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Abstract

Background: The relationship between host conditions and microbiome profiles, typically characterized by
operational taxonomic units (OTUs), contains important information about the microbial role in human health.
Traditional association testing frameworks are challenged by the high dimensionality and sparsity of typical
microbiome profiles. Phylogenetic information is often incorporated to address these challenges with the assumption
that evolutionarily similar taxa tend to behave similarly. However, this assumption may not always be valid due to the
complex effects of microbes, and phylogenetic information should be incorporated in a data-supervised fashion.

Results: In this work, we propose a local collapsing test called phylogeny-guided microbiome OTU-specific
association test (POST). In POST, whether or not to borrow information and how much information to borrow from
the neighboring OTUs in the phylogenetic tree are supervised by phylogenetic distance and the outcome-OTU
association. POST is constructed under the kernel machine framework to accommodate complex OTU effects and
extends kernel machine microbiome tests from community level to OTU level. Using simulation studies, we show that
when the phylogenetic tree is informative, POST has better performance than existing OTU-level association tests.
When the phylogenetic tree is not informative, POST achieves similar performance as existing methods. Finally, in real
data applications on bacterial vaginosis and on preterm birth, we find that POST can identify similar or more
outcome-associated OTUs that are of biological relevance compared to existing methods.

Conclusions: Using POST, we show that adaptively leveraging the phylogenetic information can enhance the
selection performance of associated microbiome features by improving the overall true-positive and false-positive
detection. We developed a user friendly R package POSTm which is freely available on CRAN (https://CRAN.R-project.
org/package=POSTm).
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Background
The human microbiome is the collection of microorgan-
isms residing in the human body and has been defini-
tively shown to impact human disease and health [1].
Multiple resources are now available that enable the
characterization of microbial communities in the human
body and further our understanding of how the human
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microbiota affect clinical outcomes of the host, e.g., the
Human Microbiome Project [2] and Integrative Human
Microbiome Project [3]. One common strategy to deter-
mine microbial compositions is marker gene sequencing,
which amplifies and sequences a fingerprint gene (e.g., 16S
rRNA gene) that carries species-specific identifiers. The
generated sequencing reads can be either clustered into
operational taxonomic units (OTUs) based on sequence
similarity [4] or denoised into amplicon sequence variants
(ASVs) with exact sequences [5]. For simplicity, hereafter,
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we use “OTU” as a general reference to a taxonomic unit
when discussing the overall concepts. We will explicitly
distinguish OTU and ASV when the two terms need to be
discerned, such as in the real data analysis.
Comparison of OTU profiles with respect to differential

conditions or clinical outcomes lends important knowl-
edge towards understanding the microbial roles in affect-
ing health [1, 6], and distance-based approaches are widely
adopted to evaluate such association at the community
level [7–11]. It is also of interest to identify specific OTUs
or organisms as biomarkers that drive the global associa-
tion, which can provide crucial insights into the microbial
functions and mechanisms in diseases. For example, the
correlation between Lactobacillus crispatus abundance
and host vaginal cytokine IP-10/CXCL10 levels may help
to explain the induction of preterm birth [12].
OTU-level analysis can be challenging due to sparse

OTU counts, low OTU abundance, and high OTU dimen-
sionality. Multiple studies have shown that incorporating
phylogenetic structure among OTUs can increase the
detecting power or predictive accuracy of a microbiome
analysis because phylogenetically related species or OTUs
are expected to impact or respond to environmental dis-
turbances in a similar way [13]. For example, Xiao et al.
[14] introduced a false discovery rate (FDR) control proce-
dure, TreeFDR, that uses the phylogenetic tree to specify
the prior correlation among the p-values of individual
OTUs. TreeFDR is more powerful than the classic FDR
controlling methods (e.g., the Benjamini-Hochberg (BH)
FDR method) as well as those that incorporate grouping
structure [15, 16]. Xiao et al. [17] introduced a predic-
tive method, glmmTree, based on a generalized linear
mixed model that encourages the nearby OTUs in the
phylogenetic tree to share similar effects and showed that
glmmTree improves prediction performance, especially
when associated OTUs are clustered on the tree. Kim et al.
[18] introduced a genus-level collapsing association test,
TMAT, that first assesses the association for each OTU
within a genus and then uses the minimum OTU p-value
to determine the genus significance.
However, it has been noted that inappropriate incor-

poration of phylogenetic information can degrade testing
performance when phylogeny is not informative of associ-
ation patterns among OTUs [19]. Furthermore, evolution-
arily close OTUs can act differently and even in opposite
ways. For example, two close species in Lactobacillus
genus, i.e., Lactobacillus iners and Lactobacillus crispa-
tus, exhibit opposite associations with preterm birth—
Lactobacillus crispatus dominance was negatively associ-
ated with preterm birth while Lactobacillus iners domi-
nance was positively associated with preterm birth [20].
To address these challenges in the incorporation of phy-

logenetic information, we propose the phylogeny-guided
microbiome OTU-specific association test (POST), which

boosts the detecting power of the target OTU by adap-
tively borrowing information from its phylogenetically
close OTUs. Whether or not to borrow information
and how much information to borrow from the neigh-
boring OTUs are supervised by phylogenetic distance
and the outcome-OTU association. POST is built on a
kernel machine regression framework, which can flex-
ibly accommodate complex microbiome effects, easily
adjust for covariates, and be applicable to continuous
and binary outcomes. Compared to existing phylogeny-
informed single-OTU methods, POST can better handle
sparse OTU data and allow information collapsing from
OTUs of opposite effects because kernel methods collapse
OTU information at similarity/kernel level instead of at
the level of p-values or abundance counts. POST extends
the current community-level kernel tests [10, 11, 21] to
OTU-level test. Finally, POST is computationally efficient
for OTU-wide analysis as its p-value can be analytically
obtained. Through extensive numerical studies, we show
that POST has favorable performance in identifying asso-
ciated OTUs over existing methods in simulations and
real data applications, including detecting the association
of vaginal microbiome with bacterial vaginosis and with
preterm birth.

Methods
Suppose that for subject i, i = 1, · · · , n, we observe the
outcome value yi, which can be continuous or binary;
the vector of p covariates xi = (xi1, · · · , xip)�, and the
abundance vector of M OTUs zi = (zi1, · · · , ziM)�, after
sequence processing. In matrix presentation, we have the
n × M matrix of OTU abundance Z = (z1, z2, . . . , zn)�,
the n × p covariate matrix X = (x1, x2, · · · , xn)�, and the
outcome vector y = (y1, y2, · · · , yn)�.
POST uses a kernel machine regression [10, 22] to

model the relationship between OTUm and the outcome
variable:

g(μ) = Xγ + hm(Z), (1)

where μ = E(y|X,Z), the conditional expectation of y
given the microbiome and covariate information; g(·) is
the link function, which can be set to be the identity func-
tion for continuous outcomes and the logistic function for
binary outcomes; γ is the p× 1 vector of covariate regres-
sion coefficients; hm(·) is a smooth function in a repro-
ducing kernel Hilbert space generated by a kernel function
km(zi, zj). Function hm(·) characterizes the effect of OTU
m and can be specified by km(zi, zj) using the dual repre-
sentation of a function in kernel methods, i.e., hm(zi) =∑n

j=1 αm
j km(zi, zj) with αm

1 , · · · ,αm
n the unknown param-

eters. The association between OTU m and the outcome
can be evaluated by testing H0 : hm(Z) = 0.
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In POST, instead of using a global kernel as in the
community-level test, we propose an OTU-specific ker-
nel function km(·, ·) for OTU m to permit the local OTU
test to borrow information from its neighboring OTUs in
the phylogenetic tree. Figure 1 describes the key steps of
POST: (1) to quantify the pairwise OTU correlation based
on their phylogenetic relationship, (2) to compute the sub-
ject kernel matrix Km for OTU m using OTU abundance
and OTU correlation data, and (3) to evaluate the asso-
ciation of OTU m with the outcome variable using the
local kernel test that seeks for the optimal amount of infor-
mation borrowing. The detail of each step is described
below.

Step 1: Quantifying OTU phylogenetic correlation
The first step of POST is to compute the OTU corre-
lation matrix based on the phylogenetic relationship. To
do so, we start with constructing the phylogenetic tree
withM tips based on the sequences of theM OTUs using
FastTree2 [23]. We then quantify the pairwise distance
between OTUs � and m (denoted by d�m) by taking the
sum of branch lengths fromOTU � to OTUm through the
first common node in the tree, which can be done using
the R function “cophenetic.” Finally, we convert the dis-
tance to correlation (denoted by r�m) using the Gaussian

function, i.e., r�m = exp
{

−d2�m
c×s

}

, where s is the stan-

dard deviation (SD) of d�m’s, �,m ∈ {1, · · · ,M};, and c is
a positive data-adaptive parameter that controls how fast
the OTU correlation decreases when the between-OTU
distance increases. Parameter c is measured on the unit
of distance SD so as to be scale-free and robust to trees

generated from different tools (e.g., FastTree2, hclust). As
detailed in step 2, neighboring OTUs with non-zero r�m,
� �= m will contribute in the association test of OTU m,
and r�m controls the amount of information contributed
from OTU � into the test via c. We illustrate in Fig. 2 a
typical relationship between c and r�m using the dataset
of Charlson et al. [24] considered in the simulation study.
Without loss of generality, we focus on OTU3438 and its
16 neighboring OTUs in the phylogenetic tree (Fig. 2A)
and show the values of r�,3438 for the neighboring OTU
� under different c’s in Fig. 2B. We see that smaller c
(e.g., c = 0.02) yields a more rapid correlation decay with
increasing distance, and consequently, OTU m can bor-
row a non-negligible amount of information only from
a few OTUs. In contrast, larger c (e.g., c = 0.08) yields
a slower correlation decay with increasing distance and
defines a larger “neighborhood” of OTU m from which
OTU m may borrow information. When c = 0, rmm = 1
and r�m = 0 for all � �= m, and the local association test
becomes a strict single OTU test because only informa-
tion of target OTUm is used (e.g., Fig. 2B, panel of c = 0).
When c = ∞, r�m = 1 for all �, and the local association
test becomes a global, community-level test because all
OTUs contribute equally into the test (e.g., Fig. 2B, panel
of c = 100).
When conducting POST association test in step 3, we

use data to determine the optimal c value. Specifically, we
compute the p-values for a grid of c between 0 and cmax
and use the Cauchy combination (CC) method [25, 26] to
aggregate the p-values of different c’s. As detailed in the
simulation studies, we set the cmax = 0.05 to ensure infor-
mation sharing is limited within a small, concentrated

Fig. 1 Overview of phylogeny-guided microbiome OTU-specific association test (POST)
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Fig. 2 A Phylogenetic relationship between the target OTU (OTU3438) and its neighboring OTUs. B OTU phylogenetic correlation r�m under
different values of the tuning parameter c, illustrated by settingm = OTU3438 as the target OTU. The x-axis is the OTUs shown in the same order as
the tree tips. The y-axis is r�m , the correlation between OTU3438 and the remaining OTUs

neighborhood of the target OTU. The adaptively deter-
mined c also ensures that only informative neighbors will
make contributions to the target OTU.

Step 2: Computing subject kernel similarity
In kernel machine regression (1), one crucial component
is to specify the local kernel function km(zi, zj), which
consequently determines the OTU effects, i.e., hm(Zi) =∑n

j=1 αm
j km(zi, zj). Several kernel choices are available for

microbiome compositions in community-level tests [10,
22]. The key is to start with a distance metric to quantify
the pairwise abundance dissimilarities, store them in the
n × n abundance dissimilarity matrix A, and then trans-
form A to the kernel similarity matrix K using Gower’s
matrix, i.e., K = − 1

2

(
I − 11�

n

)
A2

(
I − 11�

n

)
, where A2 is

the element-wise square ofA, I is the n×n identity matrix,
and 1 is a vector of ones with length n [22]. For POST,
we propose to construct a local, OTU-specific kernel Km

so that only local information around the target OTU is
used. First, obtain the local dissimilarity matrix Am by
incorporating r�m into the original dissimilarity matrix A.
Next, perform Gower’s transformation on Am to obtain
Km ≡ {

km(zi, zj)
} = − 1

2

(
I − 11�

n

)
(Am)2

(
I − 11�

n

)
.

Although such local kernel construction can be applied
on arbitrary distance metrics, in POST, we choose to
use the Aitchison distance, a non-phylogenetic distance
measure accounting for the compositional nature of abun-
dance data, to avoid the potential overuse of phylogenetic
information. Aitchison distance is the Euclidean distance
of centered log-ratio (CLR) transformed abundance data,
and the “local” Aitchison distance for OTU m between
subjects i and j can be obtained by:

Am
ij =

√
√
√
√

M∑

�=1
r�m × (z∗i� − z∗j�)2, (2)

where z∗i� = log
[

zi�
G(zi)

]
, i.e., the CLR transformation of

the original abundance count zi� for OTU �, and G(zi) =
M√zi1 · · · ziM is the geometric mean of OTU abundance for
subject i. A pseudo-count 0.5 is added to the OTU counts
table before doing CLR transformation. If proportion data
is used, a pseudo-proportion 1e−6 can be added to the
proportion table [27].

Step 3: Performing OTU-specific association test
The association of OTU m can be detected by testing
for H0 : hm(Z) = 0 in model (1). Such a test can be
constructed through the connection of kernel machine
regression and generalized linear mixed models (GLMM)
[28, 29]. That is, hm(Z) can be viewed as subject-specific
random effects with hm(Z) ∼ N(0, τKm), and then test-
ing for H0 : hm(Z) = 0 is equivalent to the variance
component test of H0 : τ = 0. Under the GLMM frame-
work, a variance component score test can be obtained as
Tm,c = 1

2φ̂

(
y − μ̂0

)� Km (
y − μ̂0

)
, where μ̂0 = g−1 (

Xγ̂
)

with γ̂ the estimated covariate coefficient under the null
model: g(μ) = Xγ , and φ̂ is the estimator of the dis-
persion parameter under H0. For continuous outcome,
μ̂0 = Xγ̂ and φ̂ equals to the estimated residual vari-
ance under H0. For binary outcome, φ = 1 and μ̂0 =
exp

{
Xγ̂

}
/
(
1 + exp

{
Xγ̂

})
. With a fixed c, Tm,c asymp-

totically follows a weighted mixtures of χ2
(1) distribution

under H0, based on which the p-value, denoted by pm,c,
can be computed. Because the sample size tends to be
moderate in microbiome studies, we use the small-sample
distribution derived in Chen et al. [30] to compute pm,c.
Finally, as the optimal c is unknown in reality, in POST,
we consider a grid of c ∈ {c1, · · · , cJ }, use the CC method
[25, 26] to combine the transformed p-values of differ-
ent c’s by computing Tm = ∑J

j=1 tan
{(
0.5 − pm,cj

)
π

}
,

and obtain the p-value of Tm (denoted by pm) by pm =
1
2 − {arctan(Tm/J)}/π . The CC method behaves like the
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minimum p-value method as Tm is dominated by the
smallest p-values; yet, the CC method becomes a compu-
tationally fast alternative to the minimum p-value method
because the p-value of Tm can be analytically obtained
from a Cauchy distribution, even with correlated p-values
[25, 26].

Simulation study
We conducted simulation studies to evaluate the per-
formance of POST in identifying outcome-associated
OTUs. We generated OTU data based on the real dataset
from the upper respiratory tract microbiome study [24],
obtained from the R package GuniFrac [7]. The dataset
consists of 856 OTU data from 60 subjects (from R object
“throat.otu.tab”) and the OTU phylogenetic tree (from R
object “throat.tree” constructed using FastTree [7]). We
considered 2 different simulation settings (simulations A
and B); for each simulation, we simulated OTU counts
for n = 100 individuals following Chen and Li [22] and
focused on theM = 400most abundant OTUs in the orig-
inal data. We modeled the observed OTU counts using
the Dirichlet-multinomial distribution with parameters
(π1, · · · ,πM, θ), where π�’s are the means of the OTU-
proportions and θ is the over-dispersion parameter [31,
32], and obtained their maximum likelihood estimates
(π̂1, · · · , π̂M, θ̂ ). Next, we generated the OTU abundance
proportions (p1, · · · , pM) from Dirichlet (π̂1, · · · , π̂M, θ̂ );
we also generated the total counts of individual i, Ni, from
a negative binomial distribution with mean 10,000 and
size 25. Finally, we generated the OTU counts of individ-
ual i (zi1, · · · , ziM) from multinomial (Ni, p1, · · · , pM); the
OTU count matrix Z comprises the resulting simulated
counts.

Simulation A
In simulation A, we adopted the simulation design of Xiao
et al. and considered a case-control study with 50 cases
(i.e., yi = 1) and 50 controls (i.e., yi = 0). Specifically, we
used the R package pam to partition the 400 OTUs into 20
clusters based on the phylogenetic tree and selected causal
OTUs from the 8 most abundant clusters. Given Z with
M = 400 and n = 100, we then multiplied the counts of
cases with a fold change vector [ exp(β1), · · · , exp(β400)],
where βm is the effect size of OTU m generated from
normal(ν, 1) if OTUm is causal and 0 otherwise. We con-
sidered |ν| to be 1 (small effect size) or 2 (large effect
size).
We consider five scenarios for causal OTUs as illus-

trated in Fig. 3. Scenarios 1–3 consider the same set of
causal OTUs, which form multiple “causal OTU hubs” in
the phylogenetic tree, with 1 causal hub from each of the
top 8 abundant clusters and 7–10 causal OTUs per causal
hub. In scenario 1, βm’s are generated from N(ν, 1) for
all causal OTUs. In scenario 2, βm ∼ N(ν, 1) for half of

the causal hubs and βm ∼ N(−ν, 1) for the other half
of the causal hubs. In scenario 3, a random half of the
causal OTUs have their βm’s generated from N(ν, 1), and
the remaining half have their βm’s from N(−ν, 1); con-
sequently, a causal hub may contain a fair number of
positive-effect and negative-effect causal OTUs. Scenario
4 considers the case of smaller causal hubs with 2–3 causal
OTUs per hub (i.e., less-informative trees): a random half
of the causal hubs with βm ∼ N(ν, 1) and the other half
causal hubs with βm ∼ N(−ν, 1). Scenario 5 considers
the case where causal OTUs are randomly chosen from
the entire phylogenetic tree (i.e., non-informative trees),
where a random half of the causal OTUs have βm ∼
N(ν, 1) and the other half OTUs have βm ∼ N(−ν, 1).

Simulation B
In simulation B, we considered both continuous and
binary outcomes and adopted the simulation design of
Zhao et al. [10] and Koh et al. [11]. Given the simulated
OTU counts Z = {zim} and the same set of causal OTUs
as simulation A, we generated the outcome value of indi-
vidual i by yi ∼ N(ηi, 1) for continuous outcomes and
yi ∼ Bernoulli(�i) with �i = exp(ηi)

1+exp(ηi) for binary out-
comes. Value ηi = 0.5ω × (scale(x1i) + scale(x2i)) +∑M

m=1 βm×scale(zim), where x1i and x2i are covariates; zim
is the count of causal OTU m for subject i; and ω = 1 or
0 is a parameter controlling if there are covariate effects.
The “scale” function is to standardize the variable to mean
0 and standard deviation 1. Variable x1i is simulated from
Bernoulli(0.5) and is independent of the OTU counts,
while variable x2i is correlated with causal OTUs by let-
ting x2i ∼ N(δi, 1) with δi = scale(

∑
m∈causal OTUs zim).

For non-causal OTUs, βm = 0; for causal OTUs, βm ∼
normal(ν, ν/5) or normal(−ν, ν/5) dependent on the sce-
nario. We considered |ν| to be 0.2 (small effect size) and
0.5 (large effect size) for continuous outcomes and to be
0.3 (small effect size) and 1 (large effect size) for binary
outcomes. In each setting, we considered ω = 0 (no
covariate effects) and ω = 1 (with covariate effects).

Determining appropriate cmax

To determine the appropriate cmax for POST, we con-
ducted 100 replications under each of the 5 causal sce-
narios in simulations A and B and used the decision rule
that an OTU is selected as important if p-value < 0.05
and as not important otherwise. Using this decision rule,
we report the true-positive rate (TPR), false-positive rate
(FPR) and a composite measure by taking the harmonic
mean of TPR and (1-FPR), which is referred to as the
pseudo-F score. The TPR was obtained by first comput-
ing the fraction of detected causal OTUs among all causal
OTUs in each replication and then averaging across the
100 replications; the FPR was obtained by first computing
the fraction of detected non-causal OTUs among all non-
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Fig. 3 Illustration of the five causal OTU scenarios considered in the simulation. Scenarios 1 to 3 consider larger “causal hubs,” each containing about
7–10 causal OTUs; scenario 4 considers smaller causal hubs of 2–3 causal OTUs; scenario 5 considers causal OTUs with random positions in the
phylogenetic tree. Red (blue) circles indicate that causal effect size tends to be positive (negative)

causal OTUs in each replication and then averaging across
the 100 replications; and the pseudo-F was obtained by
taking the harmonic mean of the TPR and 1−FPR in each
replication and then averaging across the 100 replications.

Performance assessment
To examine the validity of POST, we set βm = 0 for all
OTUs and report the type I error rates and the quantile-
quantile (Q-Q) plots of the null p-values based on 4000
replications under simulations A and B. To examine the
performance of selecting causal OTUs, we report the
area under the receiver operating characteristic (ROC)
curves (AUC in short) based on the 100 replications under
each simulation setting from the 5 causal scenarios. AUC
can assess the performance over various selection thresh-
olds and account for both TPR and FPR. The AUC was
obtained as follows. (1) In each replication, we computed
the FDR-adjusted p-values of a method, based on which

we then computed the FPR and TPR at varying signifi-
cance thresholds. (2)We took the average FPR and average
TPR across the 100 replications at each of the significant
thresholds. (3) We constructed the ROC curve using the
average FPRs and TPRs and computed the corresponding
AUC. We used the two-stage BH (TSBH) FDR proce-
dure [33] to compute the FDR-adjusted p-values for all
methods except for TF, which directly gives FDR-adjust
p-values. TSBH has been shown to yield good perfor-
mance for correlated p-values [34] and is implemented in
R function “mt.rawp2adjp” of R packagemulttest.
We compare POST with 7 baseline approaches: (1)

TreeFDR (TF) of Xiao et al. [14] as implemented by
the function “MicrobiomeSeqTreeFDR” in R package
StructFDR; (2) single-OTU test (SO), by setting c = 0
in POST; (3) DESeq2 (DE) of Love et al. [35] as imple-
mented by the function “DESeq” with the default Wald
test in the R package DeSeq2; (4) ANCOM-BC (AB) of
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Lin et al. [36] as implemented by the function “ancombc”
in the R package ANCOMBC; (5) LinDA (LD) of Zhou
et al. [37] as implemented in the function “linda” in R
package LinDA; and (6) Wilcoxon rank-sum test on the
proportional data (WR-P) and on the CLR transformed
data (WR-R) as implemented in the function “wilcox.test.”
TheWilcoxon test is only appropriate for binary outcomes
with no covariate effects. We also consider (7) Spear-
man correlation test on proportional data (SC-P) and on
the CLR transformed data (SC-R) as implemented by the
function “cor.test” of the stats R package. The Spearman
test is only appropriate for continuous outcomes with no
covariate effects. Among these methods, POST and TF
incorporate phylogenetic tree information. POST, SO, LD,
WR-R, and SC-R use the CLR transformation to address
the compositional nature of microbiome data.

Results
Simulation results
Appropriate cmax

To identify the appropriate value of cmax, the upper bound
of c, we examined the trajectory of pseudo-F (Additional
file 1: Fig. S1) over different values of cmax, ranging from
0 (which corresponds to zero OTU neighbors) and 0.1
(which corresponds to a relatively large number of OTU
neighbors) as shown in Fig. 2. An ideal cmax should per-
mit information borrowing only from OTUs within a
localized neighborhood in the phylogenetic tree. In addi-
tion, because incorporating too much information from
irrelevant phylogenetic neighboring OTUs would lead to
undesirable TPRs and FPRs, the ideal cmax is expected to
occur at some turning point with which the increment
of pseudo-F trajectory stops or slows down. Factoring in
these two criteria, we found that cmax = 0.05 appears to
offer a robust choice across the different scenarios in sim-
ulations A and B and implemented POST with cmax =
0.05 hereafter.

Validity of POST
We checked the behavior of POST under the global null
hypothesis of no causal OTUs. Table 1 shows that the type
I error rate is appropriately controlled at nominal levels
of 0.05, 0.01, and 0.001. Additional file 2: Fig. S2 shows
the corresponding Q-Q plots of POST p-values, where the
observed POST p-values agree with the expected p-values
from Uniform (0,1), confirming the validity of POST.

Table 1 Type I error rates at the significance levels of 0.05, 0.01,
and 0.001 for POST

Simulation Outcome a = 0.05 a = 0.01 a = 0.001 a = 0.0001

A Binary 0.047 0.007 0.0006 0.00005

B Continuous 0.051 0.010 0.0010 0.00008

Binary 0.047 0.008 0.0006 0.00007

Selection performance
Next, we examined the relative performance of POST
against the baseline methods using AUC (Table 2 for sim-
ulations A and B without covariate effects; Additional
file 3: Table S1 for simulation B with covariate effects). In
simulation A, we observe that POST and TF have larger
AUC than those methods that do not use tree information
when causal OTUs are clustered in large hubs (scenarios
1–3) or small hubs (scenario 4) (Table 2; Fig. 4). Fur-
thermore, POST has larger AUC than TF, suggesting that
POST can further boost power through adaptive informa-
tion collapsing from evolutionarily close OTUs at the level
of OTU abundances, compared to TF, which collapses
information at the level of OTU p-values. The superior
performance of POST is consistently observed regardless
of whether the effects of nearby causal OTUs are in the
same direction (scenarios 1 and 2) or opposite directions
(scenarios 3 and 4), and whether the effect sizes are large
or small. In scenario 5, where causal OTUs are randomly
distributed in the phylogenetic tree, POST performed
comparably to the best-performing methods. Among the
non-tree based methods, SO, DE, AB, and LD had simi-
lar AUCs and are better than the Wilcoxon rank-sum test.
TheWilcoxon rank-sum test using proportional data have
slightly higher AUC than using CLR transformed data.
In simulation B, POST has the largest AUC or simi-

lar AUC to the best-performing method in all scenarios,
regardless of the effect sizes, without covariates (Table 2)
or with covariates (Additional File 3: Table S1). DE, AB,
and LD had similar AUCs and can perform the best even
in some of scenarios 1–4 although they did not incor-
porate tree information. We also observe that TF has an
AUC around 0.5 in most scenarios. A closer examina-
tion suggests that this may be because the signal strengths
in simulation B are much smaller than those in simula-
tion A, based on the way that the data were simulated.
Consequently, TF yields many large, tied FDR adjusted p-
values in simulation B, while other methods yield fewer
tied adjusted p-values with relatively smaller values than
those of TF.
In summary, across different simulation scenarios,

POST has better or comparable performance compared
to the baseline methods. POST tends to have the largest
AUC among all methods (e.g., in scenarios 1–4 of infor-
mative trees); if not (e.g., in scenario 5 of non-informative
trees), POST has its AUC comparable to the top methods,
which can either be TF, SO, DE, AB or LD, depending on
simulation settings.

Real data analysis
We applied POST to two microbiome datasets, both at
the level of OTUs formed at ≤ 3% dissimilarity and at
the level of ASVs.We present the OTU-level results below
and the ASV-level results in Additional file 7: Section S1.
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Fig. 4 ROC curves of simulation A with large OTU effect size (top row) and small OTU effect size (bottom row) for POST, Single-OTU test (SO),
TreeFDR (TF), DESeq2 (DE), ANCOM-BC (AB), LinDA (DA), and Wilcoxon rank-sum test (WR) under the 5 causal scenarios. Scenarios 1 to 3 consider
larger “causal hubs,” each containing about 7–10 causal OTUs; scenario 4 considers smaller causal hubs of 2–3 causal OTUs; scenario 5 considers
causal OTUs with random positions in the phylogenetic tree

In all analyses, we considered TF, SO, AB, LD, WR-P, and
WR-R as baselines. We included race as a covariate except
for WR-based methods. We used the TSBH procedure
[33] to compute the FDR-adjusted p-values except for
TF, which outputted its own FDR-adjusted p-values. We
selected important OTUs/ASVs using the decision rule of
FDR-adjusted p-values < 0.05.

Association study of vaginal microbiome and bacterial
vaginosis
Bacterial vaginosis (BV) is a type of vaginal inflamma-
tion and is characterized by low levels of lactobacilli and
overgrowth of various anaerobic bacteria [38]. BV is most
often diagnosed using the Amsel criteria or microscopy-
based Nugent scoring [39] but with limited accuracy [40].
High-throughput sequencing technologies such as 16S
rRNA amplicon sequencing have been used to study the
species diversity of vaginal microbiota and have shown
promise as an alternative assessment of BV for practical
and accurate diagnosis [41–43].
We conducted an OTU-specific analysis using the 16S

rRNA gene sequencing dataset of vaginal microbiome
from [43] to evaluate the association between BV and the
normal vaginal microbiome. The dataset consists 39 indi-
viduals, and the sequencing data and metadata are pub-
licly available at NCBI SRA database (PRJNA600021). Ini-
tial processing leads to the abundance data of 2711 OTUs
formed at 97% similarity. We employed FastTree2 [23]
to infer the phylogenetic tree using the OTU sequences.
Finally, we filtered out OTUs with abundance < 0.005%

and prevalence < 10% and analyzed the resulting 186
OTUs of 39 individuals for BV association studies.
The Upset plot (Fig. 5A) shows that POST, TF, SO, DE,

AB, LD, WR-P, and WR-R identified 7, 2, 1, 5, 1, 1, 3, and
1 significant OTUs, respectively. Table 3 lists the OTUs
detected by each method and their mapped genus/species
with 100% sequence identity among vaginal microbiome.
We organized our findings as follows. (i) Among the 7
POST-detected OTUs, OTU3 (mapped to Lactobacillus
crispatus) is also identified by SO, DE, AB, LD, and WR-
R. Depletion of Lactobacillus crispatus has been shown to
be highly associated with BV [44]. POST also identifies
6 additional OTUs as important (among which OTU66
is also identified by DE); these OTUs are all mapped
to Lactobacillus species, including Lactobacillus jensen-
nii, Lactobacillus gasseri, and Lactobacillus iners. These
vaginal Lactobacillus species have been shown to have
different abundances in women with vs. without BV [44]
and play important roles in ithe vaginal ecosystem [45].
(ii) TF identified 2 OTUs, i.e., OTU112 (mapped to Pep-
toniphilus sp. and also identified by WR-P) and OTU85
(mapped to Gemella sp.); these genera have also been
detected in BV cases [46, 47]. (iii) Besides the OTUs dis-
cussed above, DE and/orWR-P also identify 4 other OTUs
(i.e., OTU11, OTU12, OTU16, and OTU91), which are all
mapped to genus Prevotella, and OTU16 (Prevotella tim-
onensis) has been found to be associated with BV [48].
(iv) It seems that POST, SO, LD, and WR-R (i.e., methods
based on CLR-transformed data) miss some of the OTUs
identified by TF, DE, and WR-P (i.e., methods based on
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Fig. 5 Upset plot of detected OTUs at FDR level of 0.05 and phylogenetic trees of the analyzed OTUs with detected OTUs for bacterial vaginosis
study. SO, single-OTU test implemented by POST with c = 0; TF, TreeFDR; DE, DESeq2; AB, ANCOM-BC; LD, LinDA; WR-P, Wilcoxon rank-sum test
using proportional data; WR-R, Wilcoxon rank-sum test using CLR transformed data

proportional data), although there are also OTUs detected
by both types of methods. (v) Fig. 5B shows the relative
positions of the identified OTUs in the phylogenetic tree,
where POST identified OTUs tend to be more clustered
together compared to other methods.
We further illustrated the data-adaptiveness of POST

using OTU2 (average proportional abundance 0.22,

mapped to Lactobacillus iners, and only identified by
POST) and OTU3 (average proportional abundance 0.26,
mapped to Lactobacillus crispatus, and identified by
POST, SO, DE, AB, LD, and WR-R). The abundance box-
plots (Additional file 4: Fig. S3) show that OTU2 has
higher abundance in BV patients compared to healthy
women, while OTU3 has an opposite pattern. Our find-

Table 3 OTUs significantly associated with bacterial vaginosis (BV) at FDR level of 0.05. TF, TreeFDR; SO, Single-OTU test implemented
by POST with c = 0; DE, DESeq2; AB, ANCOM-BC; LD, LinDA; WR-P, Wilcoxon rank-sum test using proportional data; WR-R, Wilcoxon
rank-sum test using the CLR transformed data

OTU
FDR-adjusted p-value

Detected method Genus/species Direction**
POST TF SO DE AB LD WR-P* WR-R*

OTU3 0.039 0.089 0.045 0.002 0.006 0.041 0.178 0.025 POST/SO/DE/AB/LD/WR-R Lactobacillus crispatus -

OTU90 0.039 0.245 0.953 0.950 0.983 0.961 0.375 0.989 POST Lactobacillus sp. +

OTU7 0.039 0.653 0.881 0.147 0.766 0.729 0.760 0.932 POST Lactobacillus jensenii -

OTU82 0.039 0.517 0.985 0.970 0.963 0.976 0.258 0.989 POST Lactobacillus gasseri -

OTU66 0.039 0.544 0.701 0.027 0.379 0.615 0.378 0.932 POST/DE Lactobacillus sp. -

OTU2 0.039 0.180 0.917 0.876 0.766 0.923 0.235 0.989 POST Lactobacillus iners +

OTU58 0.039 0.839 0.917 0.876 0.871 0.923 0.791 0.989 POST Lactobacillus sp. +

OTU112 0.411 0.046 0.701 0.422 0.379 0.678 0.040 0.932 TF/WR-P Peptoniphilus sp. +

OTU85 0.470 0.046 0.906 0.372 0.766 0.870 0.097 0.989 TF Gemella sp. +

OTU11 0.918 0.286 0.943 0.000 0.869 0.923 0.220 0.989 DE Prevotella sp. +

OTU12 0.391 0.089 0.701 0.013 0.338 0.615 0.040 0.942 DE/WR-P Prevotella sp. +

OTU16 0.680 0.155 0.881 0.001 0.766 0.918 0.097 0.989 DE Prevotella timonensis +

OTU91 0.680 0.092 0.881 0.505 0.766 0.852 0.040 0.989 WR-P Prevotella sp. +

*WR-P and WR-R did not adjust for race
**+ (and −) indicates that the OTU is positively (and negatively) associated with BV risk from a logistic regression



Huang et al. Microbiome           (2022) 10:86 Page 11 of 15

ings agree with the literature that BV patients have loss of
many Lactobacillus species except Lactobacillus iners [44,
49]. When testing for OTU2, the best c determined by the
data is c = 0.03, suggesting some information borrowing
from neighboring OTUs (Additional file 5: Fig. S4A), e.g.,
OTU7 has r7,2 = 0.74 and OTU3 has r3,2 = 0.52 in Eq. (2).
This example illustrates that (i) POST can incorporate
information with opposite directions, and (ii) the informa-
tion borrowing is OTU-specific and data-driven—when
testing for OTU3, the best c is c = 0, i.e., no information
borrowing from any neighboring OTUs (Additional file 5:
Fig. S4B).

Association study of vaginal microbiome and preterm birth
Preterm birth is a major cause of neonatal morbidity and
mortality. Previous studies have suggested that the risk of
preterm birth is associated with vaginal microbiota com-
position, especially certain species/genera including Lac-
tobacillus crispatus, Lactobacillus iners, BVAB1, Sneathia
amnii, and some Prevotella species [12, 20, 50]. We per-
formed an OTU-specific analysis on the Stanford cohort
data of Callahan et al. [50] to identify OTUs associated
with preterm birth. We applied the same data process-
ing steps as in the BV study and obtained 746 OTUs and
39 individuals. After excluding OTUs with abundance <

0.005% and present rate < 10%, we based our analysis on
the 95 remaining OTUs.
Figure 6A shows that POST, TF, SO, DE, AB, LD, WR-P,

and WR-R identified 3, 2, 1, 11, 6, 4, 10, and 2 signifi-
cant OTUs, respectively. Additional file 6: Table S2 shows
the significant OTUs, their detection methods, and the

corresponding genus/species. Figure 6B shows the rela-
tive positions of the identified OTUs in the phylogenetic
tree. The results can be summarized as follows. (i) All
of the 3 POST-detected OTUs have also been detected
by at least 1 baseline method, i.e., OTU131 (mapped
to Prevotella sp.), which is also found significant by all
baseline methods except TF; OTU40 (mapped to Pre-
votella melaninogenica), which is also identified by DE;
andOTU153 (mapped toNeisseria sp.), which is also iden-
tified by all baseline methods except SO. The Prevotella
genus has been reported to be associated with preterm
birth [12]; OTU153 has 97.45% (229/235) sequence iden-
tity with Neisseria gonorrhoeae, which causes one type of
sexually transmitted infection and has been reported to
be associated with preterm birth [51, 52]. (ii) There were
4 OTUs that were identified by ≥ 1 baseline method but
missed by POST: OTU72, OTU126, OTU31, and OTU44.
OTU72 (mapped to Haemophilus parainfluenzae) was
identified by TF, AB, LD, and WR-P, and Haemophilus
parainfluenzae has been reported to play a potential role
in preterm birth [53]. OTU44 (mapped to Fusobacterium
nucleatum and identified by AB, LD, and WR-P), has
been reported associated with preterm birth [54]. We
found no supporting evidence in the literature regarding
the association with preterm birth for OTU126 (mapped
to Cloacibacterium sp. and identified by DE and WR-P)
or for OTU31 (mapped to Staphylococcus anginosus and
identified by AB and WR-P).
(iii) Besides the OTUs discussed above, DE uniquely

identified 7 OTUs. Among these OTUs, OTU2 (mapped
to Lactobacillus crispatus) and OTU8 (mapped to Pre-

Fig. 6 Upset plot of detected OTUs at FDR level of 0.05 and phylogenetic trees of the analyzed OTUs with detected OTUs for preterm birth study.
SO, Single-OTU test implemented by POST with c = 0; TF, TreeFDR; DE, DESeq2; AB, ANCOM-BC; LD, LinDA; WR-P, Wilcoxon rank-sum test using
proportional data; WR-R,Wilcoxon rank-sum test using the CLR transformed data
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votella sp.) have been found associated with preterm
birth in the literature [12, 20]. OTU4 (mapped to Veil-
lonellaceae bacterium), OTU71 (mapped to Alloscardovia
omnicolens), and OTU19 (mapped to Staphylococcus
aureus) have also be discussed in the literature, although
they are reported as not associated with preterm birth
[55, 56].We found no supporting evidence in the literature
regarding the association with preterm birth for OTU114
(mapped to Lacticaseibacillus rhamnosus) or for OTU15
(mapped toMycoplasma hominis). (iv) AB uniquely iden-
tified OTU7 (mapped to Clostridiales genomosp. BVAB1),
which has been reported to be associated with preterm
birth [12]. (v)WR-P uniquely identified 4OTUs, for which
we did not find supporting evidence in the literature, and
the associations diminish if switching to WR-R. (vi) We
also observed that the CLR-based methods (e.g., POST,
SO, LD, and WR-R) tend to identify fewer OTUs com-
pared to the proportional-based methods (e.g., DE and
WR-P).
A final note is that the two data applications show dif-

ferent relative performance of POST compared to the
baseline methods. In the BV study, POST detected several
significant unique OTUs that were not identified by other
methods. We discussed the biological relevance of these
identified OTUs and examined the phylogenetic relation-
ship among the identified OTUs (Fig. 5B). The results
suggest that these OTUs tend to be evolutionarily close
and their signals might be easier to be detected by borrow-
ing an appropriate amount information from appropriate
neighboringOTUs. In contrast, in the preterm birth study,
POST only identified OTUs that are also identified by
other non-tree-based methods. In particular, POST had
similar performance to SO, LD, and WR-R, suggesting
the compatibility of POST to the non-tree based methods
on CLR transformed data and the robustness of POST to
non-informative phylogeny.

Discussion and conclusions
In this work, we proposed a phylogeny-guided OTU-
specific test, POST. POST extends the kernel-based
approaches from community-level analysis to OTU-level
analysis, and evaluates the association of a focal OTU
based on the abundance of itself as well as its phyloge-
netically close neighbors. POST allows closer neighboring
OTUs to contribute more than distant neighbors and
includes the standard single OTU tests as a special case
(i.e., zero contribution from all neighboring OTUs). The
actual contribution from neighboring OTUs is adaptively
determined by data, using a tuning parameter c to iden-
tify the appropriate OTUs and the optimal amount from
which to borrow information. We evaluated the perfor-
mance of POST in different simulated scenarios and in
real data applications.We showed that POST can enhance
the selection performance by yielding more desirable true

positive and false-positive detection when compared to
commonly used tree-free and tree-guidedmethods: POST
tends to have higher AUC when the phylogenetic tree is
informative and have similar AUC when the phylogenetic
tree is not informative.
Here, we described POST based on OTUs formed at

≤3% sequence dissimilarity and the corresponding phy-
logenetic tree constructed using FastTree2 [23]. Although
our specific testing results are restricted to this frame-
work, the POST method is relevant to a broader class
of metagenomic sequencing methods including marker-
gene and shotgun sequencing methods, where reads are
assigned taxonomy against a reference database with a
pre-calculated phylogeny. However, there are a couple of
points to keep in mind when extending the described
framework to these more general scenarios. Recall that
for a target OTU, its neighborhood and the amount of
information to borrow are controlled via c. Because c is
measured on the scale of the SD of pairwise OTU dis-
tances in the phylogenetic tree, c does not depend on the
actual values of the OTU distance in a tree, and thus,
POST can be applied on phylogenetic trees from different
tools. For different taxonomic levels, some modifications
may be needed because the upper bound of c, cmax, which
controls the neighborhood boundary of an OTU, may or
may not always be generalizable to OTUs defined at dif-
ferent level. For example, it would be dangerous to directly
apply the current cmax to OTUs formed at > 3% dissimi-
larity or higher taxonomic ranks (e.g., genus) because the
current cmax may lead to too large a neighborhood in the
tree for the focal OTU. On the other hand, the current
cmax can be used for OTUs formed at ASV levels (i.e., 0%
dissimilarity), with the price of possibly having a smaller
OTU neighborhood than the actual optimal neighbor-
hood to borrow information from. When needed, the
proper cmax can be explored and determined using a sim-
ilar simulation procedure as conducted in the paper so to
assure that onlyOTUs from ameaningful, localized neigh-
borhood would contribute to the association assessment
of the focal OTU.
It is possible to extend the POST framework to incorpo-

rate OTU correlation based on abundance/co-occurrence
instead of phylogeny. Method 1 is to replace the OTU
phylogenetic correlation (r�m) in step 1 with the OTU
abundance correlations (such as computing r�m using
SparCC [57]). A hyperparameter c will need to be inte-
grated into r�m to permit that the information borrowing
is conducted in an outcome-supervised fashion. Method
2 is to replace the input phylogenetic tree in step 1
with a tree constructed based on abundance correlation
or some network structures [58], e.g., by first convert-
ing the abundance correlation to a dissimilarity matrix
and then performing hierarchical clustering to form a
“tree” as outlined in Bichat et al. [19]. Method 2 can
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be directly implemented by the existing POST R pack-
age POSTm, although additional numerical studies would
be needed to determine an appropriate cmax value. How-
ever, method 2 appears to incorporate some redundancy
because in the existing POST workflow, the “tree” will
then be converted into correlation (i.e., r�m). Finally, given
that which correlation type (abundance vs. phylogeny)
would be informative of the underlying OTU association
patterns is unknown in real practice, an important next
step will be to construct an omnibus framework that can
adaptively determine “which types” of correlation infor-
mation to use besides “how much” information to borrow
from correlated OTUs.
In the real data analyses, we added a pseudo-count of 0.5

to theOTU count tables to handle the zero-count issues. It
has been shown in the literature that the choice of pseudo-
count can affect the association results [59, 60]. For POST,
we conducted sensitivity analyses to assess the impact of
pseudo-counts, by comparing the results of pseudo-count
0.5 and pseudo-count 1 under simulation A (Additional
file 8: Table S3) and in real data analyses (Additional file 9:
Fig. S5).We observed that (1) the AUCs based on different
pseudo-counts (Additional file 8: Table S3) are very similar
across different scenarios and effect sizes. (2) The p-values
obtained using different pseudo-counts (Additional file 9:
Fig. S5) are highly correlated and fall along the 45-degree
lines in the scatter plots.While some deviationsmay occur
(e.g., in the BV analysis), the deviations were from non-
small p-values. These results suggest that POST is fairly
robust to the choices of pseudo-counts.
In POST, we build the kernel matrix based on the non-

phylogenetic Aitchison distance to account for the com-
positional nature of microbiome data [61]. It is possible to
construct local kernel using other distance metrics, such
as the UniFrac distance family. For example, we can com-
pute the local weighted UniFrac (WU) distance for OTU
m between subjects i and j byWUm

ij =
∑T

t=1 bt |[rm]�t (qit−qjt)|
∑T

t=1 bt |[rm]�t (qit+qjt)|
where bt is the length of branch t and T is the total
number of branches. Assuming that there are nt OTUs
connected to branch t in the phylogenetic tree, then qit
is a length-nt vector recording the abundance propor-
tions of the nt OTUs connected to branch t for subject
i; [ rm]t is a length-nt vector recording the correlation
between OTU m and those OTUs connected to branch
t as obtained in the “Step 1: Quantifying OTU phyloge-
netic correlation” section and dependent on c. The above
equation quantifies the “local” weighted UniFrac distance
for OTU m by weighting the proportion difference of
the branch-t-related OTUs according to their correlations
with OTU m. If rm equals 1, the above equation is the
global weighted UniFrac distance. However, in these phy-
logenetic distances, the phylogenetic information seems
to be used twice, one embedded in the original distance

definition and one in the use of rm. Further examinations
are needed to understand the pros and cons of local tests
on phylogenetic-based distance.
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