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Abstract

Background: Carbohydrate-active enzymes (CAZymes) form the most widespread and structurally diverse set of
enzymes involved in the breakdown, biosynthesis, or modification of lignocellulose that can be found in living
organisms. However, the structural diversity of CAZymes has rendered the targeted discovery of novel enzymes
extremely challenging, as these proteins catalyze many different chemical reactions and are sourced by a vast array
of microbes. Consequently, many uncharacterized members of CAZyme families of interest have been overlooked
by current methodologies (e.g., metagenomic screening) used to discover lignocellulolytic enzymes.

Results: In the present study, we combined phenotype-based selective pressure on the rumen microbiota with
targeted functional profiling to guide the discovery of unknown CAZymes. In this study, we found 61 families of
glycoside hydrolases (GH) (out of 182 CAZymes) from protein sequences deposited in the CAZy database—
currently associated with more than 20,324 microbial genomes. Phenotype-based selective pressure on the rumen
microbiome showed that lignocellulolytic bacteria (e.g., Fibrobacter succinogenes, Butyrivibrio proteoclasticus) and
three GH families (e.g., GH11, GH13, GH45) exhibited an increased relative abundance in the rumen of feed efficient
cattle when compared to their inefficient counterparts. These results paved the way for the application of targeted
functional profiling to screen members of the GH11 and GH45 families against a de novo protein reference
database comprised of 1184 uncharacterized enzymes, which led to the identification of 18 putative xylanases
(GH11) and three putative endoglucanases (GH45). The biochemical proof of the xylanolytic activity of the newly
discovered enzyme validated the computational simulations and demonstrated the stability of the most abundant
xylanase.
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Conclusions: These findings contribute to the discovery of novel enzymes for the breakdown, biosynthesis, or
modification of lignocellulose and demonstrate that the rumen microbiome is a source of promising enzyme
candidates for the biotechnology industry. The combined approaches conceptualized in this study can be adapted
to any microbial environment, provided that the targeted microbiome is easy to manipulate and facilitates
enrichment for the microbes of interest.
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Background
The development of technologies for the effective trans-
formation of lignocellulose into renewable, plant-based
materials called biobased products is part of a global ini-
tiative to facilitate the use of biomass produced by crop-
ping activities to address significant economic,
environmental, and energy challenges [1]. Lignocellu-
lose—comprised mainly of cellulose, hemicellulose, and
lignin—is the most abundant renewable organic polymer
on Earth and is the primary constituent of plant cell
walls [2]. However, the highly recalcitrant nature of lig-
nocellulosic biomass makes it refractory to efficient deg-
radation, limiting access to the carbon sources within,
and diminishing its suitability as a substrate for
biobased-product synthesis [2, 3]. Enzymatic digestion of
lignocellulose requires a specialized group of enzymes,
known as carbohydrate-active enzymes (CAZymes), a
widespread and structurally diverse group of catalysts
produced by microorganisms that are constituents of
various microbiomes, including that of the mammalian
gut [4]. Major CAZyme families include glycoside hydro-
lases (GHs), polysaccharide lyases (PLs), and lytic poly-
saccharide monooxygenases [4, 5], with the predominant
GH family widely utilized in the biotechnology and bio-
medical sectors [4].
Microbial communities are dynamic and can evolve

the capability to produce novel CAZymes in response to
changing environmental conditions (e.g., the nature of
dietary substrates available for metabolism) [6]. The
adaptive capacity of microbial communities facilitates
the use of selective pressure—a selective advantage in
the environment that causes one type of organism to
grow in preference to another—through the enrichment
of the microbial environment with substrates that favor
the growth of microbes specialized at degrading specific
substrates [7].
By analogy, it may be helpful to apply the same

principle of selection pressure (e.g., utilizing an increased
dietary abundance of lignocellulosic substrates) to acti-
vate and maintain a competitive fiber-degrading popula-
tion (niche specialization) that expresses CAZymes with
enhanced lignocellulolytic capabilities in the rumen [7,
8]. The rumen microbiome plays a fundamental role in
feed efficiency of the host [9], as it provides up to 75%
of the energetic requirements of ruminants through

fermentation of host-indigestible plant biomass [10]. Ef-
ficient cattle are known to have a less diverse micro-
biome that produces more key microbial metabolites
than their inefficient counterparts [11]. We speculated
that this difference might be partially due to a selective
advantage conferred on microbes by the rumen of effi-
cient cattle, especially when dietary substrates (e.g., a
high proportion of forage fiber) are present at sufficient
concentrations to promote the development of the bio-
chemical machinery necessary for the growth of a spe-
cialized degradative population [7]. The discovery of
novel GHs within the machinery required for lignocellu-
lose biotransformation in microbial communities has
been made through metagenomic approaches [8, 12, 13],
but successful application of the enzyme candidates in
industrial settings has been challenging due to inconsist-
encies in the annotation of sequence/activity in public
databases [14], as well as time-consuming and laborious
nature of manual annotation. This issue is further exac-
erbated by the fact that individual proteins within an en-
zyme family can have vastly diverse functions [15, 16],
complicating the identification of even closely related
members.
Targeted functional profiling [17] of the active micro-

bial community through metatranscriptomic-based ap-
proaches may overcome these limitations as it allows the
compilation of a de novo database of marker peptides
derived from reference proteins of interest. This was re-
cently demonstrated in the discovery of a novel bio-
marker of host-microbial symbiosis in the human gut
[16]. However, the complexity and diversity of CAZymes
in microbial habitats have made targeted functional pro-
filing of active CAZymes extremely difficult, and conse-
quently, there remain substantial gaps in our knowledge
of the functions of uncharacterized members of the
CAZyme families. In this study, we used the diet and
phenotype (efficient cattle) to render selection pressure
to the rumen microbiome and favor the growth of mi-
crobes (and CAZymes) specialized at degrading lignocel-
lulosic substrates. Next, targeted functional profiling of
the rumen metatranscriptome was employed to discover
uncharacterized enzymes in the bovine rumen according
to the ecological features (e.g., abundance and fre-
quency) exhibited by functionally distinct members of
CAZyme families of interest.
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Methods
Experimental design and sample collection
All experimental procedures described herein were ap-
proved by the Veterinary Services and the Animal Care
Committee, University of Manitoba, Canada, in strict ad-
herence to the guidelines set out by the Canadian Coun-
cil on Animal Care [18]. Animals used in the current
study were obtained as part of a larger project that was
conducted over 2 years (n = 60 purebred Angus bulls/
year), and details of animal management have been de-
scribed previously [19]. Briefly, sixty purebred Angus
bulls were randomly assigned into four pens (n = 15 per
pen) and fed forage or grain diets over two experimental
periods (Table S1). All animals were raised in confine-
ment on the Glenlea Research Station at the University
of Manitoba and maintained in the same pen throughout
the experiment. For the current study, 12 (out of 15)
purebred Angus Bulls (mean age of 249 ± 22 days; aver-
age body weight of 313.9 ± 32 kg at the outset of the ex-
periment) were selected from pen 1 (year 2) because
they were exclusively fed forage diets, which was used to
enrich the rumen with fiber degrading microbes and
their enzymes (Table S1). The experimental period
lasted for 180 days, and all animals were of good health
status and received an identical forage-based diet
throughout the experiment. The chemical composition
of the forage diet used in this study was similar to a typ-
ical commercial diet (41% neutral detergent fiber –
NDF, 22% acid detergent fiber – ADF, and 22% starch)
and can be found in Table S2. Feed efficiency values
(calculated as feed conversion ratio (FCR); ratio of dry
matter intake to average daily gain) were obtained daily
using the GrowSafe® feeding system (GrowSafe Systems
Ltd., Airdrie, Alberta, CA) to certify that the animals
maintained their FCR ranking throughout the experi-
ment (period 1 = 0–90 days and period 2 = 90–180
days). Three animals were removed from our study be-
cause they did not maintain the same FCR ranking
throughout the experiment. Animals were then ranked
according to their FCR scores and allotted into two
FCR-categories with similar number of bulls in each
group: (1) efficient (L-FCR; n=6; FCR < 6.2 kg feed con-
sumed/kg Gain) and (2) inefficient (H-FCR; n=6; FCR >
6.2 kg feed consumed/kg Gain) (Data S1). Power analysis
showed that we had a sufficient sample size to detect
statistically significant differences between H-FCR and
L-FCR groups (Fig. S1). To facilitate interrogation of
rumen metatranscriptome dynamics, samples of rumen
fluid were collected at 4 time points throughout the ex-
perimental period: days 0, 80, 100, and 180, using a Gei-
shauser oral probe [20]. In this way, the effect of
selection pressure on the rumen microbiota of animals
with differing feed efficiencies could be investigated from
day 0, which was used as the baseline to test whether

the fibrolytic microbes were more abundant in the
rumen of efficient cattle when compared to their ineffi-
cient counterparts. Approximately 250 ml of rumen fluid
was collected at each time point, immediately snap-
frozen in liquid nitrogen, and stored at −80°C for later
processing.
RNA extraction and sequencing
Protocols for RNA isolation from rumen fluid have

been previously described [21]. Briefly, 1.5 ml of TRIzol
reagent (pH: 4.6; Invitrogen, Carlsbad, CA, USA) was
added to approximately 200 mg of rumen sample
(unthawed) in bead tubes for the subsequent RNA ex-
traction. After homogenization, rumen samples were
allowed to thaw on ice and were centrifuged at 12,000×g
for 10 min at 4°C to obtain a pellet containing all micro-
bial cells. The supernatant was removed and discarded,
and total RNA was isolated from the pellet using a
modified version of the TRIzol based acid guanidinium-
phenol-chloroform (0.4 ml of chloroform—pH 7.0; 0.3
ml of isopropanol—pH 7.0; and 0.3 ml of high salt solu-
tion—pH 8.0: 1.2 M sodium acetate and 0.8 M NaCl).
The Qubit 2.0 fluorimeter (Invitrogen, Carlsbad, CA,
USA) and Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA) were used to determine the
yield and integrity of RNA samples, and only samples
with an RNA integrity (RIN) value greater than 7 were
used for sequencing. Next, RNA-Seq libraries were con-
structed using 100 ng total RNA per sample using Tru-
Seq RNA sample prep v2 LS kit (Illumina, San Diego,
CA, USA) without the mRNA enrichment step [22]. Li-
brary quality was assessed by two consecutive readings
on a Qubit 2.0 fluorimeter (Invitrogen) and validated
using an Agilent 2200 TapeStation (Agilent Technolo-
gies). Finally, all libraries were subjected to 2×100bp
paired-end sequencing on an Illumina HiSeq 2000 plat-
form at a commercial sequencing laboratory (McGill
University and Génome Québec Innovation Centre,
Montréal, QC, Canada).

Bioinformatic and statistical analysis
Raw sequencing reads were quality-inspected using
FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Trimmomatic (v. 0.32) [23] was used
to trim bases with quality scores below 20, and to re-
move reads shorter than 50 bp. SortMeRNA (v.1.9) [24]
was used to filter out all non-mRNA transcripts, with
the resulting read set used as input for contig assembly
with MEGAHIT [25], using default settings. The per-
base coverage depth across all contigs was calculated by
mapping raw reads from each sample against the assem-
bled contigs using BBMap (v35.92) with the parameters
“kfilter=22, subfilter=15 and maxindel=80” (https://
sourceforge.net/projects/bbmap/). A custom reference
database consisting of all complete bacterial genomes
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deposited in NCBI, plus all bacterial genomes generated
from ruminant feces or saliva as part of the JGI Hungate
1000 initiative, was generated for taxonomic classifica-
tion of assembled contigs using Kraken (v.1.0) [26].
Gene annotation of assembled contigs was performed

using MG-RAST [27]. Contigs were annotated using
subsystems technology [28] with a maximum e-value of
10−5, minimum percent identity of 60, and a minimum
alignment threshold of 30 bp. Assembled metatranscrip-
tomic contigs were translated and submitted to a local
version of dbCAN [29] to annotate sequences for the
presence of CAZymes with an e-value threshold of 10−5.
ShortBRED [17] was then used to determine the abun-
dance of distinct CAZymes of interest in the metatran-
scriptomic dataset, with the sequences being grouped at
a specified amino acid similarity threshold of 85% iden-
tity to detect non-redundant representative matches.
UniRef90 was then used as the comprehensive protein
reference catalog to annotate these representative pep-
tides for each CAZyme family of interest [30]. The the-
oretical atomic models of the enzymes identified in the
previous step were constructed using I-TASSER [31].
Multithread alignments of enzyme sequences were gen-
erated using the LOMETS meta server [32] to identify
template structures from the Protein Data Bank (PDB)
library, followed by reconstruction of the atomic models.
Protein-ligand binding sites of the homology models
were verified with the I-TASSER-associated COACH
package [33]. The figures of the homology models gener-
ated by I-TASSER were prepared using Pymol (The
PyMOL Molecular Graphics System, Version 2.0 Schrö-
dinger, LLC.) and Chimera [34] (version 1.13.1). The
electrostatic potential map of xylanase 1 was calculated
according to the Coulomb’s Law using Chimera [34]
through the following equation:

ϕ ¼
X

qi= "dið Þ½ �

where φ is the electrostatic potential (which varies in
space), q are the atomic partial charges, d are the dis-
tances from the atoms, and ε is the dielectric, represent-
ing screening by the medium or solvent.
Read counts classified by Kraken (microbial taxonomic

assignment), MG-RAST (gene function), and dbCAN
(CAZyme families) were subjected to differential abun-
dance analysis (L-FCR vs. H-FCR) using edgeR under a
generalized linear model [35–37]. Additionally, contrasts
were used to analyze the relationship between the two
FCR-categories (L-FCR vs. H-FCR) and the data col-
lected at the 4-time points (days 0, 80, 100, 180), espe-
cially those coefficients contrasting the two-FCR groups
with days 0 (baseline) and 180. All data were normalized
using the trimmed mean of M-values (TMM) method as

implemented in edgeR and calculated as the weighted
mean of log-ratios between each pair of samples after
excluding features with the highest counts and the lar-
gest log-fold changes. All P values were corrected for a
false discovery rate (FDR) of 0.05 using the Benjamin-
Hochberg algorithm [38], with tests inferior to the speci-
fied FDR-corrected P value of 0.05 considered as statisti-
cally significant. Cladograms were generated using
GraPhlAn [39] and the heat trees were built using the
metacodeR [40] package. All statistical analyses were
performed using R 3.4.2 (R Core Team, 2017) and Py-
thon 3.6.0.

Cloning, protein expression, and purification
The bioinformatic analysis described above resulted in
the identification of a novel putative xylanase 1 protein,
and the sequence encoding this polypeptide was cloned
into pET43.1a vector (ligation at Xho1 and BamH1 sites)
with subtilisin protease prodomain as a tag, fused to N-
terminus of protein of interest at a commercial cloning
laboratory (Genscript, NJ, USA) (see the Supplementary
Material to find the amino acid sequences of the en-
zymes). The plasmid was then transformed into chem-
ically competent Escherichia coli Rosetta-gami™ 2 DE3
cells (Millipore, Ontario, Canada) and grown in Luria
agar plates supplemented with 100 μg/ml of ampicillin
(Amresco, Solon, OH) at 37°C. Next, a single colony was
picked and transferred to 100 mL Luria broth (LB)
medium with ampicillin and incubated overnight at
37°C. Afterwards, 20 mL of E. coli culture was inoculated
into 1 L of new LB + ampicillin medium and grown at
37°C until OD600 reached 0.5–0.6. The protein of inter-
est was induced with 0.4 mM IPTG and expressed for
8h at 24°C. Cells were then harvested via centrifugation
at 6000×g for 15 min at 4°C. The cell pellets were resus-
pended in phosphate-buffer (pH 7.4), containing 1mM
PMSF (phenylmethylsulfonyl fluoride), and lysed using
Emulsiflex (Avestin, Ottawa, Canada) at a pressure of
206.8 MPa. The unbroken cells and cell debris were pel-
leted by centrifugation at 17,000×g for 30 min. The
supernatant was then incubated with subtilisin resin
(Profinity exact Expression Technology, Bio-RAD) for 1
h at 4 °C, and the unbounded proteins were washed
away with phosphate buffer. The protein of interest was
eluted by incubating the resin overnight with elution
buffer (pH 7.2, 0.1M sodium phosphate and 0.1M so-
dium fluoride) at 4°C and then dialyzed (Spectra/Por
membrane tubing, Vol/Length: 1 ml/cm) against
McDougall’s buffer [41] (pH 7.0) and concentrated using
10,000 MWCO concentrators (Millipore, USA) to 0.4–1
mg/ml. The composition of the McDougall’s buffer used
in this study was as follows: sodium bicarbonate, 9.80 g;
sodium phosphate dibasic dehydrate, 4.62 g; potassium
chloride, 0.57 g; sodium chloride, 0.47 g; magnesium
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sulfate heptahydrate, 0.12 g; and 4% calcium chloride, 1
mL. The concentrated protein samples were aliquoted,
flash-frozen, and stored at −80°C. Protein concentration
was determined by colorimetric detection and quantifi-
cation of total protein using the Pierce BCA protein
assay kit (Thermo-Fisher Scientific) with the bovine
serum albumin as the standard. The purified protein was
then visualized by SDS-PAGE gel.

Differential scanning fluorimetry (DSF)
To investigate the effect of pH on protein stability, DFS
assay of xylanase 1 in different buffers (100 mM sodium
acetate buffer: pH 4.0, 5.0, 6.0; 100 mM Tricine buffer:
pH 7.0, 8.0, and 9.0; McDougall’s buffer: pH 6.0, 7.0, and
8.0) was performed. Xylanase 1 in a final concentration
of 5 μM was mixed with SyproOrange dye (Thermo
Fisher Scientific, USA). Prior to use, the dye stock was
diluted 1:50 (100X) in molecular water and used imme-
diately while being held in darkness to reduce photo-
bleaching. The optimal dilution of dye in the assay was
determined empirically with a 5X dilution for the final
assay. The thermal denaturation assay was performed in
a total volume of 40 μl. All samples were run in dupli-
cate. The thermal scan was conducted from 25 to 95°C,
at 0.5°C/min (ViiA 7 Real-Time PCR System, Thermo-
Fisher). The melting point (Tm) was calculated by fitting
the raw fluorescence data over the temperature using
the Boltzmann equation in GraphPad Prism program
(GraphPadPrizm 7 for Windows, GraphPad Software,
USA).

Size-exclusion chromatography
The oligomeric state and homogeneity of xylanase 1 was
determined by size-exclusion chromatography on Super-
dex 75 (10/30) column (GE Healthcare, Canada), equili-
brated with McDougall’s buffer, pH 6.0. Molar mass of
the protein peak was calculated using a logarithmic
interpolation of elution volumes (Ve) using a gel filtra-
tion LMW calibration kit (GE Healthcare, Pittsburgh,
USA) containing (1) blue dextran 2000 (V0), (2) thyro-
globulin (670 kDa), (3) g-globulin (158 kDa), (4) ovalbu-
min (44 kDa), (5) myoglobulin (17 kDa), and (6) vitamin
B12 (1.3 kDa).

Kinetic measurements
Xylanase 1 activity was determined by measuring the
quantity of reducing sugars (xylose, molecular weight:
150 g/mol) released from xylan (Beechwood xylan,
Megazyme) by the dinitrosalicylic acid (DNS) method
[42]. Before kinetic calculations, all parameters (e.g., pH,
temperature, enzyme concentration) for the assay were
optimized. The minimal concentration of the enzyme
that produced a linear dependence of generated product
with the time was chosen, as well as the minimal time of

reaction within the linear part of the curve. For kinetic
measurements, xylan (substrate) was incubated at 40°C
with activity buffer—McDougall’s buffer (pH 6.0) for 10
min for equilibration, and then the purified xylanase 1
was added and the reaction was performed for 10 min.
The final concentration of enzyme was fixed at 0.05 μM,
and the final concentration of xylan varied (0, 0.88, 1.75,
3.5, 7.0, 15.0, and 30.0 mg/ml). The total volume of reac-
tion was 200 μl. The samples with the same concentra-
tions of substrate but without enzyme addition were
treated the same way and were used as negative controls.
After adding 300 μl of DNS reagent to stop the reaction,
the samples were boiled for 5 min and then incubated
on ice prior to measurement of absorbance at 540 nm
using a plate reader (SpectraMax M3). All reactions were
performed in duplicate. The plots of the reaction vel-
ocity against the corresponding substrate concentration
were fitted with Michaelis–Menten equation (v0 =
kcat[E]0[S]0/([S]0 + KM)) using GraphPad Prism program
(GraphPadPrizm 7 for Windows, GraphPad Software,
USA).

Thermal inactivation of xylanase 1 and thermodynamic
analysis
A thermal inactivation assay was performed at 25, 40,
50, and 60 °C. All samples, containing 0.5μM of xyla-
nase1 in McDougall’s buffer (pH 6.0), were incubated at
the specified temperatures. A 20-μl aliquot was removed
at each time point (0, 10, 20, 30, 40, 50, 60, and 70 min)
and incubated on ice until the activity measurements
were performed using 0.05 μM of xylanase 1 and 30 mg/
ml of xylan. A non-heated enzyme was used as positive
control and its activity was taken as 100%.
Enzyme inactivation over time was described as a first-

order reaction according to Eq. 1:

ln A=A0 ¼ �kt ð1Þ

where A = activity at time t, A0 = initial activity at time
zero, k is the inactivation rate constant at the tested
temperature (min−1), and t is time (min). k values were
calculated from linear regression analysis of the natural
logarithm of residual activity versus incubation time and
replotted in Arrhenius plot. Activation energy (Ea) was
calculated using the slope of Arrhenius plot according to
Eq. 2:

lnðkÞ ¼ �Ea=RT þ c ð2Þ

where R is the gas constant (8.314 J mol−1 K−1), T is
the absolute temperature, and c is the frequency factor.
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The half-life of xylanase 1 (t1/2 in min), defined as time
after which activity is reduced to one-half of its initial
value, was determined according to Eq. 3:

t1=2 ¼ ln ð2Þ=k ð3Þ
The D-value is the time (min) needed to reduce the

initial activity to 90%. It is inversely related to k-values
and mathematically expressed in the Eq. 4:

D ¼ ln ð10Þ=k ð4Þ
The values of Gibbs free energy (ΔG°, kJ mol−1), en-

thalpy (ΔH°, kJ mol−1), and entropy ΔS° (J mol−1K−1)
were determined as follows:

ΔG� ¼ �RTln kh=kbTð Þ ð5Þ

ΔH� ¼ Ea� RT ð6Þ

ΔS� ¼ ΔH� � ΔG�ð Þ=T ð7Þ
where h is the Plank constant (6.626 × 10−34 J s) and

kb is the Boltzmann constant (1.38 × 10−23 JK−1). All ex-
periments were performed in duplicates.

Results
Overview of bacterial diversity, functional profiles, and
CAZymes of the rumen microbiome in response to diet-
based selective pressure
To facilitate the mining of active CAZyme families in

the rumen metatranscriptome, we adopted a selective
pressure approach based on the use of a forage diet—al-
falfa hay and corn silage—to encourage the growth of
the most competent rumen microorganisms and en-
zymes capable of degrading lignocellulosic substrates.
RNA-sequencing of rumen fluid collected from forage-
fed Angus bulls generated an average of 30M metatran-
scriptomic reads and 3M high quality mRNA reads,
which were subsequently assembled into 7627 contigs
per sample (with an average extension of 474.3 ± 26.67
bp and N50 of 462.6 ± 27.99 bp; Data S2). Approxi-
mately 51% of mRNA reads that passed quality control
were successfully mapped to the assembled contigs (Data
S2). Taxonomic classification of these contigs using a
strategy previously developed by our group [21] resulted
in the identification of 20 bacterial phyla in the rumen
fluid. Among these, the majority of sequences were
assigned to Bacteroidetes (45%), followed by Firmicutes
(23%), Proteobacteria (14%), Spirochaetes (5.0%), Verru-
comicrobia (2.3%), Actinobacteria (2.2%), Tenericutes

(2.1%), and Fibrobacteres (1.4%) (Fig. 1A; Fig. S2; Data
S3).
To examine the functional potential of the rumen

microbiota associated with the degradation of lignocellu-
lose, contigs were mapped against the publicly available
Subsystems database using MG-RAST [27], revealing
1205 unique functions for the metatranscriptome (Data
S4). Central carbohydrate metabolism (including glycoly-
sis/gluconeogenesis, glyoxylate cycle, pyruvate metabol-
ism and pentose phosphate pathway) and protein
biosynthesis were the most abundant functional categor-
ies, representing 10% and 33% of the annotated reads,
respectively (Fig. S3). In the polysaccharides- and
monosaccharides-related functions, the cellulosome
complex and xylose utilization systems comprised 0.39%
and 0.72% of the total annotated reads, respectively (Fig.
1B; Data S4).
Assembled metatranscriptomic contigs were also

aligned against the CAZyme database [4, 29] to obtain
more in-depth information regarding the carbohydrate-
specific enzymes in the dataset. Of the resulting 6904
alignments against the CAZyme database, transcripts
assigned to glycoside hydrolases (GHs) were predomin-
ant (42.2% of the total CAZyme matches), followed by
carbohydrate-binding modules (CBMs) (33.2%), glycosyl-
transferases (GTs) (9.8%), carbohydrate esterases (CEs)
(6.6%), dockerin (2.7%), S-layer homology domains
(SLHs) (2.6%), polysaccharide lyases (PLs) (2.2%), cohe-
sin (0.5%), and auxiliary activities (AA6) (0.2%) (Fig. 1C;
Data S5). Transcripts belonging to GH13 were the most
abundant out of the 61 GH families identified in the
rumen metatranscriptome, accounting for 6.3% of the
2914 GH hits found in the CAZyme database (Data S5).
Cellulases (GH5, GH9, GH45, and GH48) and hemicel-
lulases (GH8, GH10, GH11, GH26, GH28, GH53) tran-
scripts also exhibited a high representation (25% of the
total CAZyme matches) in the metatranscriptome (Data
S5). A wide variety of non-catalytic CBMs were highly
represented (2,297 hits) and predicted in interactions
with various substrates such as cellulose (e.g., CBM1,
CBM2, CBM3, CBM6, CBM13, CBM16, CBM44), xylan
(e.g., CBM4, CBM22, CBM37), and chitin (e.g., CBM50)
(Data S5). Other major classes of CAZymes abundant in
our dataset were CEs (e.g., CE1, CE2, CE3, CE4, CE7,
CE12) and PLs (e.g., PL1, PL9, PL11) (Data S5).

Discovery of glycoside hydrolases through phenotype-
based selective pressure on the rumen microbial
community
Since there is likely a bidirectional relationship between
rumen microbes and feed efficiency, the rumen micro-
bial population in feed efficient cattle was compared
with less efficient animals consuming the same diet. The
FCR of the two groups of animals was statistically
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divergent (P < 0.01; Fig. S1), with L-FCR bulls consum-
ing on average 22% less feed to achieve the same gain as
H-FCR bulls (Fig. S1).
While no difference in the overall microbial compos-

ition structure between the feed efficiency groups within
the four time points was detected by Bray-Curtis dis-
similarity matrices (Fig. S4), orthogonal contrasts
showed that a few fibrolytic bacteria and a specific set of
GHs differed between the two FCR groups within the

days 0 (baseline), 80, 100, and 180. Of the 115 species
present in all samples (Data S3), Fibrobacter succino-
genes (a cellulolytic bacterium [43]) exhibited a nearly
0.5-log2-fold increase (P < 0.05) in efficient animals rela-
tive to their inefficient counterparts on day 0 (Fig. 2A).
Our results also showed that the relative abundance of
F. succinogenes and other common plant cell wall de-
graders (Butyrivibrio proteoclasticus and Ruminiclostri-
dium sp KB18) exhibited > 4-log2-fold increase (P <

Fig. 1 Taxonomic classification and functional capability of the rumen microbiota revealed by metatranscriptomic sequencing. A Cladogram
showing the most abundant bacterial taxa (relative abundance ≥ 0.1% in at least half of the samples) determined by Kraken [26]. The six rings of
the cladogram stand for phylum (innermost), class, order, family, genus, and species (outermost), respectively. The sizes of the circles indicate the
mean average abundance of each taxon. B Heat tree displaying the functional capability of the rumen microbiota determined by MG-RAST [27,
28]. Each node represents the functional categories (up to three levels) and the edges determine where each node fits in the functional
hierarchy. Node colors indicate the relative abundance of the functions at level 3 (functions ranged from the most detailed, level 3, to the least
detailed category, level 1). C Cladogram showing the most abundant CAZymes determined by dbCAN [29]. The sizes of the circles indicate the
mean average abundance of each CAZyme family. Cladograms were generated using GraPhlAn [39] and the heat trees were built using
metacodeR [40] package. The two cladograms and the heat tree were created from an average data depicted from all animals (independent of
FCR and included the four time points)
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0.05) on the 180th day relative to day 0 in L-FCR com-
pared to H-FCR (Fig. 2B). Prevotella ruminicola exhib-
ited a 0.6-log2-fold increase (P < 0.05) on the 180th day
relative to day 0 in L-FCR compared to H-FCR (Fig. 2B).
It is worth mentioning that the same set of microbes
listed above (Fibrobacter succinogenes, Ruminiclostri-
dium sp KB18, and Butyrivibrio proteoclasticus), except
Prevotella ruminicola, had already shown a significant (P

< 0.05) log2-fold increase on days 80th and 100th in L-
FCR relative to day 0 in H-FCR.
To further investigate the influence of feed efficiency

ranking on expression of microbial CAZymes in the rumen,
we then analyzed all CAZymes families in our dataset
across FCR groups (Fig. 2C). We found a 1.9-log2-fold in-
crease (P < 0.05) in the relative abundance of GH13 on the
180th day relative to day 0 in L-FCR compared to H-FCR
(Fig. 2C). More importantly, we found that GH11 (endo-β-

Fig. 2 Fibrolytic bacteria and glycoside hydrolases are abundant in feed efficient cattle. A Log2-fold increase in the abundance of F. succinogenes
in L-FCR compared to H-FCR on Day 0 (orange dot). Log2-fold increase in the abundance of four bacterial species on the 180th day relative to
day 0 in L-FCR compared to H-FCR (dark dots). The black dashed line was drawn to separate the two time points. B Log2-fold increase in the
abundance of four CAZyme families on the 180th day relative to day 0 in L-FCR compared to H-FCR (dark dots). C Log2-fold increase in the
abundance of four microbial functions in L-FCR compared to H-FCR on day 0 (orange dots). D Heat tree showing the log2-fold increase in the
abundance of microbial functions on the 180th day relative to day 0 in L-FCR compared to H-FCR (dark dots). Features were significant (P < 0.05)
according to the trimmed mean of M-values (TMM) method implemented in edgeR [35–37]. The TMM method was used to normalize the data
and minimize the log2-fold changes between samples. All P values were corrected for a false discovery rate (FDR) of 0.05 using the Benjamin-
Hochberg algorithm [38], and FDR-corrected P values were considered as significant. In the heat tree, node colors indicate the log2fc in the
significant (P < 0.05) microbial functional categories classified at level 4 by MG-RAST [27, 28]
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1,4-xylanase - EC 3.2.1.8), GH45 (endoglucanase: EC
3.2.1.4), and CBMs involved in cellulose degradation
(CBM79) exhibited >2.5-log2-fold increase (P < 0.05) in
their relative abundance in L-FCR compared to H-FCR on
day 180 relative to day 0 (Fig. 2C). Next, we examined
whether the functional potential of the microbial commu-
nity was linked to the feed efficiency ranking, with the aim
of finding genes involved in the degradation of lignocellu-
losic biomass (Figs. 2D, E). We found ammonia assimilation
functions mediated by aspartate-ammonia ligases (EC:
6.3.1.1) and motor organelles, which propel the rotating fla-
gella to enable bacteria to carry out chemotaxis [44], at a
higher (P < 0.05) abundance in the rumen of L-FCR com-
pared to H-FCR on day 0 (Fig. 2D). As for the degradation
of monosaccharides and di- and oligosaccharides, genes re-
lated to cellulose (e.g., cellobiose phosphorylase - EC:
2.4.1.20) and xylose utilization (e.g., endo-1,4-β-xylanase)
exhibited a >5-log2-fold increase (P < 0.05) in their abun-
dance on day 180 relative to day 0 in L-FCR compared to
H-FCR (Fig. 2E; Data S6).

Targeted functional profiling and homology modeling of
xylanases and endoglucanases
To identify functionally distinct members of GH11 (xyla-
nases) and GH45 (endoglucanases), we used the
ShortBRED tool [17] to screen those families against a
de novo protein reference database comprised of 1184
uncharacterized enzymes retrieved from UniProt, and
then profiled their abundance and distribution in the
rumen metatranscriptome. By screening 775 uncharac-
terized members of the family GH11 and 409 of the
family GH45, we identified 18 putative xylanases (GH11)
and three putative endoglucanases (GH45) in the rumen
(Fig. 3A; Data S7). In this study, bacteria and eukaryotic
organisms represented the major sources of the identi-
fied xylanases and endoglucanases (Fig. 3B). While only
two genes were sourced from known rumen microbes
such as F. succinogenes (100% identity; UniProt IDs:
C9RR38 and D9SBI1) and uncultured rumen ciliates
(UniProt ID: G5DDC1; 70.5% identity with Epidinium
caudatum; Fig. S5), the vast majority of enzymes

Fig. 3 Targeted functional profiling of rumen xylanases and endoglucanases, and theoretical 3D structure of xylanase 1. A Heatmap showing the
distribution of the most abundant members of the GH11 and GH45 families quantified according to ShortBRED [17]. B Phylogenetic tree of
xylanases and endoglucanases detected in the rumen metatranscriptome generated by the neighbor-joining method. C Theoretical 3D structure
of xylanase 1 showing the labeled residues involved in the binding of 1,2-Deoxy-2-Fluoro-Xylopyranose (DFX) (PDB ID: 1c5iA), as calculated by I-
TASSER [31]. D Electrostatic surface analysis of xylanase 1 generated by Chimera [34], with a color spectrum that varies from electronegative (red)
to electropositive (blue) values. The ligand DFX is bound to the enzyme at the putative active site groove with electronegative residues
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matched bacterial and fungal strains found in other envi-
ronments (e.g., soil; UniProt IDs: A0A2P2HMK2,
A0A165DD01, A0A094CQ25), highlighting the relatively
poor functional annotation of the rumen microbiome
(Fig. 3B).
To further investigate putative active site residues and

the tertiary conformation of the identified xylanases and
endoglucanases, we constructed and compared the hom-
ology models of the enzymes with known crystal struc-
tures deposited on the Protein Data Bank (PDB) using I-
TASSER [31] (Figs. S6 and S7; Table S3). Of the 33 crys-
tal structures reported for the family GH11 in the PDB
and CAZyme databases, the top homology model of
xylanase 1 (the most broadly distributed and abundant
xylanase in our rumen metatranscriptome dataset; Fig.
3A; Data S7) showed 57% sequence identity with the
crystal structure of a xylanase family 11 (PDB ID:
1h4hB) encoded by Bacillus agaradhaerens (Fig. S6A
and Table S3). The confidence score (C-scores) of the
top model for xylanase 1 was 1.67, indicating good qual-
ity of the predicted homology model (C-score is typically
in the range [−5, 2], where higher scores signify a model
with high confidence). Superimposing the homology
model of xylanase 1 onto the crystal structure of Bacillus
agaradhaerens xylanase resulted in a global structural
alignment score (TM-score) of 0.95 (TM-score >0.5 in-
dicates a model of correct topology) and root-mean-
square deviation of the TM-aligned residues of 0.47 Å,
confirming that the model was in agreement with the
crystal structure of Bacillus agaradhaerens xylanase.
Multiple functional annotations performed by I-

TASSER in conjunction with the COACH package [33]
revealed the ligand 1,2-Deoxy-2-Fluoro-Xylopyranose
(DFX) (PDB ID: 1c5iA) docked in the predicted
substrate-binding cleft of xylanase 1 (Fig. 3C; Fig. S7;
Table S3), which is a protein that exhibits a β jelly-roll
fold typical of GH11 xylanases [45]. The surface analysis
of the model using solvent accessibility prediction scores
(SA) [31, 46] showed that the residues bound to DFX
(Fig. 3C) exhibited low SA scores (ranging from “0”, bur-
ied residue, to “9”, highly exposed residue: Glu182 “1”;
Tyr94 “0”; Tyr83 “0”; Glu92 “0”; Gln141 “0”; Phe139 “1”;
Pro131 “1”), indicating that the active site amino acid
residues were buried in the cleft or groove of the en-
zyme. Further analysis revealed two predicted catalytic
residues located on β strands 9 and 14 and separated
from each other by ~5.7 Å: (1) Glu92 which has a nu-
cleophilic function and (2) Glu182 which is the proton
donor (Fig. 3C). The electrostatic map [34] (red—nega-
tive potential; blue—positive) showed that those pre-
dicted active site residues lied in an area of the enzyme
with a negative electrostatic potential, which makes the
groove a suitable active site to attract the positively
charged ligand DFX (Fig. 3D).

Biochemical characterization of Xylanase 1
To confirm the lignocellulolytic activity and stability of
the enzymes, we prioritized the most broadly distributed
and abundant xylanase identified in the rumen meta-
transcriptome to validate the bioinformatic results via
biochemical characterization. The purification of xyla-
nase 1 from a protein expression vector pET43.1a
cloned with transcripts encoding xylanase 1 and
expressed in E. coli resulted in a highly purified enzyme
with an expected molecular mass of 23 kDa (Fig. 4A).
Gel-filtration analysis revealed that xylanase 1 eluted as
a single homogeneous peak with a calculated molecular
mass of ~ 25 kDa, suggesting that the protein exists in a
monomeric state in solution (Fig. 4A).
The pH optimum of the newly identified enzyme was

determined by estimating its catalytic activity at pH 4.0–
9.0 using Beechwood xylan as substrate. The graph of
dependence of specific activity on pH exhibited a stand-
ard bell-shaped curve with an optimum pH of 6.0, with
the enzymatic activity being still high at pH 7.0 and de-
creasing only at pH 8.0 (Fig. 4B). To confirm the pH de-
pendence results and validate the optimal conditions for
assessing the catalytic parameters of xylanase 1, we per-
formed a “thermal shift” assay through differential scan-
ning fluorimetry to measure changes in the thermal
denaturation temperature and identify the most stable
pH and buffer conditions for the enzyme. The melting
temperatures (Tm values) of xylanase 1 were examined
at pHs ranging from 4.0 to 9.0 in widely used buffer sys-
tems, which included sodium acetate for low pHs, Tri-
cine for high pHs, and McDougall’s buffer, a standard
buffer system primarily used for assessing feed fermenta-
tion parameters in rumen studies [41]. As seen in Fig.
4C, the Tm values in McDougall’s buffer were similar to
those observed in the Tricine buffering system, with the
highest Tm recorded at pH 6.0. The “thermal shift” assay
showed the same standard bell-shaped curve observed in
the relationship between specific activity and pH de-
pendence (Figs. 4B, C).
The catalytic parameters of xylanase 1 towards the

cleavage of xylan were then calculated according to the
Michaelis–Menten kinetics (Fig. 4D), and the cleavage
rate and catalytic efficiency were 480 ± 20.7 s−1 and 872
± 43.2 M−1s−1, respectively, with a Km of 8.7 ± 0.9 mg/
ml (Fig. 4D). Next, we evaluated the inactivation kinetics
and studied the thermodynamic parameters of xylanase
1. The effect of temperature on xylanase 1 stability was
examined by incubating the enzyme at temperatures in
the range of 25–60°C for 5–60 min (Table 1; Fig. 5). The
semi-log plots of the residual activity versus heating time
were linear at all temperatures studied (Fig. 5), suggest-
ing that inactivation of xylanase 1 is a simple first-order
monophasic process. Inactivation rate constants calcu-
lated from the slopes of semi-log plots for a first-order
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reaction showed that Kd values increased ~10-fold per
10 °C during the heat inactivation process, suggesting
that although the increase in temperature augmented
the rate of reaction it also caused the denaturation of
the enzyme and its loss of functionality (Table 1). In fact,
the results showed that xylanase 1 was stable at 25 °C as
it lost only 10% of its activity after 1 h of incubation (D
value of 1354 min) (Table 1; Fig. 5A). At 40 °C, 35% of
its activity remained after 1 h of incubation, with a D
value of 127 min. The loss of activity with a D value of

2.5 min was observed after incubating the enzyme at
60 °C (Table 1; Fig. 5A). When the dependence of Kd in
relation to temperature was fitted through the Arrhenius
equation, the results showed a simple linear fit for the
reaction (Fig. 5B). The apparent activation energy (Ea)
of thermal inactivation was 154.86 kJ mol−1, indicating
that the transition state of the reaction displayed a rela-
tively high energy barrier to be lowered by the enzyme.
The thermodynamic parameters of inactivation, in-

cluding Gibbs free energy change (ΔG°), enthalpy change

Fig. 4 Purification and functional characterization of xylanase 1. A Size-exclusion chromatography of xylanase 1 on Superdex200 (10/300) column
revealing the monomeric state of the enzyme. Inset: SDS-PAGE analysis of eluted xylanase 1. B The dependence of xylanase 1 activity on pH. C
Melting temperatures (Tm) of xylanase 1 determined by differential scanning fluorimetry (DSF) in different buffers (Light grey: 100 mM sodium
acetate buffer: pH 4.0, 5.0, 6.0; 100 mM Tricine buffer: pH 7.0 and 8.0; Dark grey - McDougall’s buffer: pH 6.0, 7.0, and 8.0). D Michaelis-Menten plot
of xylanase 1-mediated cleavage of Beechwood xylan. Xylan at the concentration range from 0.9 to 30 mg/ml was incubated with 0.05 μM of
xylanase 1 in McDougall’s buffer (pH 6) at 40°C (n=3 ± standard deviation of duplicate reactions)

Table 1 Kinetic parameters characterizing the thermal inactivation of xylanase 1

Temperature (°C) Kd (min−1) t1/2 (min) D (min) ΔH° (kJ∙mol−1) ΔG° (kJ∙mol−1) ΔS° (J∙mol−1∙K−1)

25 0.0017 407.73 1354.46 150.52 78.64 0.24

40 0.0180 38.51 127.92 150.40 76.58 0.24

50 0.2400 2.89 9.59 150.31 72.16 0.24

60 0.92 0.75 2.50 150.23 70.75 0.24

Kd, inactivation rate constant; t1/2, half-time (i.e., the time after which activity is reduced to one-half of the initial value); D, the time required to reduce enzymatic
activity to 10% of its original value; ΔH°, activation enthalpy; ΔG°, activation free-energy barrier; ΔS°, activation entropy of thermal denaturation
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(ΔH°), and entropy change (ΔS°), were also assessed to
understand the enzyme’s behavior at each step of the
heat-induced denaturation process. The value of ΔH°
was on average 150.36 kJ mol−1, and within the measure-
ments error range it was independent of temperature,
assuming that there was no change in the enzyme heat-
ing capacity (Table 1). The positive results for ΔH° at all
temperatures studied indicated that the enzyme inactiva-
tion process was endothermic (Table 1), meaning that
the formation of xylose monomers in the reaction re-
quired the input of additional energy from a heat source.
The results also revealed that ΔG° values declined from
78.64 to 70.75 kJ mol−1 when the incubation
temperature increased from 25 to 60°C, indicating pro-
tein destabilization with increasing temperature (Table
1). The fact that ΔG° was > 0 and Kd < 1 at all tempera-
tures indicated that the reactants were favored over the
products at equilibrium and so the equilibrium mixture
contained more reactants than products. The ΔS° esti-
mates were positive at all temperatures, indicating that
there was an increase in the molecular randomness or
disorder during the exposure of the enzyme to higher
temperatures and that the unfolding of xylanase 1 was a
rate-limiting step for thermal inactivation (Table 1). This
characterization provides a strong basis for its use in
degradation of lignocellulose.

Discussion
The diverse and dynamic nature of the rumen micro-
biome has seen it emerge as a promising reservoir for
the identification of novel microbial proteins with potent
application in the biotechnology sector, most notably
those involved in the hydrolysis of lignocellulosic bio-
mass [47]. While recent studies have successfully used
metagenomic-based approaches to predict and identify

putative genes encoding novel CAZymes [8, 12, 13, 48],
this methodology fails to capture the functional diver-
gence of individual proteins within each family of
CAZymes, as it does not consider the structural diversity
among family members. To address this, the present
study employed principles of microbial ecology (diet-
and phenotype-based selective pressure) and adapted
existing bioinformatic approaches (targeted functional
profiling) to recover novel enzyme sequences of distinct
GH family members in the rumen metatranscriptome of
Angus bulls fed a forage diet. While targeted functional
profiling has been used to examine uncharacterized en-
zymes found in the human gut microbiome [16], these
studies have not comprehensively profiled CAZyme fam-
ilies in microbial communities. Similarly, although both
metagenomic and metatranscriptomic screenings have
been widely applied to discover CAZymes in various
microbiomes [14, 49–51], to our knowledge, the use of
selective pressure on the native microbial community in
combination with targeted functional profiling has not
been applied to quantitative metatranscriptomic analysis
to identify novel enzymes.
Previous studies have shown that incubating recalci-

trant substrates (as high as 51–77% NDF and 43–48%
ADF) for a short time (~72 h) in the rumen of cannu-
lated animals or in in vitro systems is a valuable strategy
to identify novel CAZymes from the enriched microbial
environment [12, 48]. However, our study has demon-
strated that the long-term intake of relatively low NDF
and ADF concentrations (41% and 21%, respectively) can
still confer a selective advantage upon microbes that
produce specialized fiber-degrading enzymes in feed-
efficient animals. Cellulose- and hemicellulose-degrading
bacteria and a specific group of CAZymes were more
abundant in the rumen of efficient cattle than in their

Fig. 5 Thermal stability of xylanase 1. A Time course of residual activity (%) of xylanase 1 at different temperatures (n = 2 measurements). B
Arrhenius plot showing the natural logarithm of the reaction rate constants (k) as a function of the reciprocal of the specified temperatures used
to determine the apparent activation energy (Ea) of thermal inactivation calculated as 154.86 kJ mol−1
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inefficient counterparts undergoing the same degree
of selection pressure, highlighting the importance of
individualized microbiome response within each
phenotype in the capacity to express the enzymes of
interest. Taken altogether, these findings provide
more robust evidence of a causal relationship between
the rumen microbes and feed efficiency than has pre-
viously been reported [9].
It is worth mentioning that we also detected the abun-

dance of the SLH domain, which is part of a large multi-
enzyme complex known as the cellulosome [52]. The
presence of accessory modules (>400 hits in this study)
commonly found in bacterial and fungal cellulosome-
associated structures (AAs, dockerins, and cohesins) and
the SLH domain, provided additional evidence of active
cellulosome-mediated plant cell-wall degradation
employed by rumen microorganisms (Data S5). To the
best of our knowledge, it is the first time that the SLH do-
main has been documented in the rumen microbiome of
cattle, although it was previously characterized in the
camel [53] and muskoxen rumen [54]. Its presence in
the bovine rumen lends further credence to the hypoth-
esis that feeding animals forage diets over a prolonged
period of time promotes the proliferation of microbes
and enzymes involved in plant cell wall hydrolisis in the
rumen microbiome.
Having characterized the presence of enzyme families

which we expected to proliferate in the forage-fed
rumen, we then applied a targeted functional profiling
strategy to identify enzymes of unknown functions
within the GH11 and GH45 families, as these families
exhibited the greatest growth in the rumen of efficient
versus inefficient animals (Fig. 2). Although the activities
of several GHs have been investigated in the rumen,
many members of the GH11 and GH45 families remain
uncharacterized and are typically absent in analyses of
the rumen proteome. GH11, unlike other xylanase fam-
ilies (e.g., GH10), comprises only endo-β-1,4-xylanases
whose function is to cleave β-1,4-xylosidic bonds be-
tween xylose monomers, whereas endo-1,4-β-glucanases
of the family GH45 play a role in the hydrolysis of the
1,4-β-D-glucan chain. Although all of these enzymes act
on lignocellulosic substrates (xylose and cellulose) and
are classified into their respective families based on se-
quence similarities [4], they exhibited divergent abun-
dances in the rumen of cattle with differing feed
efficiencies in the present study, indicating that they may
perform distinct activities within the GH11 and GH45
families (Fig. 3A). Of the 21 novel lignocellulolytic en-
zymes (18 xylanases from the GH11 family, and 3 endo-
glucanases belonging to the GH45 family), xylanase 1
was the most abundant catalyst identified in the rumen
metatranscriptome. Kinetic and thermodynamic analyses
confirmed its status as a stable enzyme capable of

degrading xylan. Moreover, we constructed a homology
model of xylanase 1, which revealed a similar structural
fold and catalytic residues as that of 1h4hB xylanase, but
it showed different rearrangements in the loops that
make up the active site. Even subtle loop variations can
impact substrate recognition and the catalytic activity of
enzymes [55] and suffice to differentiate them from
other members of the GH11 family. This highlights the
critical contribution of the targeted functional profiling
to the rapid divergence of as-yet-uncharacterized mem-
bers in these families.
As mentioned earlier, the location of the catalytic resi-

dues (Glu92 and Glu182) in xylanase 1 confers a con-
formation similar to other GH11 xylanases and is
entirely consistent with the catalytic apparatus of a
retaining glycoside hydrolase that hydrolyzes glycosidic
bonds by a double displacement mechanism [56]. In
xylanase 1, the residue in close spatial proximity to
Glu182 (the catalytic acid-base) was Asn180 (Fig. 3C),
which is a characteristic of enzymes that function under
more alkaline conditions [57]. Our experiments con-
firmed that xylanase 1 exhibited a pH optimum (global
mean) similar to the rumen pH of forage-fed cattle
(~pH 6.0–7.0) [58], and thus, it is likely that this enzyme
plays a significant role in the digestion of xylan in the
rumen. Under optimum pH and temperature conditions,
xylanase 1 displayed high catalytic activity against Beech-
wood xylan (Kcat was > 10-fold higher) compared to
other rumen GH11 xylanases reported to date [59]. As a
major constituent of forage-rich diets, effective xylan
degradation is a key function of the rumen microbiome
[43] (regardless of FCR status), and this highlights the
finding that xylanase 1 was detected in all animals, indi-
cating that its role as a xylan degrader is conserved
across individuals and feed efficiencies.
While our approach effectively discovered novel

endoxylanases and endoglucanases in the rumen and
validated a candidate with the potential to break down
xylan, limitations exist in our study, such as the potential
mapping of reads/contigs to unrelated enzymes with a
better score if they were part of the database. As future
directions, we propose to use a new algorithm called
CUPP (Conserved Unique Peptide Patterns) [60, 61] in
conjunction with dbCAN to identify the CAZymes in
the rumen. CUPP has produced F-scores, sensitivity, and
precisions of family and subfamily annotations that
match or represent an improvement compared to state-
of-the-art tools like dbCAN. In addition to grouping the
enzymes at a level lower than protein families and/or
subfamilies, CUPP has a database (library of conserved
peptides) curated and updated every year. The imple-
mentation of the CUPP pipeline in the next stage of this
research will definitively strengthen the power of our
combined approach (selective pressure + targeted
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functional profiling) to identify uncharacterized enzymes
in the rumen.

Conclusions
The discovery of novel lignocellulolytic enzymes is of great pri-
ority, having application in both the biotechnology sector and
as a means of understanding, and potentially improving, the effi-
cient degradation of plant biomass in the rumen. Unfortunately,
a considerable amount of agricultural residuals are underutilized
due to the lack of an effective enzymatic system to degrade
lignocellulose and release its constituent sugars for fermentation.
The current study highlights the usefulness of combining select-
ive pressure on the native rumen microbial community with
targeted functional profiling using well-established algorithms
[17, 26, 27, 29]. This approach revealed not only the diversity of
bacteria and genes associated with efficient plant cell wall diges-
tion but also facilitated the characterization of novel CAZyme
family members, which may be critical in feed degradation. Ap-
plying this strategy and its underlying concepts in microbial
ecology, nutrition, and bioinformatics, we discovered several
previously uncharacterized xylanases and endoglucanases. The
demonstration of the xylanolytic capacity of the most abundant
and conserved member of the GH11 family (xylanase 1) vali-
dates the power of this strategy in discovering lignocellulolytic
enzymes from the rumen microbiome. However, the structural
basis of these new enzymes must be investigated in more detail
to consolidate their status as suitable candidates for the indus-
trial enzyme market. Notwithstanding, these findings may have
many applications outside of animal agriculture for the discov-
ery and characterization of novel CAZymes, particularly in the
identification of novel microbial enzymes for use in the biotech-
nology sector. It may be adapted to any microbial environment
for the discovery of CAZymes of interest, provided that the tar-
geted microbiome is easy to manipulate and facilitates enrich-
ment for the microbes of interest. This approach will encourage
the evolution of microbes specialized at digesting lignocellulose,
and it is likely that in the future, many more lignocellulolytic en-
zymes with high catalytic efficiency will be discovered as know-
ledge of the precise factors which drive microbial community
shifts improves. Application of this approach on a larger scale
may allow further discovery of novel CAZymes within the
rumen and other host-associated microbiomes, which may have
critical functions in feed digestion and host health, as well as ap-
plications in the biotechnology industry.
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