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Honey bee genetics shape the strain-level
structure of gut microbiota in social
transmission
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Abstract

Background: Honey bee gut microbiota transmitted via social interactions are beneficial to the host health.
Although the microbial community is relatively stable, individual variations and high strain-level diversity have been
detected across honey bees. Although the bee gut microbiota structure is influenced by environmental factors, the
heritability of the gut members and the contribution of the host genetics remains elusive. Considering bees within
a colony are not readily genetically identical due to the polyandry of the queen, we hypothesize that the
microbiota structure can be shaped by host genetics.

Results: We used shotgun metagenomics to simultaneously profile the microbiota and host genotypes of bees
from hives of four different subspecies. Gut composition is more distant between genetically different bees at both
phylotype- and “sequence-discrete population” levels. We then performed a successive passaging experiment
within colonies of hybrid bees generated by artificial insemination, which revealed that the microbial composition
dramatically shifts across batches of bees during the social transmission. Specifically, different strains from the
phylotype of Snodgrassella alvi are preferentially selected by genetically varied hosts, and strains from different hosts
show a remarkably biased distribution of single-nucleotide polymorphism in the Type IV pili loci. Genome-wide
association analysis identified that the relative abundance of a cluster of Bifidobacterium strains is associated with
the host glutamate receptor gene specifically expressed in the bee brain. Finally, mono-colonization of
Bifidobacterium with a specific polysaccharide utilization locus impacts the alternative splicing of the gluR-B gene,
which is associated with an increased GABA level in the brain.

Conclusions: Our results indicated that host genetics influence the bee gut composition and suggest a gut-brain
connection implicated in the gut bacterial strain preference. Honey bees have been used extensively as a model
organism for social behaviors, genetics, and the gut microbiome. Further identification of host genetic function as a
shaping force of microbial structure will advance our understanding of the host-microbe interactions.

Keywords: Apis mellifera, Gut microbiota, GWAS, Bifidobacterium, Host specificity, Type IV pili, Polysaccharide
utilization loci
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Background
It is becoming increasingly clear that most animals are
universally inhabited by microbial communities in their
guts. These host-associated microbiomes provide consid-
erable benefits to the host through different functions
and shape the host’s ecology and evolution [1]. Micro-
biomes in animals are often acquired at birth and con-
tact with others and the environment. Considering the
importance of the microbiome, it is thus crucial to
understand mechanisms that select, retain, and transfer
the commensal microbes and the impact of specific con-
stituents on host biology. Numerous environmental fac-
tors, including lifestyle, diet, disease, geography, and
medications, influence the gut microbiota [2–4]. In
addition to the external factors, host genetics has re-
cently been proposed as a determinant of gut microbial
composition [5]. Studies searched for associations be-
tween host alleles and gut microbiota structure of
humans, mice, and other animal models [6–8]. Different
genetic loci have emerged as influential in accounting
for interindividual variation in microbiomes; specifically,
genes with roles in host metabolism and immune sys-
tems implicated in disease have been studied for their
impact on the microbiome [9–12]. In addition, a suite of
taxa is considered more heritable than others, suggesting
that host genetic variation can explain the levels of spe-
cific gut members. Particular taxa, such as Christense-
nellaceae and methanogens, are linked to the host lean
phenotype, suggesting the important functions and
underlying host-microbe interactions of these highly
heritable gut members [13–15]. The potential interac-
tions of host genes and the microbiome have been sur-
veyed for humans and other animals. Yet, it is
challenging for the association of specific host alleles
with microbiome traits [7]. This is partly due to the gut
community structure being strongly and rapidly affected
by various environmental factors, making it challenging
to compare animals in controlled laboratory settings,
limiting our ability to extrapolate host-microbe interac-
tions. Moreover, the genome-wide association study
(GWAS) for hosts with a relatively large genome size
with complex microbiota dominated by thousands of
bacterial species is costly [16]. Therefore, experimental
systems with a simple microbiota composition that can
be controlled in designated conditions are required to
better understand the processes that determine micro-
biome structure and transmission dynamics.
Honey bees possess a simple and host-restricted gut

microbiota commonly detected in bees that are even de-
rived from different locations [17, 18]. This community
contains only 5–8 core bacterial phylotypes (with > 97%
sequence similarity in the 16S rRNA gene), whereas
multiple “sequence-discrete populations” (SDPs; with ~
90% genomic average nucleotide identity) and strains

have been defined in each phylotype, indicating a strain-
level variation in the bee gut [19, 20]. In particular, al-
though only one phylotype has been identified for the
core gut member Snodgrassella, high strain-level diver-
sity and host-specific pattern have been indicated [21,
22]. In addition, multiple strains from all core members
of bee gut bacteria have been isolated, and the ease of
rearing microbiota-free (MF) bees facilitates a functional
screen of individual gut members using gnotobiotic bees
inoculated with defined communities [23]. Thus, the bee
gut community provides an excellent model for studies
on the processes that govern the assembly of microbiota.
To date, studies have focused on the roles of bee gut
microbiota, such as their effects on host nutrition,
weight gain, endocrine signaling, and immune functions
[24, 25]. However, the knowledge of the effectors that
affect the composition and transmission of the honey
bee gut microbiota is quite limiting.
It has been documented that the characteristic bee gut

microbiota is mainly acquired from the other nestmates
through social contact, and the bee gut microbiota are
vertically inherited inside the colony [26]. Although the
western honey bee (Apis mellifera) gut microbiota are
relatively stable across colonies from different geo-
graphic locations, individuals with varying host behaviors
and physiologies, such as age and caste, possess distinct-
ive gut compositions [27, 28]. Moreover, gut composi-
tions vary in individuals from the same colony, with
high diversity in strain composition for the core gut
members observed in particular [21]. Worker bees from
the same hive are not readily genetically identical since
queen bees are polyandrous and mate with an average of
12 males to produce daughters of mixed paternity [29,
30]. Indeed, a previous study showed that colonies with
genetically diverse populations exhibit a higher micro-
biota diversity, strongly suggesting a host genetic impact
on the gut community [31]. Therefore, we hypothesized
that host genetics is a shaping force of the bee gut mi-
crobial diversity, especially the strain-level variation and
the dynamics of microbiota transmission along with
generations.
Here, using shotgun metagenomics, we simultaneously

profiled the strain-level bacterial community and host
genotype for a pure race of bees and hybrids generated
through artificial insemination. It was observed that the
abundance of most core gut members was influenced by
host genetics. A longitudinal study of the structure and
dynamics of the gut communities found that specific
taxa were selected by the host during the successive pas-
sage across genetically varied generations. Heritability
analysis and a GWAS on gut composition identified a
significant association between Bifidobacterium and the
G-protein-coupled receptor gene preferably expressed in
the bee brain. Furthermore, the brains of bees colonized
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with the heritable Bifidobacterium strain displayed an in-
creased level of GABA and differential splicing events of
the gluR-B gene in the brain, which may be explained by
a glycan utilization gene cluster specific to the highly
heritable strains.

Methods
Honey bee management and samples collection
All honey bees (Apis mellifera) were bred and main-
tained in the apiary of Jilin Province Institute of Apicul-
tural Science. The purebred swarms were established in
the 1980s when the queens were imported, and all
breeds were conserved by artificial insemination each
year for long-term genetic studies. Four different subspe-
cies, namely OH, AF, YF, and SK, were used in this
study. We set up one hive for OH and AF each and two
hives of YF and SK each, and both the purebred and hy-
brid colonies were constructed in July 2018. For the hy-
brid colonies, virgin queens of OH and drones of AF or
YF were mated by artificial insemination to produce hy-
brids O-A and O-Y, respectively. The queens were singly
mated by being instrumentally inseminated with semen
harvested from a single drone following the protocols
described in COLOSS BeeBook [32]. Then the insemi-
nated queens were placed into nucleus colonies with ~
300 founding workers, named O-A’ and O-Y’ here. No
aggressive behavior of the founding workers was ob-
served against the newly-inseminated queens nor the
newly emerged hybrids. When the queens started laying
eggs, each colony was monitored daily. To control the
age of sampled bees, one-day-old workers were obtained
by moving frames containing late-stage pupae from col-
onies into an incubator (35 °C, 50% relative humidity)
overnight. The newly emerged adults in the incubator
were individually marked on their thoraces with a spot
of color paint and were then placed back into their ori-
ginal hives. All individuals were collected when they are
15 days old. When the first batch of bees (B1) were col-
lected, the second batch (B2) was set up as described
above. Three batches of bees (B1–B3) were labeled with
distinct colors and sampled consecutively. Notably, be-
fore the emergence of B3, it had been more than 50 days
since the founding workers were introduced. Thus, all
O-A’ and O-Y’ bees had died. In total, we sampled 335
individual bees for the microbiome structure analysis,
using either shotgun metagenomics or 16S rRNA ampli-
con sequencing. Details of the sample size are listed in
Table S1 (Additional file : Table S1).
Colony development of the hybrid colonies was re-

corded at the end of the experiment as described in the
COLOSS BeeBook [33]. Briefly, the number of adult
workers was estimated by weighing the net colony bee
weight. The whole hive is weighed in the field, and then
all bees were brushed off each comb into a holding

container. The hives were re-weighed without bees. We
then collected ~ 300 bee individuals into a pre-weighed
container. After immobilization at 4 °C for 30 min, the
bees were counted, and the average fresh weight was de-
termined. Then, net colony bee weight is divided by the
average individual weight to estimate the population size.

Generation of mono-colonized honey bees
Mono-colonized bees were obtained as described by
Zheng et al. [34] with modifications. Late-stage pupae
were removed manually from brood frames and placed
in sterile plastic bins. The pupae emerged in an incuba-
tor at 35 °C, with a humidity of 50%. Newly emerged
MF bees were kept in axenic cup cages (20–25 MF bees
per cup cage) with sterilized sucrose syrup (50%, wt/vol)
for 24 h. For the mono-colonization groups, stocks of
Bifidobacterium asteroides strain W8113 and strain
W8111 in 25% glycerol stock at − 80 °C were resus-
pended in 1mL 1×PBS (Solarbio, Beijing, China) at a
final OD600nm of 1. Bacterial cell suspensions were
mixed with 1 ml sterilized sucrose solution (50%, wt/vol)
and 0.3 g sterilized pollen. After a 24-h feeding, mono-
colonized bees were provided with sterilized sucrose (0.5
M) and sterile pollens and were kept in an incubator (35
°C, RH 50%) until day 7.

DNA extraction and shotgun sequencing
All bee individuals of either purebred or hybrid were
sampled exactly 15 days after the emergence. Total gen-
omic DNA of both the bee host and gut microbiota was
extracted from the whole gut homogenate using the
CTAB method as previously described [24]. DNA sam-
ples were sent to Guangdong Magigene Biotechnology
(Guangzhou, China) for shotgun metagenome sequen-
cing. Sequencing libraries were generated using NEB-
Next UltraTM II DNA Library Prep Kit for Illumina
(New England Biolabs, MA, USA), and the library qual-
ity was assessed on Qubit 3.0 Fluorometer (Life Tech-
nologies, Grand Island, NY) and Agilent 4200 (Agilent,
Santa Clara, CA) system. The libraries were then se-
quenced on the Illumina HiSeq X-ten platform with
150-bp paired-end reads.

Mapping and variant calling on honey bee genomes
The raw data obtained from the Illumina HiSeq sequen-
cing platform was preprocessed by Readfq: reads with
low-quality bases above 40 bp (quality value ≤ 38), with
N bases > 10 bp were removed, and sharing the overlap
> 15 bp with the adapters were all removed. In addition,
reads were quality controlled with Fastp using default
parameters to generate clean data for downstream ana-
lysis. ~ 10 Gb of sequences per sample were obtained
for subsequent analyses. The quality-controlled reads
were mapped to the honey bee reference genome

Wu et al. Microbiome           (2021) 9:225 Page 3 of 19



(version Amel_HAv3.1; GenBank assembly accession:
GCA_003254395.2) using the BWA-MEM algorithm
with the option “-t 4, -R, -M.” We then sorted the align-
ments according to mapping coordinates and marked
PCR duplicates using Picard Tools, and the duplications
were removed using the SAMtools program to create
one BAM file for each bee sample. To improve mapping
quality, we set minimum mapping quality = 1. We de-
fined depth of coverage as the number of mapped bases
divided by the total length of the reference genome, and
the coverage of more than 90% of the samples is above
20×. As a primary quality control metric, 95–100% (me-
dian 99.14%) of mapped reads per sample were properly
in pairs.
We called variants using the Genome Analysis Toolkit

v4.0.3.0 following germline short variant discovery pipe-
line of the best practices. In brief, the HaplotypeCaller
module with default parameters was used to calculate
variant calls independently for each BAM file and generate
one gVCF file per sample. Then, gVCFs were merged into
GenimicsDB across all samples by GenomicsDBImport
module for the following joint genotyping, which was per-
formed using GenotypeGVCF on all samples to create a
single VCF file for the whole population. To improve the
quality of the variants, we filtered out false-positive SNPs
with VCFtools and checked the dataset by VariantQC. Fi-
nally, only sites with a minor allele frequency between
0.05 and 0.95 were kept. The quality of the final set of
SNPs was assessed by calculating the ratios of transition
to transversion (Ti/Tv ratio), a diagnostic parameter to
examine the quality of SNP identification. The ratios were
between 4.17 and 4.29 in our population, which indicates
no excess of false-positive SNPs.

Honey bee population genetics analysis
To investigate the genetic relatedness of purebred bees,
including OH, YF, AF, and SK, the gVCF file of Apis cer-
ana (version ACSNU-2.0) was merged with the popula-
tion VCF dataset of A. mellifera created above. We then
measured the raw genetic distance using the ‘SNPRelate’
package based on the number of shared alleles between
each sample. The distance matrix was used to estimate a
tree using the neighbor-joining method implemented in
R package ‘ape’, and the tree was visualized using iTol.
PLINK was used to generate a clear population VCF
dataset with only biallelic loci; all variants with missing
call rates exceeding 0.05 were filtered out. Markers with
a Hardy-Weinberg Equilibrium p-value < 0.0001 and in-
dividuals with less than 0.05 missing genotype data were
excluded. In total, we identified 2,255,909 high quality
variants (average value = 20,482 per site) across the 57
purebred bees. The numbers of SNVs from all samples
presented across A. mellifera chromosome 1 to 16 in
100-kb consecutive windows are shown in Fig. S2. We

also processed the same pipeline to acquire variant files
of hybrid and founding worker bees (Figure S4), which
resulted in 2,444,291 variants (average value = 31,690
per site) across the 68 individuals. We then ran ADMIX-
TURE on the resulting SNPs to estimate the genetic an-
cestry of each sample. The unsupervised analysis was
performed using hypothetical ancestral components (K)
ranging from 2 to 5. The fivefold cross-validation (CV)
error values were estimated in ADMIXTURE at each K
value.

Isolation and genome sequencing of gut bacteria
Bacterial strains were isolated from the guts of A. mellifera
collected in Jilin, China, during July 2018. The dissected
guts were directly crushed in 20% (vol/vol) glycerol and
frozen at − 80 °C after sampling. The glycerol stocks were
plated on heart infusion agar supplemented with 5% (vol/
vol) defibrinated sheep’s blood (Solarbio, Beijing, China),
MRS agar (Solarbio, Beijing, China) or TPY agar (Solarbio,
Beijing, China) incubated at 35 °C under a CO2-enriched
atmosphere (5%). Genomic DNA of bacterial isolates was
extracted using the CTAB buffer method as previously de-
scribed [34]. The colonies were first checked by Sanger se-
quencing of the16S rRNA. Then, distantly related isolates
based on the phylogeny of 16S rRNA sequences within
each SDP were chosen for genome sequencing. Total gen-
omic DNA of the isolate was sequenced on the Illumina
Nova6000 platform from the 150-bp paired-end libraries,
and the quality-controlled reads were assembled with the
SOAPdenovo2 genome assembler. The completeness of
genomes was assessed by CheckM. Whole-genome aver-
age nucleotide identity (ANI) was calculated using Fas-
tANI. The genomes were annotated with the Prokka
software, and phylogenetic trees were reconstructed based
on the whole-genome sequence information by PhyloPh-
lAn. All genome assemblies obtained in this study were
deposited at DDBJ/EMBL/GenBank, and the accession
numbers are listed in Additional file : Dataset S1.

Metagenomic analysis
The SDP- and strain-level community structure of each
sample was profiled following the Metagenomic Intra-
Species Diversity Analysis System (MIDAS) pipeline.
Firstly, a custom genomic database for taxonomy classi-
fication and strain SNP calling was built using genomes
of 116 bee gut bacterial isolates obtained in this study
together with 289 published genomes isolated from Apis
and Bombus for the downstream MIDAS analysis (Add-
itional file : Dataset S1). Firstly, pairwise genomic aver-
age nucleotide identities (ANI) for strains within each
phylotype were calculated with fastANI. According to
the MIDAS pipeline instruction, genomes with an exact
95% ANI pairwise similarity were grouped into one spe-
cies cluster, defined as “MIDAS-taxonomy” here. Then
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we built maximum-likelihood trees for the five core gut
members using FastTree based on the amino acid se-
quences (Additional file : Figure S1). Sequence-discrete
populations were basically defined as described by Elle-
gaard et al. [19]. SDPs have been recently proposed to
represent bacterial species [35]. They are groups of di-
vergent strains with less than 90% gANI and form separ-
ate phylogenetic clusters. Our analyses of the isolate
genome phylogeny and pairwise genomic ANI confirmed
the existence of most of the SPDs. However, we noticed
that the pairwise ANI within the predefined SDP
“Bifido-1” is much lower than the expected threshold
(95%).
Moreover, our previous work has documented that

strains from “Bifido-1” show dramatically various capaci-
ties in polysaccharide digestion [34], indicating that they
might belong to different bacterial populations. Here, we
included 28 new bifidobacteria isolates in the analyses of
genome phylogeny and pairwise genomic ANI. We iden-
tified that “Bifido-1” could be further divided into four
SDPs, which form discrete clades and show similar
metabolic profiles [34]. Thus, the bacterial genomes
were integrated into 76 MIDAS-species clusters, and
they were further grouped into 17 SDPs for the five core
phylotypes and Bartonella apis. There are also 20 SDPs
for the other non-core members included in the data-
base for the taxonomy classification. The taxonomic an-
notations of the MIDAS custom database are shown in
Additional file : Dataset S1.
Before the taxonomic profiling, we removed host-

derived reads from metagenomic clean data with Knead-
Data, which maps the reads to the honey bee reference
genome (Amel_HAv3.1) with default parameters and per-
forms quality control. To compute the relative abundance
of SDPs, coverage, and prevalence from metagenomic se-
quencing, we ran the “species” module of the “run_mid-
as.py” script and “merge_midas.py” script with our custom
bacterial genome database. MIDAS aligned reads to the
database of universal single-copy marker gene sequences
for each species cluster within our custom database using
HS-BLASTN to estimate the abundance of species clus-
ters for each sample. Local alignments that cover < 70% of
the read or fail to satisfy the gene-specific species-level
percent identity cutoffs were discarded, and we assigned
each uniquely mapped read to a species cluster according
to its best hit. Then, each species cluster's coverage and
relative abundance across samples were estimated based
on the number of mapped reads. We compared both phy-
lotype- and SDP-level composition profiles by measuring
Bray-Curtis distance using the “vegan” package. First, we
used Wilcoxon tests to evaluate the dissimilarity for each
subject. Then, we compared the relative abundance of all
phylotypes and SDPs for different subspecies of bees. We
used the Kruskal-Wallis test to determine the significance.

Strain-level community profiling
Representative genomes from each species cluster were
chosen to maximize its average nucleotide identity at the
30 universal genes to other members of the species clus-
ter, and they were used for detecting core-genome SNPs.
Next, a database of 15 universal single-copy gene fam-
ilies was built to estimate the abundance of the species
clusters from the shotgun metagenomes. Universal and
single-copy gene families were selected by MIDAS based
on their ability to recruit metagenomic reads accurately.
We used the “single-nucleotide-polymorphism predic-
tion” function of the MIDAS pipeline to profile SNPs of
the five core SDPs in metagenomic data for each bee
against the representative genomes. In brief, we ran the
“snps” module of the “run_midas.py” script to map
metagenomic reads to the reference genomes. Represen-
tative genomes with the highest completeness from each
SDP were selected for the strain SNP calling. Metage-
nomic reads were aligned to the reference genomes
using Bowtie2, with default MIDAS mapping thresholds:
global alignment, mapping percent identity ≥ 94.0%, se-
quence quality ≥ 20, alignment coverage ≥ 0.75, and
mapping quality ≥ 20. Pileups of each sample were gen-
erated using SAMtools, and the nucleotide variation sta-
tistics were then counted at each genomic site. After
running this script for each sample, we pooled all sam-
ples. Next, we performed core-genome SNP calling using
the “snps” module of the “merge_midas.py” script. The
core-genome SNP matrices were produced to compare
nucleotide variation across genomic sites and metage-
nomic samples of different bee groups. Specifically, bi-
alleles genomic sites present in more than 95% of strains
and with a minimum prevalence frequency of 1% were
identified as core SNPs using the “--core-snps” param-
eter. MIDAS reported the read coverage for each site in
the reference genome for each metagenomic sample
based on the raw alignments. The frequencies of both si-
lent and missense allele per genomic site per sample in
protein-coding genes were used to indicate the strain-
level variation among different individuals as previously
described [36, 37].

16S rRNA high throughput sequencing
The V4 region of the 16S rRNA gene was amplified
(primers 515F and 806R) with barcodes. All PCR reac-
tions were carried out with 15 μL of Phusion® High-
Fidelity PCR Master Mix (New England Biolabs); 0.2 μM
each of forward and reverse primers, and 10 ng template
DNA. PCR products were purified with Qiagen Gel Ex-
traction Kit (Qiagen, Germany). Sequencing libraries
were generated using NEBNext® UltraTM II DNA Li-
brary Prep Kit for Illumina® (New England Biolabs, MA,
USA), and index codes were added. The library quality
was assessed on the Qubit 2.0 Fluorometer (Thermo
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Fisher Scientific, MA, USA). The library was sequenced
on an Illumina Nova6000 platform with 250-bp paired-
end reads, and at least 30,000 sequences were obtained
for each sample. Fastp [38] was used to control the raw
data quality by sliding window (window size = 4 bp,
mean quality = 20). The primers were removed using
Cutadapt software [39] according to the primer informa-
tion at the beginning and end of sequences to obtain
clean reads. Mate-pair merging, OTU picking, chimera
elimination, and taxonomy classification were performed
using Mothur version 1.40.5 following the MiSeq stand-
ard operating procedure [40]. 16S rRNA gene sequences
were clustered into Operational Taxonomic Units
(OTUs) at a similarity cutoff value of 99%. We used a
curated database for bee gut microbiota based on the
SILVA database for the classification [41]. The subse-
quent analysis was based on a normalized OTU table
using the “phyloseq” package [42], and Bray-Curtis di-
versity was calculated with the “vegan” package [43].

Heritability calculations
The heritability of each gut bacteria taxa is defined as the
proportion of total variance due to genetic effects as previ-
ously described [11]. The heritability was calculated using the
additive effect model in HIBLUP V1.3.1 under the Genomic
Best Linear Unbiased Prediction framework (https://hiblup.
github.io). The VCF datasets of OH, YF, AF, SK, O-A, and
O-Y groups were used here. Variants in the host genome
were quality controlled; sites with a minor allele frequency <
0.05 or > 0.95 or failed in the Hardy-Weinberg test at 0.0001
were removed, which results in 2,861,994 informative SNPs
across 102 bee samples, and the average quality value is
49,095. A combination of the HE Regression and Average
Information algorithms was used to obtain an efficient and
robust variance component estimation. Grouping of hives
and kinship among individuals are used as random effects.

Bacterial associations to host genetic variation
We performed GWAS analysis for the relative abundances
of each core bacteria phylotype and SDP using rMVP v1.0.0
with correcting for population structure. We used the SNP
profiles of 102 individuals from OH, YF, AF, SK, O-A, and
O-Y groups of bees from the clear VCF dataset. All sites
were filtered with PLINK software as described above. Gen-
eral Linear Model (GLM) and Mixed Linear Model (MLM)
were used for the host SNP-microbe association tests, and
we used the ‘GEMMA’ method to analyze the variance com-
ponents. The relatedness matrix, measured as the genetic
similarity between individual bees, was used to estimate ran-
dom effects. For all samples, SNPs and the top three PCs
were used as fixed effects in MLM, and the top five PCs were
used in GLM. The p-values were firstly set at 0.05 for each
association test. Then the Benjamini-Hochberg corrected p-
value threshold for all SNPs was used to control false-

positive error rates deriving from multiple testing at the
genome-wide level.

Targeted metabolomics for GABA in bee brains
Brain tissues of individual bees were collected using a dis-
secting microscope (Canon). Individual bee was fixed on
beeswax using two insect needles through the thorax.
After removing the head cuticle, the whole brain was
taken out on the glass slide, placed on top of an ice pack.
The hypopharyngeal glands, salivary glands, three simple
eyes, and two compound eyes were carefully removed.
Brain tissues dissected from mono-colonized bees were
sent to Biotree Biotech Co. Ltd. (Shanghai, China) for tar-
geted metabolomics analysis of GABA. Six brain tissues
from one treatment group were put into one tube and
centrifuged (2400 g × 1 min at 4 °C). A total of 100 μL of
acetonitrile containing 0.1% formic acid and 20 μL of ul-
trapure water were added, and the tubes were vortexed
thoroughly. Tissue cells were sonicated in an ice-water
bath for 30 min, followed by subsiding at − 20 °C for 2 h.
Supernatants were collected after centrifugation (14,000 g
× 10 min at 4 °C). Next, 20 μL of the supernatant was
transferred to a new vial followed by incubation for 30
min after adding 10 μL sodium carbonate solution (100
mM) and 10 μL 2% benzoyl chloride acetonitrile. Then,
1.6 μL internal standard and 20 μL 0.1% formic acid were
added, and the samples were centrifuged (14,000 g × 5
min at 4 °C). A total of 40 μL of the supernatants were
transferred to an auto-sampler vial for downstream
UHPLC-MS/MS analysis. 4-aminobutyric acid (Sigma-Al-
drich) was used for the construction of the calibration
standard curve.
The UHPLC separation was carried out using an ExionLC

System (AB SCIEX; MA, USA), and the samples were ana-
lyzed on the QTRAP 6500 LC-MS/MS system (AB Sciex;
Framingham, MA, USA). Two microliters of samples were
directly injected onto an ACQUITY UPLC HSS T3 column
(100 × 2.1 mm × 1.8 μm; Waters; Milford, Ma, USA). The
column temperature was set at 40 °C, and the auto-sampler
temperature was set at 4 °C. Chromatographic separation
was achieved using a 0.30 ml/min flow rate and a linear gra-
dient of 0 to 2% B within 2 min; 2–98% B in 9 min, followed
by 98% B for 2 min and equilibration for 2 min. Solvent A is
0.1% formic acid, and solvent B is acetonitrile. For all mul-
tiple reaction monitoring (MRM) experiments, 6500 QTrap
acquisition parameters were as follows: 5000 V Ion-spray
voltage, curtain gas setting of 35, and nebulizer gas setting of
60, the temperature at 400 °C. Raw data were analyzed using
Skyline [44].

RNA extraction and brain gene expression
Dissected brains were kept frozen at – 80 °C in RNAlater
(Thermo Fischer; Waltham, MA, USA). Total RNA was ex-
tracted from individual brains using the Quick-RNA
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MiniPrep kit (Zymo Research). RNA degradation and con-
tamination were monitored on 1% agarose gels, and the
purity was checked with the NanoPhotometer spectropho-
tometer (IMPLEN; CA, USA). RNA integrity was assessed
using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100
system (Agilent Technologies, CA, USA).
RNA sequencing libraries were generated using NEB-

Next Ultra RNA Library Prep Kit for Illumina (New
England BioLabs; Ipswich, MA, USA). Index codes were
added to attribute sequences to each sample. The clus-
tering of the index-coded samples was performed on a
cBot Cluster Generation System using TruSeq PE Clus-
ter Kit v3-cBot-HS (Illumina). The library preparations
were then sequenced on an Illumina NovaSeq 6000 plat-
form, and 150-bp paired-end reads were generated. The
sequencing quality of individual samples was assessed
using FastQC v0.11.5 with default parameters. An index
of the bee reference genome (Amel_HAv3.1) was built
using HISAT2 v2.0.5 [45], and the FastQC trimmed
reads were then aligned to the created index using HISA
T2 v2.1.0 with default parameters. StringTie v1.3.3 [46]
was then applied to assemble the obtained alignments in
a BAM format into potential transcripts, using the GTF
file of the honey bee genome downloaded from NCBI as
a reference. Then we merged transcripts from all sam-
ples and examine how the merged transcripts compare
with the reference annotation. The gene and transcript
abundances were estimated using merged transcripts as
reference.
Before differential gene expression, we first transformed

the abundance into raw counts using scripts offered by
StringTie. Count-level data underwent relative log expres-
sion (RLE) to estimate size factor and dispersion, then fit
for each gene with fitType “local,” followed by Wald test
to determine differential gene expression (DGE) between
bees mono-colonized with Bifidobacterium asteroides
strain W8113 and W8111 from “Bifido-1.4” using the R
package DESeq2 v1.22.2 [47]. Analysis of event-level dif-
ferential splicing was performed using rMATS v4.0.2 [48]
based on the newly merged transcripts in StringTie as ref-
erence. An exon-based ratio metric, commonly defined as
percent-spliced-in value, was employed to measure the al-
ternative splicing events. The percent spliced in (PSI)
value is calculated as follows:

ϕ ¼
I
lI

I
lI
þ S

lS

where S and I are the numbers of reads mapped to the
junction supporting skipping and inclusion form, re-
spectively. Effective length l is used for normalization.
The PSI value was calculated for different classes of
alternative splicing events, including skipped exon (SE),
alternative 5′ splice site (A5SS), alternative 3′ splice site

(A3SS), mutually exclusive exons (MXE), and retained
introns (RI). Events with p < 0.05 were considered differ-
entially spliced between the two groups of bees.

Statistical analysis
Wilcoxon test was used to determine the significance of
Bray-Curtis distance or the relative abundance of each
microbiota taxon between each two bee groups, and
Kruskal-Wallis test was used for multi groups. The
threshold for genome-wide significance was corrected
for multiple testing with a weighted Bonferroni adjust-
ment, with adjusted p < 0.05 as significant. GLM and
MLM are implemented for association tests.

Results
Gut communities are more different between genetically
varied honey bees
A. mellifera belonging to four different subspecies, namely
OH, AF, YF, and SK, were sampled. OH is one subspecies
of the European dark bee, and the others are yellow bee
species. They were imported into China in the 1980s and
were then kept in Jilin province for germplasm conserva-
tion. Metagenomic sequencing of gut homogenates from
57 individual bees from the four subspecies was per-
formed, and bees from YK and SK were sampled from
two independent hives each. We processed the whole gut
for shotgun sequencing, thus simultaneously acquiring the
genomic information of the host and microbial commu-
nity. For each sample, 53–127 million pair-end reads (150
bp) were generated. First, to determine the genomic diver-
sity of the hosts, the sequencing reads were mapped to the
honey bee genome assembly (version Amel_HAv3.1). A
total of 33–77% of the reads were mapped to the honey
bee genome, indicating a 13–57× coverage of the honey
bee genome, and 2,255,909 sites were identified as poly-
morphic (Additional file : Figure S2a). An evolutionary
tree of A. mellifera inferred from all single-nucleotide
polymorphism (SNP) demonstrated apparent clustering of
the four groups (Fig. 1a). The OH bees were more dis-
tantly related to the other three subspecies. Likewise, AD-
MIXTURE analysis of genetic co-ancestry also partitioned
the data population into the four defined groups when the
number of populations was set at K = 4 (Fig. 1b, Add-
itional file : Figure S2b). Different subspecies had an aver-
age pairwise FST (allelic fixation index) of 0.08–0.11,
which was consistent with a previous analysis of A. melli-
fera subspecies [49]. These results supported the designa-
tion of subspecies with distinct genetic backgrounds.
We then assessed the composition of the gut commu-

nity using the MIDAS pipeline with a custom database
[36]. To construct a better reference database for the
analyses of strain-level genomic variation, we isolated
116 bacterial strains from the gut homogenates of A.
mellifera, and a new genomic database was generated
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using 405 bacterial genomes from both honey and bum-
ble bee gut isolates (see Methods). For all samples, an
average of 26% of reads was mapped to the bacterial
database. The relative abundances of bacterial phylo-
types and SDP were estimated using MIDAS, which
maps reads to a panel of 15 selected marker genes of the

genomes. Although many reads were mapped to the host
genome, the accumulative curves of the observed SDPs
began to plateau, indicating that the microbial dataset
was adequate for the diversity analyses (Additional file :
Figure S3). Consistent with previous 16S rRNA- and
metagenome-based studies [19, 50], all individual gut

Fig. 1 Gut microbiota compositions differ across genetically varied honey bees. a Neighbor-joining tree constructed from allele-sharing distances
between honey bee subspecies. Nodes with 100% support are marked with dots. The scale bar represents raw genetic distance per variable site.
b ADMIXTURE analysis showing clustering of bee samples into four groups (K = 4). One colony each of OH (n = 29) and AF bees (n = 8), and two
colonies each of YF (n = 10) and SK (n = 10) bees were sampled for the metagenomic analysis. Each bar represents one individual bee. c Relative
abundance of phylotypes in the guts of bee individuals from different subspecies. d Study design for serial transmission of gut microbiota in two
lines of hybrid bees generated by artificial insemination. We sampled guts from three batches of hybrid bees (B1–B3) during the passage and
from the founding workers that initiate the colony (O-A’, O-Y’). e Bray-Curtis distance of the gut communities between bees from different
batches at the OTU-level of 16S rRNA sequences. f Bray-Curtis distance of the gut communities at the SDP level by metagenomic sequencing.
Wilcoxon test was used to compare the average of Bray-Curtis distance between each two bee groups, and a p value < 0.05 indicates statistical
significance. (NS, not significant; ***p < 0.001)
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communities were dominated by the five core bacterial
species. Gilliamella and Lactobacillus Firm5 were the
most abundant members, whereas some AF and OH
bees had a higher fraction of Bartonella (Fig. 1c). Al-
though it was suggested that wintering bees possess
more Bartonella [51], this study was performed in July
2018. All individuals were sampled on exactly Day 15
following the emergence, suggesting it is not a seasonal
or age effect. In addition to the core members, the other
non-core species, including Frischella perrara, Lactoba-
cillus kunkeei, and Commensalibacter spp., were de-
tected in variable amounts. Since the honey bee gut
community had a low complexity at the phylotype level,
the SDP-level profiles of different bee subspecies were
then compared. First, all SDPs from each phylotype co-
occurred in individual bees. While the relative abun-
dance of different phylotypes was not different, the SDP-
level profiles were more variable between individuals
with different genetic backgrounds. For example, al-
though the frequency of Bifidobacterium was not differ-
ent among subspecies of bees, OH and AF had more
strains from the Bifido-1.2 SDP, while Bifido-1.4 was
more abundant in YF and SK bees (Additional file : Fig-
ure S2c). For Gilliamella, Gilli-1 was the predominant
SDP, while Gilli-3 was only present in tiny amounts in
all bees, and the frequencies were not associated with
host genetics. In summary, our results showed that the
gut community compositions of bees with a varied gen-
etic background were different, suggesting that the host
genetic variation is associated with the gut microbiota
profiles.

Host genotype determines the composition of the
passaged gut community
The gut microbiota of honey bees are acquired via social
interactions with other workers but not through a ma-
ternal vertical transmission [52]. Thus, the gut micro-
biota is transmitted in the colony between batches of
siblings from the same queen. To determine if the host
genotype impacts the socially transmitted microbiota, we
started two lines of colonies (three replicate hives each)
headed by OH virgin queens instrumentally inseminated
with semen from single drones of AF or YF (Fig. 1d).
Then colonies were initiated by the inseminated queens,
together with ~300 founding workers (O-A’ and O-Y’)
randomly sampled from one hive without control of host
genetic background, who fed the hybrids at the begin-
ning (O-A and O-Y). Thus, the gut microbiota of the hy-
brids must have been derived from the founding
workers and then transmitted among batches of hybrids
within the colonies. Three different batches of newly
emerged hybrid adults were marked with color paints,
and they were sampled when they were exactly 15 days
old. It is noteworthy that, before the third batch of bees

started to emerge, all initial founding workers had died.
At the end of the experiment (~ 66 days after colony ini-
tiation), the population size of both O-A and O-Y col-
onies and the fresh weight of individual bees were
checked. There were no significant hive variations, so
the genetic background did not alter the colony’s growth
(Additional file : Figure S4a, b).
ADMIXTURE analysis showed that the genetic back-

grounds of the founding workers were genetically differ-
ent from the hybrid bees (Additional file : Figure S4c).
Next, the impact of host genotypes on bacterial commu-
nity transmission was measured by 16S rRNA sequen-
cing of the gut microbiota of the founding bees, together
with the three batches of hybrid workers (B1–B3). By
testing OTU-level Bray-Curtis dissimilarity between ad-
jacent time points for each batch of individuals, it was
found that gut communities of hybrids with more simi-
lar genetic backgrounds (B1/B2 and B2/B3) exhibited
similar features over time (Fig. 1e). However, gut com-
munities of B1 markedly changed from those of the
founding bees of O-A’. While the gut community did
not shift between O-Y and O-Y’ bees at the phylotype
level, we next determine the fractions of all SDPs in the
founding bees and the B3 batch (Additional file : Figure
S4d). Overall, the compositions were much more similar
within B3 than those between B3 and founding workers
at the SDP level (Fig. 1f).
While the relative abundances of most SDPs were not sig-

nificantly different, Bifido-1.2 and Bifido-1.4 were differentially
distributed in the genetically varied hosts (Fig. 2a). Interest-
ingly, Bifido-1.2 was enriched in the O-A’ founding workers,
as compared to O-A. However, it was more abundant in the
B3 of O-Y bees (Fig. 2b). By contrast, Bifido-1.4 was more
abundant in O-A but decreased in O-Y than the founding
workers (Fig. 2c). These strongly suggested that the host gen-
etics showed different selection powers upon the bacterial
SDPs. For Lactobacillus Firm5, all founding workers had a
higher fraction of the Firm5-1 cluster, whereas the B3 bees
harbored more Firm5-4 in the gut (Fig. 2d, e). Altogether, our
results indicated that some SDPs shifted in relative abun-
dances in hosts with differential genetic backgrounds during
transmission, and the host genotype could shape the pattern
of gut microbiota transmission within the colony.

Biased SNP distribution in Type IV pili (T4P) structural
component-coding genes underlying the strain-level
difference in Snodgrassella
It has been shown that strains of the same SDP from the
bee gut are genetically divergent, and the strain-level
profiles can be different among individuals from the
same colony [19]. Unlike other core members, Snodgras-
sella possess only one SDP, and they specialize in colon-
izing the hindgut epithelium, suggesting its relatively
close interactions with the host [53]. To identify if hosts
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Fig. 2 Relative abundance of bacterial species varies between hybrids and founding bees. a Relative abundance profiles of SDPs from Bifidobacterium
and Lactobacillus Firm5 for the founding workers (O-A’, O-Y’) and the B3 batch of individuals (O-A, O-Y). b–e Comparison of the relative abundances of
the SDPs of Bifidobacterium Bifido-1.2 (b) Bifido-1.4 (c), Lactobacillus Firm5-1 (d), and Firm5-4 (e) between the founding workers and the B3 individuals.
Wilcoxon test was used to compare the relative abundance of each microbiota taxon between each two bee groups. (**p < 0.01; ***p < 0.001)
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with different genetic backgrounds have characteristic
strain compositions, we analyzed the differences in gen-
ome SNP distribution of Snodgrassella strains between
the founding workers and the B3 individuals. Herein, the
distribution of the minor allele frequency per genomic
site was used to indicate the strain variations in different
hosts. An examination of the SNP distributions of
protein-coding genes of Snodgrassella revealed 1,547
genes with a valid coverage in 52 bee individuals. Among
these genes, 1436 genes possessing sites with signifi-
cantly differentiated allele frequencies were identified be-
tween the two groups of bees (Mann-Whitney test, p <
0.05). Notably, four genes encoding the T4P harbored
the most differentiated SNP distributions with significant
enrichment of group-biased SNPs between O-A and O-
A’ bees, while the coverage for the O-Y group was not
sufficient for the downstream analysis (Fig. 3a,

Additional file : Dataset S2). Firstly, with the reference
strain of wkB2, we identified 1,017 SNPs in the pilD
(prepilin peptidase), pilF (fimbrial biogenesis protein),
pilT (pilus retraction/twitch motility motor), and pilU
(prepilin peptidase) genes in the genomes of Snodgras-
sella isolates, and there were generally more SNPs (both
missense and silent) in phylogenetically distant strains
(e.g., strains PEB0171 and M0112; Fig. 3b). The heatmap
presented all missense SNP sites with significantly biased dis-
tributions between the O-A and O-A’ groups (Mann-Whit-
ney test, p < 0.05), and the dendrogram based on SNP
frequencies exhibited two different clustering groups, accord-
ing to the host genotype (Fig. 3a). These indicated that (i)
Snodgrassella strains exhibited a markedly different enrich-
ment of SNPs in the T4P genes; (ii) a specific set of strains
were found to be correlated with genetically varied bee hosts.
Genome-wide Tn-seq analysis has documented that the T4P

Fig. 3 SNPs of Type IV pili component genes of Snodgrassella alvi are differentially distributed between the founding workers and the B3 bees in
the colony. a A heatmap showing the minor allele frequency for missense SNPs is significantly different in founding workers (O-A’) and the B3
batch of bees (O-A). Each row represents one bee metagenomic sample, and each column is one site in the T4P genes. The tree on the right
illustrates a dendrogram of clustering (Ward’s method). b Whole-genome phylogenetic tree of isolated Snodgrassella strains using the maximum-
likelihood algorithm based on the concatenation of core protein sequences. The lines aligned to tree leaves represent corresponding gene
sequences with missense (red dots) and silent (grey dot) SNPs
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genes of Snodgrassella are beneficial for gut colonization and
are potential determinants of host specificity [53]. These indi-
cated that the host genotype may have a strong effect on the
strain-level composition of gut bacteria and that the T4P of
bacteria plays vital roles in microbiota-host interactions [54].

GWAS revealed that the relative abundance of
Bifidobacterium is associated with host genetic variants
Since a correlation was observed between the host geno-
type and the gut composition, the heritability of each
taxon was then estimated, and GWAS was performed to
identify which host gene was most associated. Both the
host genotype and gut community composition data of
102 individuals (including 68 pure bees, 34 hybrid bees)
were included in this analysis. The proportions of six
core bacterial phylotypes and 17 SDP-level compositions
were treated as individual traits, and 2,861,994 inform-
ative SNPs spaced throughout the honey bee genome
were included (Additional file : Figure S5a). We used
both a mixed-model algorithm and an interactive usage
of fixed and random effect models to correct the popula-
tion structure for GWAS. According to the simulation
and permutations, the threshold for genome-wide sig-
nificance was corrected for multiple testing with a
weighted Bonferroni adjustment, as previously described
[55]. While most of the associations did not reach the
study-wide significance, the compositions of the Gilli-2
and Bifido-1.4 SDPs were found to be significantly asso-
ciated with the host genotype (Additional file : Figure
S5a). Heritability analysis revealed that both SDPs
showed a relatively higher heritability (Additional file :
Figure S5b).
GWAS using both GLM and MLM revealed that the

SNPs with the strongest association to the relative abun-
dance of the Bifido-1. 4 SDP lies within the gluR-B gene
located on chromosome 13 (p < 0.05; Fig. 4a, b). GluR-B
is a metabotropic glutamate receptor (mGluR) that regu-
lates glutamatergic synapses and is specifically expressed
in the honey bee brain [56]. Close observation showed
that the gluR-B gene was enriched by 112 SNPs highly
associated with the Bifido-1.4 SDP (Fig. 4c). Correspond-
ingly, bee individuals carrying the TC/CC allele have
higher levels of Bifido-1.4 than those carrying the TT al-
lele at the locus with the strongest association (chr13-
7527228; Fig. 4d). In addition, the relative abundance of
Gilli-2 in the gut is correlated with the SNPs from mul-
tiple genes encoding inositol-pentakisphospate 2 kinase,
carboxypeptidase Q, and poly(rC)-binding protein within
chromosome 12 (Additional file : Figure S5a).

Bifidobacterium alters alternative splicing of gluR-B and
elevates the GABA level in the brain
The honey bee mGluR is a G-protein-coupled receptor
(GPCR), which shares sequence similarity with the B-type

gamma-aminobutyric acid (GABAB) receptors, the calcium-
sensing receptors, and some pheromone receptors [57]. The
mGluR and GABA receptors mutually modulate signal
transduction, and its expression is controlled by both glutam-
ate and GABA in the brain [58]. GABA is an inhibitory
neurotransmitter found at high concentrations in the honey
bee brain, which has been implicated in several honey bee
behaviors, including odor coding, learning, and memory, as
well as locomotion control [59, 60]. The altered gut and
hemolymph metabolome have been associated with the
honey bee microbiome; specifically, glutamic acid is enriched
both in the gut and the hemolymph of bees with a normal
gut community [24]. Since the significant association be-
tween GluR-B and the level of gut Bifidobacterium were
identified, whether the concentration of honey bee brain
GABA is affected by the colonization of Bifido-1.4 was next
explored. To control the effect of bacteria colonization, we
colonized MF bees with isolates W8111 from Bifido-1.4 and
another strain W8113 from Bifido-1.2 as the negative control
(Additional file : Figure S6). Targeted metabolomics revealed
that the GABA concentration in brains of bees mono-
colonized (MC) with Bifido-1.4 was significantly higher than
that of Bifido-1.2 colonized bees (Fig. 5a).
Given the evidence that gluR-B is preferentially

expressed in the brains, we investigated whether the
colonization of Bifido-1.4 altered the gene expression
profiles. Although the expression level was not changed
(data not shown), RNA sequencing analysis revealed that
gluR-B exhibited differential patterns of AS events be-
tween MC bees associated with strains of Bifidobacter-
ium (Fig. 5b). Bees colonized with strain W8111 showed
decreased inclusion rates of 5’ alternative start site and
four different retained intron events. These results sug-
gested that the glutamate receptor might be regulated by
GABA in the brain [61]. Moreover, the colonization of
specific gut strains affects AS of brain genes, which regu-
lates the production of isoforms of the mGluR gene.
Since strains from different SDPs of Bifidobacterium

varied in their ability to alter host brain physiology, we
sought to identify gene presence/absence signatures that
may explain the inheritance patterns of different Bifido-
bacterium SDPs. We wonder why strains of the Bifido-
1.4 SDP are preferentially transmitted and hypothesized
that these strains possess specific genes implicated in
their interactions with the host. It has been documented
that Bifidobacterium are the major degraders of diet
hemicellulose, and the abilities of individual strains vary
[34]. Therefore, we searched for genes present in Bifido-
1.4 but absent in the other SDPs of Bifidobacterium. A
total of seven genes that are specific to Bifido-1.4 strains
were identified, and they were located in a single gen-
omic region of the reference genomes (Fig. 5c). This re-
gion contained two carbohydrate-active enzymes
(CAZyme) of GH43-22 and lacG encoding phospho-
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beta-galactosidase, the LacI-family transcriptional regu-
lator araQ helix-turn-helix type transcriptional regulator
degA, and a multiple-sugar transport system permease
yteP. They form a typical structure of the CAZyme gene
cluster, enabling them to specialize in the breakdown of
dietary fiber. To confirm if host genetics are associated
with the functional capacity of the gut bacteria, the read
counts of the GH43-22 gene were compared in bees
showing different alleles (Fig. 5d). Our metagenomic
analysis revealed an enrichment of the glycoside hydro-
lase GH43-22 in the guts of individuals with TC/CC at
the locus chr13-7527228, suggesting that the bee geno-
type is associated with an abundance in polysaccharide-
degrading gut microbes.

Discussion
In the present study, the socially transmitted gut micro-
biota of purebred and hybrid honey bees were used to elu-
cidate the consequences of host genetic divergence in the
composition of symbionts. Our metagenomic analysis
characterizing the microbial structure at different taxo-
nomic levels represents strong evidence that specific gut
members are affected by the host genetic factor during the
transmission. Moreover, bee individuals were genotyped
simultaneously with the characterization of the micro-
biome, allowing for tests of the association between host
SNPs and microbiome traits. Finally, we focused on the
heritable gut member, Bifidobacterium sp. Bifido-1.4 and
its colonization altered the brain neurotransmitter and

Fig. 4 Relative abundance of Bifido-1.4 is associated with host genetic variants. a Genome-wide Manhattan plot: each dot represents the -log of the p
value for the association of the SNP with the relative abundance of Bifido-1.4. The red box highlights the associated locus on chromosome 13
containing the gene gluR-B. The threshold for genome-wide significance was corrected for multiple testing with a weighted Bonferroni adjustment.
The threshold value was set at -log(p) > 2e−8. We used both the General Linear Model (GLM) and Mixed Linear Model (MLM) for the association tests.
b Quantile-quantile plot showing deviation from the expected distribution of p values. The diagonal (red) line represents the expected distribution. c
Close-up plots of ~ 0.4-Mb window around the SNPs with the highest associations. The coloring of each circle is proportional to the significance. The
exon-intron architecture of the gluR-B gene and two neighboring genes (LOC408435, LOC422843) are shown at the bottom. d Relative abundance of
the Bifido-1.4 SDP in bees with different genotypes at the gluR-B-associated SNP (chr13-7527228; p < 0.001, Wilcoxon test)
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gene expression patterns, which might be associated with
a unique PUL-like region in the genome.
It has been well documented that the honey bee gut

microbiota are dominated by limited numbers of bacter-
ial phylotypes, commonly with species from the Gillia-
mella, Snodgrassella, Lactobacillus, Bifidobacterium, and
Bartonella genera. Therefore, it is not surprising that the
variation was not obvious among individuals at the phy-
lotype level (Fig. 1). Although the core gut members
have been observed in bees across studies, even in sam-
ples from different countries, gut microbiota can differ
markedly in diversity across adult bees [17]. Several fac-
tors are influential in the composition of the bee gut
community, such as the regional floral diversity, seasonal
shift, age, and bee caste [27, 62, 63]. Nevertheless, the
environmental factors may contribute to diet preference
and nutritional status, which are the main drivers of
community variance. However, certain studies have also
reported an intercolonial difference among individuals
belonging to the same caste and sampled at the same
age. Specifically, high levels of strain-level diversity exist
within all major phylotypes in the honey bee gut. By tar-
geting protein-coding gene markers of Gilliamella and
Snodgrassella, it was found that strain compositions of

individuals from the same hive can vary dramatically,
and some strains are specific to only one host species
[22, 64]. Such strain-level diversity was also recently ap-
preciated by community-wide shotgun sequencing [20].
Since all studies have focused on colonies naturally
headed by hyperpolyandrous queens, we hypothesized
that both environmental factors and host genetics
shaped the diversity in the bee gut microbiota. Our find-
ings clearly showed that the abundance in both phylo-
types and SDPs was more correlated within bees from
the same subspecies, indicating the host genetic interac-
tions with specific gut members. In humans, compara-
tive analyses revealed that family members have more
similar microbiota, partly due to shared environmental
influences [65, 66]. Although we sampled bees from out-
door hives, we controlled individual age and sampled
simultaneously from multiple colonies reared at the
same apiary to minimize factors other than host genet-
ics. While identical environmental conditions cannot be
guaranteed for these colonies, and the pollen/nectar
sources might change according to the progress of sea-
son (e.g., possibly a bias for flower preference), no bias
in the flower preference of honey bees was identified in
the host genetics [67].

Fig. 5 Bifido-1.4 with a unique PUL-like gene cluster impacts gene expression and GABA concentration in the brain. a Targeted metabolomics
indicates that the GABA concentrations are increased in the brain of Bifido-1.4 (W8111) mono-inoculated honey bees than bees associated with
Bifido-1.2 (W8113). b Differential splicing events of the gluR-B gene in brains of Bifido-1.2 and Bifido-1.4 inoculated bees. Benjamini-Hochberg
corrected p values are shown. c Syntenic loci of the PUL in Bifidobacterium strains from different SDPs. Homologous genes are connected by gray
bars. d Boxplots of the read count for GH43-24 specific to Bifido-1.4 in each genotype at the gluR-B-associated SNP (chr13-7527228)
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In bee colonies, the gut symbiotic bacteria are trans-
mitted between generations of siblings through social
contact. Thus, the core lineages of gut bacteria show
phylogenies matching those of the hosts, highlighting
codiversification along with the evolutionary history of
symbiosis. Mounting evidence has demonstrated codi-
versification via a long-term vertical association in many
animal groups, and host filtering could be a major driver
of “phylosymbiosis” [1]. A considerable shift in commu-
nity composition was found during the transmission in
our microbiota passaging approach in two independent
lines of hybrid bee populations. Notably, the highest di-
vergence was observed between the founding workers
and B1, indicating that host genotype shapes the gut
composition early in passaging. Although it was found
that all SDPs from the core phylotypes can be inherited
by the hybrid bees during the consecutive transmission
within the hive, the effect of the host differed widely on
even closely associated discrete bacterial populations
from the same phylotype. For two SPDs from Lactoba-
cillus Firm5, the host filtering processes were similar in
O-A and O-Y hybrids. By contrast, the relative abun-
dance of Bifidobacterium Bifido-1.2 was decreased in O-
A but increased in O-Y bees (Fig. 2). This shows that
genetically varied hosts permit the colonization of spe-
cific sets of bacteria, strongly suggesting that the effect
of the genotype is driving the microbiota structure.
While we observed a noticeable shift in the gut com-

munity between the founding bees and the first batch of
O-A, the microbiota was not significantly altered during
transmission in O-Y (Fig. 1e). This suggests that the ef-
fects of genetic variance among hosts could be different.
Interestingly, the divergence of host genetics in the O-A
group was lower than that among O-Y hybrids (Add-
itional file : Figure S4c), which might partly explain the
observed filtering process. When the living environ-
ments and microbial populations are controlled, the in-
fluences of host genetics on microbial compositions
have also been detected in other animals and plants [68,
69]. However, the composition of resultant output
microbiota is always determined by the input species
[70]. In our transfer experiment, the output micro-
biomes were compared within two parallel lines with a
nearly identical starting community carried by the same
batch of founding workers; however, they were passaged
in genetically different hosts, allowing us to overcome
the legacy effects.
So far, only one SDP from Snodgrassella alvi was identi-

fied, but a markedly high level of strain diversity was ob-
served based on the proportion of polymorphic sites in
core gene sequences [19]. For bees from the same colony,
it was found that strains can be dominant in one individ-
ual and absent in another [64]. Although the GWAS asso-
ciated host genetic loci to the overall microbiome

divergence (beta-diversity) or the abundances of several
taxa, few studies have focused on the strain composition,
which is primarily due to the markedly high level of diver-
sity at this level. The presence of only one lineage of Snod-
grassella with genetically divergent strains enables the
fine-scale analysis of the effect of the host on strain stabil-
ity. It was found herein that strains are subject to the se-
lection of host genotype, and different strains are enriched
in genetically varied hosts during the social transmission.
This suggests that bees with different genetics have an
elaborate mechanism to ensure specificity of the associ-
ation, which might be achieved by signal recognition and
secretion of antibacterial agents, as found in the symbioses
of microbes and both plants and animals [71, 72]. Interest-
ingly, it was found that the distribution of SNPs in T4P
genes was significantly biased between genetically different
hosts. T4P encodes membrane-associated transporter
complex, which is essential for biofilm formation and cell
adhesion and has been identified as significant for the sur-
vival of pathogenic bacteria in eukaryotic hosts [73]. Snod-
grassella forms a layer attached to the inner gut wall,
which is vital for maintaining the gut microenvironment
[24]. Snodgrassella possesses all core components of T4P
in the genome, which facilitate colonization in vivo [53].
Specifically, the ability of surface biofilm formation of
structural mutant pilF− was significantly reduced, and the
SNP distribution of pilF was found to be affected by the
host genotype. Another major pilin subunit, pilE, which is
beneficial for colonization, is exclusive to strains from the
honey bee, suggesting that T4P is a decisive factor in host
adaptation. T4P are multicomponent transporters for
transferring proteins and DNA into target cells and are
critical for the host specificity of most bacterial pathogens
by mediating the adhesion and invasion processes [74, 75].
Our findings illustrated that T4P might provide selective
advantages for different strains during the transmission in
hosts with various genotypes, specifically for Snodgrassella
colonizing the gut epithelium.
In our dataset, the Bifido-1.4 SDP from Bifidobacter-

ium exhibited the most significant association with the
host gluR-B gene locus and is also a highly heritable
taxon. Bifidobacterium is also heritable in the human
TwinsUK population, the HMP, and mouse models [7,
76–78], implying that Bifidobacterium are a group of
symbionts critical for the physiology or metabolism of a
variety of animal hosts. Indeed, it has been documented
that Bifidobacterium are the principal polysaccharide de-
graders for bees, and not all members of SDPs are cap-
able of digesting hemicellulose in diet pollen. Here,
Bifido-1.4, with a strong signal in the GWAS, is capable
of degrading hemicellulose in vivo and possesses an
abundant repertoire of carbohydrate-active enzymes
[34], highlighting that the diet interaction is fundamental
for the host-gut microbe association. Indeed, in human
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intestines, the correlation between Bifidobacterium and
SNPs near the LCT gene associated with lactase nonper-
sistence has been replicated across several populations
[11]. This is due to the presence of lactose consumed by
lactase nonpersister in the large intestine, which can
stimulate the proliferation of Bifidobacterium [5]. While
the specific strains of Bifidobacterium that are impli-
cated in the association with the host genotype of lactose
nonpersister were not determined in humans, our ana-
lysis specifically illustrated an association between host
genetics and strains with more abundant glycoside
hydrolase genes (GHs) that assist polysaccharide diges-
tion in the bee gut. To characterize the functional sig-
nificance of strain inheritance events, we examined
genes only present in strains of Bifido-1.4 and not in
other SDPs of Bifidobacterium. Bifido-1.2 and Bifido-1.4
both enrich GHs forming PUL-like regions in the gen-
ome, yet only one is different between these two SDPs,
which might provide a selective advantage in
colonization [79].
The sites significantly associated with Bifido-1.4 are

located in gluR-B, which is a member of GPC
mGluRs. Two subtypes of mGluRs have been charac-
terized in honey bees, with only gluR-B expressed at
high levels in the Kenyon cells within the mushroom
body [56]. While they are both glutamate receptors,
their overlapping expression in the brain suggests that
they interact to modulate the glutamatergic neuro-
transmission and respond to different GABA levels
[80], one of the most abundant neurotransmitters in
adult bee brains [81, 82]. Although the host genotype
has not been linked to the GABA concentration in
the brain, altered expression profiles of gluR-B were
observed with a higher level of GABA in the bee
brain (Fig. 5). Taken together, these results point to
an interaction between the Bifidobacterium and host
brain physiology. The causality of the association be-
tween the relative abundance of Bifido-1.4 and the
host brain neurotransmitter was tested experimentally
by gnotobiotic bees. Mono-associated bees with a spe-
cific strain of Bifido-1.4 showed an increased level of
GABA in the brain as compared to those colonized
with Bifido-1.2. Moreover, AS events of gluR-B are af-
fected by the gut microbe, which can regulate the
production of specific isoforms of genes implicated in
host phenotypes. Interestingly, a recent study has
linked the human autism spectrum disorder to the
microbial metabolism of 5-aminovaleric acid, a weak
GABAA receptor agonist [83], which is one of the
most elevated metabolites in gnotobiotic bees with
conventional microbiota [24]. These suggest that
honey bee gut microbiota may regulate host pheno-
types via microbial metabolism, implying a gut-brain
connection that contributes to impaired behaviors

that share common molecular mechanisms with those
of humans [84, 85].
Honey bees, as effective pollinators, are instrumental

in the production of foods all over the world. A recent
decline in the honey bee population has been a major
threat to the balance of the global ecosystem. It has been
shown that host genetic variation drives the honey bee
phenotype, particularly the host nutritional status, col-
ony health, and productivity [86–88]. Our data illus-
trated that the host genotype influences the socially
transmitted gut microbiota assembled at emergence.
Given the evidence that bee gut microbiota are largely
involved in host health, the present study underscored
that honey bee genes might influence health directly or
by developing a beneficial microbiota. Honey bees have
long been regarded as a model organism for biology
studies, such as social behavior, recognition, genetics,
and host-microbiota symbiosis [23, 89, 90]. Further iden-
tification of host alleles as shaping forces of microbial
structure will advance our understanding of the host-
microbe interactions.

Conclusions
Gut microbiota affect host health and can be regulated
by host genetics. We show that the gut structures are
different among genetically varied bee subspecies, and
the compositions dramatically shift during the social
transmission among founding workers and hybrid bees.
Host genotype has a strong effect on the strain-level
composition of Snodgrassella, and the bacterial Type IV
pili may play an important role in microbiota-host inter-
actions. Furthermore, we identified that the host gluR-B
gene is associated with the abundance of Bifidobacter-
ium. Mono-colonization of Bifidobacterium strains with
a specific gene suite for polysaccharide degradation can
modulate the GABA level and alternative splicing of the
host genes in the brain. This work highlights the mecha-
nisms implicated in the host-microbiota cross-talk for
honey bees.
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