The
65% of these unique bacteria showed significant enrich-
ment in the soil faunal microbiome as trophic level in-
creased (P < 0.001; Figs. S21-S22). The similar enrichment
pattern was also observed by visualizing the dataset based
on each soil faunal group (Fig. S23).
Network analysis showed that more unknown OTUs

occurred as top hubs with an increase in the trophic
level (Fig. 7), suggesting that microbial dark matter had
a more important ecological role in the microbiome of

Fig. 4 Linear regression revealed the relationships between soil fauna trophic level (δ 15N value) and microbial diversity (a) and predicted
microbial functional diversity (b). Violin plots showed unique bacterial taxa in different soil fauna microbiomes by filtering all species found in soil
microbiome from the faunal microbiome in different types of animals (c) and in different trophic level of animals (d). By “unique,” we mean
species which were present in the microbiome of a given soil invertebrate, but were not detected in any soil samples. The “TL” indicated the
trophic level of soil fauna based on natural 15N fractionation of animal body tissue
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the higher trophic levels of soil fauna. The removal of
unknown OTUs significantly reduced values of degree
and betweenness and increased closeness in TL3, TL4,
and TL5 network metrices across all taxonomic levels
but TL1 and TL2 only at the genus level (P < 0.05; Figs.
7f and S24). Only in the TL5 network metric, the degree
centrality score of without unknown taxa network was
distinctly lower than that in the bootstrap network at
the genus level (P < 0.001; Fig. S24).

Discussion
Hidden microbial diversity in the soil food web
Here, we present a systematic characterization of the
microbiome of six functionally important soil faunal
groups from diverse ecosystems across China. Significant
differences between the microorganisms in the soil fauna
and the surrounding soil were observed in all samples
and at each sampling site, respectively. This suggests
that there is selective acquisition and colonization of soil
faunal microbiomes and that they represent a unique
and diverse set of microbial niches. This could be be-
cause the microbial habitat available inside soil fauna
(e.g., high nutrient content and relatively anaerobic) is

different from the surrounding environment [12, 56], as
confirmed in previous studies involving fruit flies [39,
50], nematodes [12], collembolans [13], and beetles [57].
Different types of soil fauna commonly have different di-
ets [29, 30], and this might also contribute to differences
in their microbial communities. Interestingly, we found
the collembolans and earthworms sharing more similar
microbial communities to soils compared to the other
soil fauna, which may be related to their habit. Earth-
worms tend to feed on soil, which may make their mi-
crobes similar to soil. The ecdysis of collembolan along
with its intestines decreases host selection for microbiota
and makes the collembolan microbiomes more suscep-
tible to the soil environment.
In the present study, the analysis of additive diversity

partitioning showed that soil faunal individual and group
contributed most to microbial diversity. The microbiome
of each soil faunal individual contained more diverse
and abundant microbiota than that reported from other
invertebrates, such as honey bees [58], fruit flies [39], or
caterpillars [59]. Considering that soil fauna themselves
are highly diverse [1, 3, 4], and their microbiome is simi-
larly diverse, soil fauna are likely to be a hidden pool of

Fig. 5 Phylogenetic distribution of the most abundant 258 unique bacterial taxa in the soil fauna microbiome. The innermost ring 1 indicates
microbial classification at the phylum level. Black shading on ring 2 indicates for each bacterial taxa whether there is a representative isolate and
a genome match at the ≥ 97% 16S rRNA gene sequence similarity level. Rings 3 and 4 indicate the relative proportion of each bacterial taxa in
different soil fauna microbiomes and different trophic level of animals, respectively. We normalized the difference in relative abundance across all
the OTUs based on the total relative abundance of each bacterial taxa across all the samples. The “TL” indicates the trophic level of soil fauna
based on natural 15N fractionation of animal body tissue. The red dots indicate that unassigned taxa with no genome representatives were
exclusively found in potworms, oribatid mites, and predatory mites
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microbiota. Our findings strongly suggest that soil fauna
contain multiple, unique microbial species in their micro-
biomes which are rare, or not detected, in the more gen-
eral soil environment. Consequently, they could represent
a valuable resource for bioprospecting because interesting
microbial compounds such as antibacterial agents can be
recovered from soil faunal microbiomes [60, 61].
These unique microbial taxa may arise from unidentified

environmental sources or inhabit a micro-environment [50]
such as water films around soil particles that soil animals
disproportionately consume. Alternatively, these bacteria
may persist and thrive solely within soil fauna. This latter
explanation is circumstantially supported by our findings
that host species had a strong selective influence on the
microbiome of each faunal group. This further indicates
that soil animals are important as repositories of microbial
biodiversity. The existence of this microbial niche was
largely unknown prior to the present study and raises the
issue that the holobiont of soil fauna should be considered
as a target of conservation [62, 63].
Our results showed that sampling sites also had an im-

portant contribution to the composition and diversity of
soil faunal microbiome, suggesting that environmental
change might affect the diversity of soil faunal micro-
biome. In the present study, landuse significantly altered
the diversity of soil faunal microbiome, which also

confirmed this viewpoint. A recent study showed that
anthropogenic climate warming altered animal micro-
biomes [64]. Thus, more attention should be focused on
potential changes to soil faunal microbiomes under glo-
bal change. The other thing we have to admit is that this
study represents a single snapshot in time. As suggested,
if generalist feeding results in high microbiome diversity,
then other dimensions of the generalist diet need to be
studied in the future. For instance, how much would our
results change if we have collected samples over multiple
time points to capture seasonality in diet? In addition,
the analysis of enterotype (not directly related with host
or environmental factors) revealed that each soil faunal
group all had enterotypes dominated by the genus
Acinetobacter, a common opportunistic pathogen [65].
Compared with a previous study [12], we found that
dominant bacteria in the enterotype of wild nematodes
are different from laboratory-reared nematodes. These
suggest that the dominant bacteria in the soil faunal
microbiome may be controlled by a host-specific enrich-
ment process and environmental selection.

Ecological role of microbial dark matter in the soil food
web
The co-occurrence of diverse unknown taxa in the soil
food web microbial network was observed in the present

Fig. 6 a Histogram revealing the percentage 16S rRNA gene sequence similarity between the most abundant 258 unique bacterial taxa and the
most closely related available reference genome for each bacterial taxon. The “No match” means that the reference genome was not found in
the NCBI database. b The functional profiles of the uncharacterized taxa (“no match”) was predicted by the Tax4Fun2. c Heatmap revealing the
read abundance of the 50 most abundant unique bacterial taxa in different soil fauna microbiomes
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study. This suggests that these microbial taxa may be
phylogenetically related, similar to classified OTUs
[66, 67]. We found that unknown taxa significantly af-
fected values of betweenness and degree in soil faunal mi-
crobial networks, indicating that unknown taxa could
influence microbial interactions. Moreover, many un-
known OTUs occurred as top hubs in microbial networks
in the soil food web and in each soil faunal group. Because
hubs significantly contribute to network structure and co-
hesiveness, they are important parts of networks [20]. The
potential functions of these taxa are also unknown, and
consequently microbial dark matter plays an unknown but
potentially important ecological role in the soil faunal mi-
crobial network.

Contribution of neutral processes to the assembly soil
faunal microbiome
In the present study, we found that the predictive ability
of a neutral model was better than the binomial

distribution, which suggested that the processes of pas-
sive dispersal and ecological drift might contribute to
soil faunal microbial community assembly. This point
was quantitatively confirmed in the results of phylogen-
etic bin-based null model and consistent with other in-
vertebrates [39, 50]. The present findings support our
hypothesis that more OTUs could be explained by the
neutral processes in microbiomes of nematode, pot-
worm, and earthworm compared to collembola, oribatid
mites, and predatory mites, suggesting that the micro-
biomes of nematode, potworm, and earthworm were
more difficult to predict using environmental data. This
may be related to the feeding behavior of soil fauna [29].
Collembola, oribatid mite, and predatory mite have a
wider selection of food than the nematode, potworm,
and earthworm [26, 27, 68]. Thus, the selected feeding
behavior may restrict random sampling and immigration
of OTUs within the collembolan, oribatid mite, and
predatory mite. Our results indicated that landuse could

a: TL1

Trophic 
level

Degree Betweenness Closeness
Proportion of 

Unknown OTUs 
out of 50 top hubs

TL1 (G) (G) (F, G) 10%
TL2 (G) (G) (F, G) 12%
TL3 (All) (All) (All) 56%
TL4 (All) (All) (All) 52%
TL5 (All) (All) (All) 58%

b: TL2

c: TL3

d: TL4

e: TL5

f

Fig. 7 Hub analysis of microbial networks from different trophic level of soil fauna microbiome (a–e). Soil fauna microbial networks at the genus
level with nodes sized as a function of hub score. Nodes are colored by genus classification with unknown taxa depicted in dark gray. f Effects of
the removal of unknown OTUs from the network on network metrics. Downward pointing arrow indicated significant decrease and upward
pointing arrow indicated significant increase. F family, G genus, and all all taxonomic levels
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affect the relative importance of stochastic processes to
the assembly of soil faunal microbiome, and more stochas-
tic processes were found in the farmland samples. Because
resources are more homogenized in the farmland due to
the reduction of plant diversity compared to the forest
[69], this may lead to an increase of randomness in the soil
animal feeding. This suggests that soil animal microbiome
is more easily changed in the farmland ecosystem.

Trophic dynamics of host microbiome in the soil food
web
The positive relationship between trophic level and mi-
crobial biodiversity (Shannon index), unique microbial
taxa, and ecological role of microbial dark matter was
observed in the present study, which has not been de-
scribed before. This result suggests that soil fauna at the
top of the food web harbor more diverse and unique
microbiomes. The reason for this may be because preda-
tors in soil food webs might be generalists [29, 30],
which could ingest multiple low trophic organisms. This
means that, apart from the environment, they could ac-
quire microbiota from multiple low trophic organisms,
and some microbes unique to different low trophic or-
ganisms might coexist within predators. Therefore, the
predator might have a more diverse and unique micro-
biome compared to a lower trophic organism. The result
of FEAST analysis confirmed the point that the preda-
tory mite (top predator) has diverse microbial sources.
Alternatively, our result showed that different trophic
level of soil fauna shared most OTUs, suggesting that
microbes can move between trophic levels (prey-preda-
tor) [70] and become enriched at higher trophic levels.
Finally, we found that deterministic processes played an
important role in the microbial assembly of soil food
web, suggesting that deterministic processes might con-
tribute to the assembly of unique microbiota in soil
fauna due to a host-specific enrichment process [50].
It has been recognized that host microbiome can be

used to predict disease and age of humans [71–73]. Be-
cause of the complexity and invisibility of the soil food
web [9, 30], the determination of trophic level of soil fauna
is always the frontier and at the highest level of difficulty
in soil ecology [29]. In the present study, we identified that
the trophic level of animals in the soil food web could be
predicted by analyzing microbiomes, which will be useful
for soil ecology studies. This could be because the animal
microbiota might be a reflection of diet. Since diet deter-
mines trophic level in the food web [29, 30], microbiota
might be used as a predictive tool.

Global implications of soil faunal microbiome
The soil faunal microbiome is an important component
of the global microbiome and contributes to global bio-
diversity [12, 13, 56, 70]. Recent studies have showed

that top predators are more vulnerable to global change
and that their influence on food web interactions is
more important than their biomass suggests [8, 10, 11].
Consequently, the loss or extinction of these soil fauna
will have multiple effects. Some of these effects are pre-
dictable, such as significant changes to nutrient and en-
ergy flows [74, 75], but our results suggest a hidden and
unsuspected consequence (Scenarios 1 and 2; Fig. S1):
the extinction of large numbers of unique microbial spe-
cies and microbial dark matter. Higher trophic levels are
a repository of a greater proportion of unique bacterial
diversity, even for the most dominant taxa. At the same
time, we also found that microbial dark matter in the
higher trophic level of the soil faunal microbiome had a
more important ecological role in the soil ecosystem.
These hidden microbiotas are likely to rely on their
multicellular hosts for survival and potential functions
[76, 77], and preservation of key soil invertebrates,
particularly those at the top of the food web, will also
preserve the hidden and unique microbial biodiversity
within their microbiomes.
Our results further provide evidence that functional

and taxonomic information is largely lacking for the
unique bacterial taxa residing in soil fauna, especially for
fauna at the top of the food web. Since these unique bac-
terial taxa are also different between different types of
soil invertebrates, this further indicates that soil fauna
harbor diverse and unique assemblages of microorgan-
isms. Recent studies have documented the silent extinc-
tions of soil invertebrates on a global scale [8, 11]. Our
study suggests that losses of even a single soil inverte-
brate species could result in the loss of numerous
unique microbial taxa about which we know very little.
Such losses could also cascade into permanent changes
in ecosystem function and resilience, because in the
present study, we found that these unique bacterial taxa
play an important role in microbial networks. Protecting
soil invertebrates would simultaneously protect the mul-
tiple species living in their microbiomes [17]. By protect-
ing these unique microbial taxa we also protect their
genetic resources and potential ecological functions,
both for ecosystem health and for potential discovery of
biological tools in the future [60, 61, 78].

Conclusions
Soil faunal microbiomes contain highly diverse and
unique microbial taxa, with microbial dark matter play-
ing an important ecological role in the soil faunal micro-
bial network. Stochastic and deterministic processes all
play important roles in the microbial assembly in soil
food webs. This microbial diversity, the unique microbial
taxa, and the ecological roles of microbial dark matter
all increase with hierarchical position of the host within
the food web. This suggests that the extinction of single-
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soil invertebrate species, especially those at the top of
the food web, will result in extinctions of the microbial
communities living in their microbiomes. This ecological
perspective and the hidden biodiversity have not been
fully considered in biodiversity and conservation debates.
Mass extinctions of this hidden microbial diversity could
have serious and unpredictable consequences for the
functioning of Earth systems.
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