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METHODOLOGY

Microbial risk score for capturing microbial 
characteristics, integrating multi‑omics data, 
and predicting disease risk
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Abstract 

Background:  With the rapid accumulation of microbiome-wide association studies, a great amount of microbiome 
data are available to study the microbiome’s role in human disease and advance the microbiome’s potential use for 
disease prediction. However, the unique features of microbiome data hinder its utility for disease prediction.

Methods:  Motivated from the polygenic risk score framework, we propose a microbial risk score (MRS) framework 
to aggregate the complicated microbial profile into a summarized risk score that can be used to measure and predict 
disease susceptibility. Specifically, the MRS algorithm involves two steps: (1) identifying a sub-community consisting 
of the signature microbial taxa associated with disease and (2) integrating the identified microbial taxa into a continu-
ous score. The first step is carried out using the existing sophisticated microbial association tests and pruning and 
thresholding method in the discovery samples. The second step constructs a community-based MRS by calculating 
alpha diversity on the identified sub-community in the validation samples. Moreover, we propose a multi-omics data 
integration method by jointly modeling the proposed MRS and other risk scores constructed from other omics data in 
disease prediction.

Results:  Through three comprehensive real-data analyses using the NYU Langone Health COVID-19 cohort, the gut 
microbiome health index (GMHI) multi-study cohort, and a large type 1 diabetes cohort separately, we exhibit and 
evaluate the utility of the proposed MRS framework for disease prediction and multi-omics data integration. In addi-
tion, the disease-specific MRSs for colorectal adenoma, colorectal cancer, Crohn’s disease, and rheumatoid arthritis 
based on the relative abundances of 5, 6, 12, and 6 microbial taxa, respectively, are created and validated using the 
GMHI multi-study cohort. Especially, Crohn’s disease MRS achieves AUCs of 0.88 (0.85–0.91) and 0.86 (0.78–0.95) in the 
discovery and validation cohorts, respectively.

Conclusions:  The proposed MRS framework sheds light on the utility of the microbiome data for disease prediction 
and multi-omics integration and provides a great potential in understanding the microbiome’s role in disease diagno-
sis and prognosis.

Keywords:  Alpha diversity, Disease prediction, Microbiome-wide association studies, Microbial risk score, Multi-omics 
data integration, Sub-community
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Background
Recent microbiome-wide association studies (MWASs) 
have uncovered that microbiome plays a crucial role in 
human health and disease [1–4], with linkage of micro-
biota dysbiosis to a variety of complex diseases, includ-
ing diabetes, cardiovascular and mental disease, and 
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cancer [5–12]. These studies provide great opportuni-
ties to study microbiome’s role in disease prediction, 
which, however, is challenging because of its unique data 
structure.

Rapid advances in high-throughput sequencing tech-
nologies identify diverse microorganisms in a single 
sample by targeted sequencing of their unique 16S rRNA 
gene, or shotgun sequencing of the collective genomes 
of all microbes. For 16S rRNA sequencing data, QIIME 
2 [13] is commonly used to assign the sequencing reads 
to amplicon sequence variants or clustered operational 
taxonomic units based on the similarity of sequences. 
For shotgun sequencing data, MetaPhlAn [14] or Strain-
PhlAn [15] can be used to map the sequencing reads to 
species/strains against a reduced set of clade-specific 
marker sequences. Either method produces the count 
or relative abundance table which typically contain hun-
dreds to thousands of taxonomic or functional features, 
i.e. microbiome data are high-dimensional, especially 
compared to the available number of samples in most 
existing studies. In addition, these feature tables are usu-
ally sparse with excessive zero counts, compositional 
with a sum constrained to a constant, and heterogeneous 
with a phylogenetic tree structure to reveal the evolution-
ary relationship among the taxa. How to deal with these 
unique characteristics of microbiome data and effectively 
utilize them in predicting disease risk is challenging and 
needs comprehensive explorations and validations.

Polygenic risk score (PRS), a continuous score of an 
individual’s genetic liability to a complex disease or 
phenotype, has become more routine and powerful in 
current genomic research [16, 17]. PRS aggregates the 
results from genome-wide association studies (GWASs) 
and is defined as the sum of risk alleles linked to a phe-
notype of interest weighted by the corresponding effect 
sizes. The construction of PRS involves two key steps: 
determining the risk alleles and their effect sizes based 
on discovery samples or published GWASs, and calcu-
lating the PRS for each subject in the target population. 
The PRS framework motivates us to construct a similar 
microbial risk score (MRS) to summarize the disease-
specific microbial profile in the increasing large-scale 
population-based microbiome studies [11, 18, 19] and to 
investigate its potential in disease prediction. However, 
microbiome’s unique community features make MWASs 
differ from GWASs. First, the microbiota is a complex 
ecosystem, whose dynamics are driven by the interac-
tions among microbes and between microbes and their 
host. The link between this complex ecosystem and dis-
ease process often involves interwoven mechanisms [20]. 
Further, the microbiota is composed of various sub-com-
munities related to different traits [21, 22], and its influ-
ence on disease development may act at the community 

rather than the single-microbe level [23]. Thus, it is less 
informative or efficient to simply define MRS as the 
weighted sum of the relative abundances of the associ-
ated microbes. Instead, we propose a community-based 
MRS by calculating alpha diversity on a sub-community 
with member taxa identified as being associated with the 
study trait. Alpha diversity is the diversity in a single eco-
system or sample with respect to its richness, evenness, 
or both characteristics [24, 25]. Several indices, including 
Observed, Simpson, Shannon, and Faith’s phylogenetic 
diversity (PD), have been extensively used to character-
ize microbial community. With the NYU Langone Health 
(NYULH) COVID-19 cohort [26] and the gut microbi-
ome health index (GMHI) multi-study cohort [27], we 
propose and validate a few MRSs on COVID-19, colorec-
tal adenoma (CA), colorectal cancer (CC), Crohn’s dis-
ease (CD), and rheumatoid arthritis (RA) to exhibit the 
utility of the proposed MRS framework.

With the recent advances in the next-generation 
sequencing and mass spectrometry, there is a growing 
need for the ability to merge biological features to study 
an ecosystem as a whole. Aspects such as the metagen-
ome, metatranscriptome, host genome, host gene expres-
sion, and metabolome provide a snapshot of one level of 
regulation in a system. The proposed MRS framework 
provides a simple and interpretable approach to inte-
grate the microbial profiles with other biological omics 
data and elucidate the microbial interactions with other 
omics datasets in the disease prediction. We use the 
NYULH COVID-19 cohort, which characterized the lung 
microbiome in a large prospective cohort of critically ill 
patients with SARS-CoV-2 infection who required inva-
sive mechanical ventilation, to illustrate, evaluate, and 
validate the proposed MRS and its integrations with 
other omics data in the prediction for COVID-19 mortal-
ity. In addition, we elucidate the join effect of MRS and 
PRS on T1D risk stratification using the Environmental 
Determinants of Diabetes in the Young (TEDDY) study 
(https://​teddy.​epi.​usf.​edu/) [28–30].

Methods
MRS framework
MRS workflow
We propose a microbial risk score framework to con-
vert the high-dimensional microbiome data into a sum-
marized risk score that can measure and predict disease 
susceptibility. As illustrated in Fig. 1, with the ready-for-
downstream-analysis microbial data, the microbial risk 
score algorithm involves two key steps: (1) to identify a 
sub-community consisting of the signature microbial 
taxa associated with disease and (2) to integrate the iden-
tified microbial taxa into a continuous score.

https://teddy.epi.usf.edu/
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Fig. 1  The workflow of the microbial risk score (MRS) framework. Data input: a phyloseq-class object is needed, which consists of a feature table 
(observed count table), a sample metadata, a taxonomy table (optional), and a phylogenetic tree (optional). MRS Algorithm has two steps: Step 1 is 
to identify a sub-community consisting of the signature microbial taxa with the P+T method and AUC evaluation in the discovery cohort. The black 
ROC curve which has the largest AUC determines the optimal p value cutoff. Step 2 is to integrate the identified microbial taxa into a continuous 
score, i.e., calculate the MRS value for each sample by calculating the diversity of the identified sub-community with the Shannon index. In addition, 
the constructed MRS is independently validated in the validation cohort. Application: In this manuscript, we perform multi-omics data integration 
for disease prediction by jointly modeling the proposed MRS and other risk scores constructed from other omics data in two real data cohorts
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Microbial signature identification
We propose to employ the existing sophisticated micro-
bial association tests [1, 3, 4, 31–33] to identify microbial 
taxa associated with disease using the discovery samples. 
Great amount of abundance-based methods examining 
the difference of microbial abundance directly, which is 
also called differential abundance (DA) analysis [31–39] 
have been proposed recently. Based on the results in 
two recent benchmarking works [32, 33], ANCOM-BC 
(analysis of compositions of microbiomes with bias cor-
rection) [31] is one of the top-performing methods and 
has been widely used in microbiome research. ANCOM-
BC [31] models the observed abundances using an off-
set-based log-linear model, in which the offset term is 
sample-specific to account for sampling fraction. We use 
it as the default microbial association test to identify the 
candidate taxa in the first step of our microbial risk score 
algorithm. Considering developing novel differential 
abundance test is still an active area of research, in the 
Discussion  section, we discuss the performance of the 
proposed MRS framework with other DA tests.

In addition to the above-mentioned statistical meth-
ods, a variety of machine learning (ML) techniques have 
been applied in microbiome studies for microbial feature 
selection, biomarker identification, disease prediction, 
and classification, as recently reviewed [40]. As an exam-
ple, Gou et al. [41] defined an MRS with the microbiome 
features selected by the light gradient boosting machine 
method [42] and examined its association with type 2 dia-
betes (T2D) as well as T2D-related traits. Despite the vis-
ible contributions of characterizing the microbial profiles 
and uncovering the relationship between microbiome 
and disease, the applications of ML methods including 
traditional methods and deep learning techniques in the 
microbiome studies share several drawbacks [40]. One is 
that most ML methods input all available microbial fea-
tures into the model to determine the final output solely 
based on algorithms, without considering the inherent 
structure of microbiome data, such as compositionality 
and zero inflation. Another unavoidable drawback of ML 
methods is the model instability in the relatively small-
scale biomedical human studies [43]. Because the nature 
of ML algorithms is to learn the pattern by training the 
data, they usually require a large sample size to reach sta-
ble results, especially for the algorithms involving vari-
ous parameters or various layers that need to be trained 
via cross-validation (CV). Given these common pitfalls 
and relatively small sample size in biomedical studies 
due to the high cost of patients’ in-person visit, sample 
collection, and sequencing, ML’s application in microbi-
ome research may provide inexplicable results and even 
lead to the loss of statistical power. With the NYULH 
COVID-19 cohort example, we illustrate the inefficient 

utility of ML methods in analyzing the microbiome data 
compared to the proposed MRS method. The details are 
reported in the Results section.

Sub‑community determination
Pruning and thresholding (P+T) method is a heuristic 
approach commonly used in PRS studies for identifica-
tion of genetic variants based on an empirically deter-
mined p value threshold [44]. We propose to use the P+T 
method to determine the final candidate microbial taxa 
in discovery cohort. Specifically, we calculated a series of 
MRSs proposed below using the nested sets of microbial 
taxa with the increasingly relaxed significance thresholds. 
We set the final threshold at the value that produced the 
largest area under the receiver operating characteristic 
(ROC) curve (AUC). All the taxa whose p values are less 
than the final threshold form a disease or trait-specific 
sub-community. If there is only one dataset available, 
CV will be used to determine the sub-community along 
with the P+T method. More details are provided in the 
Results section.

MRS calculation
We propose an MRS, denoted by MRSα, which is defined 
as the alpha diversity of the sub-community consisting of 
the identified candidate taxa. Alpha diversity is the diver-
sity in a single ecosystem or sample with respect to its 
richness, evenness, or both characteristics [24, 25]. The 
core concept of alpha diversity index in biology is to find 
the effective number of elements of a system to measure 
its complexity or diversity [45]. Note that multiple alpha 
diversity indices are available. Some measure species 
richness such as observed index, Chao1, and ACE. PD 
is a phylogenetic metric which is defined as the sum of 
the lengths of all those branches on the tree that span the 
members of the set. Simpson index is a dominance index 
as it gives more weight to the common or dominant spe-
cies and does not account for species richness. While 
Shannon index is an information statistic index (entropy) 
which accounts for both species richness and its evenness 
in a community or sample, and it has a unique ability to 
weigh taxa by their frequency, without disproportionately 
favoring either rare or common elements. As the most 
popular and accepted index for diversity [46], we adopt 
Shannon index in the proposed MRSα. Other indices are 
also investigated in the Discussion section and included 
in the MRS framework (MRS R package).

Suppose there are n samples (each sample represents 
one ecosystem or microbial community) and Q taxa. 
Let Mij be the relative abundance of the jth taxon in the 
ith sample with the constraint Q

ij=1
Mij = 1 , i = 1, …, 

n, and j = 1, …, Q. Assume p (<Q) taxa are identified as 
a sub-community to construct MRSs. Without loss of 
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generality, we assume that the first p taxa are the identi-
fied candidate taxa.

For the ith sample, its MRSα is calculated as 

MRSi
α
=

∑p
j=1

∼

Mij ln

(

∼

Mij

)

 , where 
∼

Mij is relative abun-

dance of the jth identified candidate taxon within the 
sub-community for the ith sample ( 

∼

Mij =
Mij

∑p
j=1

Mij
 ). 

MRSα is constructed based on the Shannon index [24, 25] 
without the negative sign, so that the smaller is MRSα, the 
healthier is the microbial community [47]. As a compari-
son, we also derive a standard MRS as an analogy to PRS, 
denoted by MRSS. It is a (weighted) sum of relative abun-
dances of the identified candidate taxa  as 
MRS

i
S =

∑p
j=1

wjMij , where wj is the weight for the jth 
taxon. We propose two sets of weights: all weights are 
equal to 1 (denoted by MRS

i
unwS ), and the weights are the 

effect sizes estimated from the training or discovery sam-
ples by certain microbial association method (denoted by 
MRS

i
wS ). Noticeably, MRSα integrates p identified taxa as 

a community by measuring its diversity, while MRSS 
focuses on the additive effect of the identified taxa and 
does not account for the microbial community feature.

Validation
The proposed MRSs need to be validated either by exter-
nal validation or internal validation. Since the GMHI 
multi-study cohort [27] has independent discovery and 
validation cohorts, the MRSs are created using the dis-
covery cohort and validated using the validation cohort. 
For the NYULH COVID-19 [26] and TEDDY studies 
[28–30], due to the lack of independent additional sam-
ples, we employ CV to perform independent internal 
validation.

Risk score‑based multi‑omics data integration
Note that the proposed MRS summarizes a complex 
microbial profile into a quantifiable score, which provides 
a fast and flexible way to integrate microbiome data with 
other omics data to better predict disease risk. Both the 
NYULH COVID-19 and TEDDY studies contain not only 
microbial profile data, but also other omics data. We pro-
pose to jointly model MRS and other risk scores built on 
other omics data to further improve the performance of 
disease prediction. In the COVID study, on the one hand, 
the enrichment of SARS-CoV-2 and some oral com-
mensals in the lower-airway microbiota are associated 
with poor outcome, and on the other hand, host lower-
airway immune phenotypes reveal a failure of adaptive 
and innate immune response to SARS-CoV-2 among 
deceased subjects. Jointly modeling these omics profiles 
can improve the predictive accuracy of mortality. For the 
TEDDY study, since that genotype data in the regions 
containing autoimmunity and inflammatory response 

genes are available, one can build a PRS for each subject 
using the existing PRS algorithms [48–50]. By combin-
ing the PRS and the proposed MRS, we can jointly model 
the association of genetic and environmental risk in T1D 
prediction.

Prediction performance evaluation
With the constructed risk scores from various omics 
data, one can employ a logistic regression model for the 
prediction of disease status (binary outcome) or a Cox 
proportional-hazards model [51] for the prediction of 
disease onset (survival outcome). Predication perfor-
mance can be evaluated by AUC for binary outcome or 
by hazard ratio (HR) for survival outcome. The addi-
tive model can be used to integrate multiple risk scores 
in these two regression models. The interaction terms 
between scores can be explored further for risk strati-
fication [52], as illustrated in the TEDDY study in the 
Results section.

NYULH COVID‑19 cohort
The NYULH COVID-19 cohort [26] includes a subset 
of 142 patients with COVID-19, at the NYULH Man-
hattan campus from March 3 to June 18, 2020, who 
required invasive mechanical ventilation and underwent 
bronchoscopy for airway clearance and/or tracheos-
tomy. Among all patients, 108 (76%) survived hospitali-
zation and 34 (24%) deceased. The study has collected 
and processed lower-airway samples and performed: (a) 
metagenomic sequencing for bacterial, fungal, and DNA 
viral genomes and (b) metatranscriptome assays for viral, 
bacterial, fungal, and human transcriptomes and the 
RNA virome. In addition, comprehensive demographic, 
longitudinal clinical, and treatment data are available.

GMHI multi‑study cohort
An integrated dataset of 4,347 human stool metagenom-
ics samples (cross-sectional) from 34 published studies 
(discovery cohort) and an independent dataset of 679 
samples from 9 additional studies (validation cohort) are 
publicly available [27]. Both cohorts consist of healthy 
subjects and patients with various diseases. Using these 
two cohorts, Gupta et  al. [27] introduced and validated 
the gut microbiome health index (GMHI) to quantify 
the likelihood of disease presence based on subject’s gut 
microbiome data. In both cohorts, they pooled sam-
ples from different disease conditions together into one 
nonhealthy group, and the proposed GMHI exclusively 
identifies the difference of microbiome profile between 
healthy and non-healthy samples. After the pre-pro-
cessing and quality control, there are 2,636 healthy and 
1,711 nonhealthy samples in the discovery cohort and 
118 healthy and 561 nonhealthy samples in the validation 
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cohort, respectively. Among nonhealthy samples, dis-
covery and validation cohorts both have samples from 
patients with CA, CC, CD, and RA. Sample sizes are 
shown in Table S1. For microbiome data, there are 313 
species and 576 species in the discovery and validation 
cohorts, respectively, available for analysis. More details 
are described in Gupta et al. [27].

TEDDY cohort
TEDDY is a large-scale prospective study designed to 
identify the genetic and environmental triggers that 
cause childhood T1D [28–30]. Children with high-
genetic risk for islet autoimmunity or T1D were enrolled, 
and multiple biomarkers were assessed longitudinally for 
prediction of the T1D development. A total of 12,005 
fecal samples from 903 children, collected from 3 to 46 
months of age, were characterized by 16S rRNA sequenc-
ing. Of this cohort, 114 children were ascertained to T1D 
by year 5 [29]. The findings in the previous TEDDY pub-
lications [53, 54] focus exclusively on the microbiome 
profiles and suggest that the gut microbiome data may 
have the potential to predict the progression of T1D. In 
addition to microbiome data and metadata, the TEDDY 
cohort also includes genomic, longitudinal metabolomic, 
and host transcriptomic data which together provide 
opportunity to explore the integrated information from 
multiple aspects on the pathogenesis of T1D through the 
multi-omics analysis.

Results
Evaluation and validation of MRS framework
NYULH COVID‑19 cohort
With the same quality control, sequencing process, and 
filtering criteria described in Sulaiman et al. [26], we ana-
lyzed data from 118 patients (28 deceased and 118 alive) 
who had all metagenome, metatranscriptome, and host 
transcriptome samples. We included 374 taxa in metage-
nome, 1,149 taxa in metatranscriptome, and 14,697 genes 
in host transcriptome data for our analyses. We used the 
binary outcome (deceased vs. alive) to illustrate the pre-
dictive performance of MRS here.

Figure  2 presents the optimal p value thresholds 
(0.42, 0.38, and 0.02) used to identify the associated 
taxa in MRSs (MRSα, MRSwS, and MRSunwS, respec-
tively) using the metagenomic data. The optimal thresh-
olds were determined by P+T method as described in 
the sub-section “Sub-community determination” using 
the leave-one-out CV. With the optimal p value cutoffs, 
the community-based MRSα has the best performance 
in predicting deceased/alive status (AUC=0.74), com-
pared to two summation-based standard MRSs: MRSwS 
(AUC=0.72) and MRSunwS (AUC=0.70). This reflects 
that analyzing the microbial profile as a community 
can characterize more microbial information and work 
better than analyzing microbes individually. Addition-
ally, MRSwS performs better than MRSunwS, as expected, 
since MRSwS incorporates the strength of the association 

Fig. 2  The optimal p value thresholds by P+T method for including taxa in MRSα, MRSwS, and MRSunwS, separately, using the metagenomic 
data in the NYULH COVID-19 cohort. Specifically, given a cut-off, the taxa with p values less than the cut-off were selected and defined as a 
sub-community. The p values were obtained by ANCOM-BC method. The leave-one-out CV was used for the predictions. MRSα: the negative alpha 
diversity (Shannon index) was calculated for each sample on the selected sub-community; MRSwS: the weighted sum of relative abundances of the 
selected taxa with the weights being the coefficients estimated from the ANCOM-BC log-linear model; MRSunwS: the sum of relative abundances of 
the selected taxa
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effects of taxa on the outcome, as well as the microbial 
relative abundances, while MRSunwS is just the sum-
mation of the microbial relative abundances from the 
selected taxa.

Figure S1 shows the prediction performance for vari-
ous ML algorithms which have been commonly applied 
in microbiome research [40]. The leave-one-out CV was 
used for the predictions, and the predicted probabil-
ity for deceased/alive status was used for ROC analysis. 
All ML algorithms have lower AUCs than the proposed 
MRSα. Among these ML algorithms, the ML algorithms 
based on regularization (Figure S1A) all perform better 
with higher AUCs, compared to the ML algorithms that 
have various tuning parameters or layers (Figure S1B). 
Elastic-net logistic regression and penalized discriminant 
analysis (regression-based) algorithms have the best pre-
diction performance. On the other hand, ML algorithms 
were also applied to select the candidate taxa used for 
the construction of MRSα based on the variable impor-
tance. The top K features were determined based on 
leave-one-out CV. Taking the elastic-net logistic regres-
sion which has the best prediction above for example, the 
top 30 taxa were ultimately selected to construct MRSα 
with the AUC being the largest based on CV, and its AUC 
for deceased/alive status prediction is 0.66, which is 11% 
lower than the AUC of the above MRSα. The efficiency of 
ML algorithms is evidently limited due to the small sam-
ple size and not being able to take care of the unique fea-
tures of microbiome data, such as compositionality and 
zero inflation.

In addition, we checked the prediction performance 
of the alpha diversity indices on the whole microbial 
community in terms of AUC. Table S2 reports the AUC 

values for six common alpha diversity indices in predict-
ing alive and deceased status. All alpha diversity indices 
have similar prediction performance, with AUC being 
0.50 to 0.53, which are much poorer than the proposed 
MRSα. Comparisons between MRSα and alpha diversity 
indices underline the significance of identification of the 
associated taxa in the microbial risk score framework, 
which condenses the signal by excluding the non-asso-
ciated taxa and provides full potential for the proposed 
MRS to measure and predict disease susceptibility.

GMHI multi‑study cohort
With the discovery and validation cohorts [27], we evalu-
ated and validated the proposed MRSα in terms of pre-
dictive performance. Specifically, for CA, CC, CD, and 
RA diseases, respectively, we performed ANCOM-BC to 
identify candidate species that were differentially abun-
dant between samples from healthy subjects and patients 
with this disease in the discovery cohort, constructed dis-
ease-specific MRSα based on the identified species, and 
performed the independent validation of disease-specific 
MRSα using samples from healthy subjects and patients 
with the disease in the validation cohort.

Figure  3A presents that AUC values and 95% confi-
dence intervals for MRSαs to predict healthy and 4 dif-
ferent diseases in discovery and validation cohorts, 
respectively. Overall, MRSαs achieve great predictive per-
formance in both discovery (AUCs: 0.60–0.88) and vali-
dation (AUCs: 0.68–0.86) cohorts. Notably three MRSαs 
(healthy vs. CA, healthy vs. CC, and healthy vs. RA) have 
higher AUCs in validation cohort, compared to discov-
ery cohort. Among these four disease-specific MRSαs, 
MRSα specific for CD disease has the best predictive 

Fig. 3  Evaluation of MRS in the discovery and validation cohorts [27]. A The AUC values and 95% confidence intervals (CIs) for MRSαs to 
predict healthy and different disease conditions in discovery and validation cohorts, respectively. B Venn diagrams of taxa identified in pairwise 
comparisons of healthy versus CA, CC, CD, and RA. CA, colorectal adenoma; CC, colorectal cancer; CD, Crohn’s disease; and RA, rheumatoid arthritis
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performance (AUC=0.88 in discovery and AUC=0.86 in 
validation). In addition, different MRSαs are constructed 
by different identified taxa. 5, 6, 12, and 6 taxa are used 
for constructions of MRSαs for CA, CC, CD, and RA, 
respectively (Fig.  3B; Table S3). Several taxa contribute 
multiple MRSαs, for example, species Bifidobacterium 
angulatum is involved for constructions of MRSαs for 
CA, CC, and RA (Table S3). On the other hand, 21 taxa 
are disease-specific and exclusively used in one MRSα 
(Table S3). They are differentially abundant in Healthy, 
CA, CC, CD, and RA samples (Tables S4 and S5). This 
demonstrates that the proposed MRS framework pow-
erfully improves disease prediction by incorporating the 
disease-specific microbial profile. This feature makes the 
proposed MRS framework more crucial in practice, as 
most research studies aim to identify the microbial taxa 
specifically playing a role in a certain disease, rather than 
the generalized disease-associated microbial taxa.

Similar to disease-specific MRS, we also assessed the 
MRS framework that distinguishes two disease groups, 
as well as healthy and nonhealthy conditions defined as 
in the original study [27] in the discovery and validation 
cohorts, respectively. Figure S2 presents the AUC val-
ues and 95% confidence intervals for MRSαs to classify 
any two diseases of CA, CC, CD, and RA, and healthy 
and nonhealthy conditions in discovery and validation 
cohorts, respectively. Table S3 correspondingly reports 
which taxa are involved for these MRSα calculations, 
respectively. Again, the MRS framework achieves nota-
ble performance. For example, discovery cohort has 
AUCs of 0.91 and 0.89, meanwhile, validation cohort has 
AUCs of 0.84 and 0.84, to distinguish CD from RA and 
CC, respectively. Validation cohort has a relatively lower 
AUC for classifying CA and RA, due to the small sample 
size. In terms of healthy vs. nonhealthy prediction, MRSα 
achieves consistently competitive performance but with 

much fewer species, whose AUCs are 0.7 and 0.71 in dis-
covery and validation cohorts, respectively, compared to 
GMHI whose AUCs are 0.7 and 0.74 in discovery and val-
idation cohorts, respectively. And the identified 6 species 
for MRSα construction is a subset of 50 microbial species 
used in GMHI [27].

Results of risk score‑based multi‑omics data integration
NYULH COVID‑19 cohort
In addition to metagenome data, the NYULH COVID-
19 cohort has metatranscriptome and host transcrip-
tome data. In the following, we present how to integrate 
metagenomic, metatranscriptomic, and host transcrip-
tomic datasets using the proposed MRSα and the evalu-
ation of different methods. For the metatranscriptomic 
data, we employed the same MRS algorithm as we 
described in the Methods section, in terms of determin-
ing the p value cutoff, identifying candidate taxa, and con-
structing the microbial risk score, to construct its MRSα. 
In order to differentiate various MRSαs, we denoted the 
MRSα  using the metagenomic and metatranscriptomic 
data by DNA_MRSα and RNA_MRSα, respectively, in 
the rest of manuscript. For the transcriptomic data, we 
employed DESeq2 [36] to evaluate the association effects 
of genes on the deceased/alive status, determined the p 
value cutoff based on the P+T method, and identified 
the candidate genes by AUC evaluation. Then, we defined 
the weighted sum of log-transformed counts of the 
selected candidate genes for each sample as the risk score 
(denoted as Host), with the weight being 1 if the corre-
sponding logarithmic fold change estimate from DESeq2 
was positive, otherwise −1. Computational details are 
reported in Section S1. Figure  4A shows that the risk 
scores based on metagenomic, metatranscriptomic, and 
host transcriptomic data separately have the AUC values 
of 0.74, 0.69, and 0.63, respectively, in terms of predicting 

Fig. 4  The ROC curves and AUC values for the various risk scores to predict alive and deceased status in the NYULH COVID-19 cohort. A 
Predication performance for the individual risk scores constructed based on metagenome (DNA_MRSα), metatranscriptiome (RNA_MRSα), and host 
transcriptome (Host), separately. B Predication performance based on multiple risk scores using additive model



Page 9 of 15Wang et al. Microbiome          (2022) 10:121 	

deceased/alive status. Furthermore, the combinations of 
risk scores from different datasets can obviously improve 
the predictive performance (Fig.  4B) of mortality. The 
combinations of any two datasets have comparable AUC 
values and perform similarly. As expected, the integra-
tion of all three datasets (DNA_MRSα + RNA_MRSα + 
Host) has the highest AUC of 0.85, which yields at least 
a 15% increase in AUC compared to DNA_MRSα, RNA_
MRSα, or Host alone. In Fig. 5, comparing the risk scores 
between the alive and deceased groups, the deceased 
group always has a significantly higher average risk score 
than the alive group, and no matter the score was con-
structed based on a single omics dataset or the integra-
tion of different omics datasets (p values<0.05).

Figure  6 presents the 2D or 3D scatterplots of risk 
scores from metagenomics, metatranscriptomic, and 
host transcriptomic data. The subjects were first clas-
sified into “high risk” and “low risk” groups by each risk 
score’s mean. We next checked how well these risk clas-
sifications can be used to predict disease status by report-
ing the classification metrics [55]: sensitivity, specificity, 
accuracy, and F1 score in Table  1. Specifically, the pre-
dicted values for the subjects labeled as “high risk” by two 
risk scores (in Fig.  6A–C) or by all three risk scores (in 
Fig. 6D) datasets are “deceased,” and the predicted values 
for the subjects labeled as “low risk” by two risk scores (in 
Fig. 6A–C) or by all three risk scores (in Fig. 6D) datasets 
are “alive.” From Table 1, we can see that among the com-
binations of two risk scores for classification, the com-
bination of metagenomic and host transcriptomic risk 
scores has the highest sensitivity, accuracy, and F1 score, 

but is still inferior to the combination of all three omics 
risk scores, which identifies the mortality status with 86% 
sensitivity, 91% specificity, 88% accuracy, and an F1 score 
of 0.89. In this real study, from different angles, including 
the AUC in Fig. 4, the scatterplots of risk scores in Fig. 6, 
and the test results in Table 1, we show that combining 
risk scores from metagenomics, metatranscriptomic, and 
host transcriptomic data increases the predictive accu-
racy for COVID-19 mortality.

Table S6 reports the included features in the metagen-
omic, metatranscriptomic, and host transcriptomic risk 
scores separately. The feature importance was deter-
mined by the selection proportion among all CV itera-
tions. For the host transcriptomic data, the fold change 
between deceased and alive was used to determine the 
feature importance when the selection proportions were 
the same. Here, we take the top 50 features in each data 
as an illustration to investigate the correlation networks 
among these three datasets. Figures 7, S3, and S4 show 
the paired correlation heatmaps among the selected 
metagenomic, metatranscriptomic, and host transcrip-
tomic features in the alive and deceased groups, respec-
tively. Notably, the alive and deceased groups have 
different correlation patterns among these top 50 fea-
tures from any two datasets. Specifically, the metagen-
omics features tend to have stronger correlations with 
the host transcriptomic and metatranscriptomic features 
in the deceased group, compared to the alive group; 
and the metatranscriptomic features tend to have more 
negative correlations with the host transcriptome in the 
alive group.

Fig. 5  Box plots of the score comparisons between alive and deceased group. All risk scores are standardized among all samples, respectively. The 
statistical significance on a group comparison is evaluated by Wilcoxon signed-rank test
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Note that the results reported in this section are dif-
ferent from those in Sulaiman et  al. [26] in which the 
main goal was to reveal the scientific findings and the 
Cox proportional-hazards model [51] was employed to 
identify the candidate taxa and genes associated with 
the time to death. In this paper, we formally introduce 

the MRS concept and propose it as a general method 
with the detailed instruction on how to construct MRS. 
As a validation of the proposed method, the results pre-
sented above based on the binary outcome (deceased vs. 
alive) agree with the previous scientific conclusions [26]. 
Table  2 reports the hazard ratios of all risk scores con-
structed in this paper and their combinations on the time 
to death based on the Cox proportional-hazards model. 
All risk scores are significantly associated with the time 
to death. As we found in [26], metatranscriptomic data 
alone, or combined with the other two datasets, always 
has a higher hazard of death, because it involves SARS-
CoV-2 viral, which is a key risk factor on the COVID-19 
mortality.

Overall, these results highlight that the proposed 
community-based MRSα can characterize and summa-
rize the microbial profiles effectively and provide a flex-
ible way to integrate microbiome data with other omics 
data. Integrations of risk scores from different omics 

Fig. 6  Scatterplots of risk scores based on metagenome, metatranscriptome, and host transcriptome data. A–C Scatterplots of DNA_MRSα vs RNA_
MRSα, DNA_MRSα vs Host, and RNA_MRSα vs Host, respectively. Dotted line denotes the mean of the corresponding risk score across all subjects. D 
3D scatterplot of DNA_MRSαvs RNA_MRSαvs Host

Table 1  Classification evaluation for subjects having extreme 
risk categories (labeled as either “high risk” or “low risk” by both or 
all three risk scores) in the NYULH COVID-19 cohort

Combination of the risk 
scores

Sensitivity Specificity Accuracy F1

DNA_MRSα + RNA_MRSα 0.67 0.78 0.71 0.75

DNA_MRSα + Host 0.78 0.65 0.74 0.80

RNA_MRSα + Host 0.48 0.92 0.58 0.63

DNA_MRSα+ RNA_MRSα+ 
Host

0.86 0.91 0.88 0.89
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data further improves the predictive performance on the 
alive/deceased status in the NYULH COVID-19 study.

TEDDY study
Although the TEDDY cohort includes both genome and 
microbiome data, the previous microbiome research 

on TEDDY study [53, 54] focused exclusively on the 
microbiome profiles and only identified very few micro-
bial signatures associated with T1D. Given the fact that 
T1D is a multifactorial disease caused by both genetic 
and environmental factors and the children enrolled in 
the TEDDY study, all have high-genetic risk for the T1D 
development (they have at least one of nine HLA DR-DQ 
genotypes associated with high risk for T1D) [29], we 
here propose a new angle to employ the proposed MRS 
along with the existing PRS for T1D to investigate the 
combined effect of microbial profile and host genetic 
profile on T1D risk prediction. Specifically, we analyzed 
551 TEDDY subjects who have both microbiome data 
and genotype data; 75 of them developed T1D. Using 
the available genotype data and the PRS algorithm which 
has the robust and superior prediction performance on 
T1D [48, 49], we built the PRS for subjects. We used the 
microbial samples that were collected at the time point 
most close to month 30 when microbiome profile got 
stable and the largest sample size was available, to build 
MRSα to predict T1D status independently. The practice 
of MRS calculations are the same as those used in the 
NYULH COVID-19 study.

Fig. 7  Heatmaps of Spearman’s rank correlations between the top 50 taxa from metagenome and the top 50 genes from host transcriptome, in 
alive and deceased groups, separately. The top 50 features were selected based on the proportion of selection in all CV iterations

Table 2  Association results between the risk scores and the time 
to death based on the Cox proportional-hazards model in the 
NYULH COVID-19 cohort

Risk score Hazard ratio p value

Estimate 95% 
confidence 
interval

DNA_MRSα 1.80 1.36–2.38 3.56E–05

RNA_MRSα 1.87 1.11–3.14 0.0179

Host 1.43 1.16–1.76 0.000855

DNA_MRSα+ host 1.54 1.28–1.84 2.52E–06

DNA_MRSα + RNA_MRSα 2.57 1.78–3.71 4.46E–07

RNA_MRSα+ host 2.00 1.51–2.64 1.39E–06

DNA_MRSα + RNA_MRSα + host 1.97 1.58–2.45 1.60E–09



Page 12 of 15Wang et al. Microbiome          (2022) 10:121 

Figure  8A compares the AUCs for predicting T1D 
based on the individual risk scores and the combi-
nation of PRS and MRSα, and Fig.  8B–D shows the 
Kaplan–Meier survival curve comparisons between 
high- and low-risk group identified by PRS, MRSα, and 
PRS + MRSα, respectively. Specifically, subjects whose 
risk scores are above the third quartile are defined as high 
risk, others as low risk. Although the predictive models 
considered in Fig. 8A have only modest predictive ability 
in the TEDDY cohort (AUC range [0.58, 0.63]), we found 
that integrating PRS and MRSα scores is more useful in 
stratifying the subjects into high- and low-risk groups for 
the T1D development (Fig. 8D) than the PRS (Fig. 8B) or 
MRSα (Fig. 8C) alone, which indicates that the potential 
genetic-microbial interaction effect on the T1D progres-
sion. These results exhibit the utility of modeling multi-
omics risk scores to identify the high-risk populations 
who can benefit from more targeted interventions.

Discussion
With the recent proliferation of large-scale microbial 
association studies, we propose a two-step novel micro-
bial risk score framework to aggregate the high-dimen-
sional microbiome profile into a summarized risk score 
and apply it in disease prediction. Specifically, we first 
identify the associated taxa based on the recommended 
microbial association tests by two recent benchmarking 
works [32, 33] and P+T method, and then construct a 
community-based MRSα, because that the microbiome is 
a complex ecosystem composed of numerous sub-com-
munities, and its influence on the disease development 
acts at the community instead of the single-microbe level 
and is disease-dependent. The application in the NYULH 
COVID-19 cohort demonstrates the superior perfor-
mance of MRSα in the disease prediction, compared to 
the standard MRSS, which is constructed similarly as 

PRS, ML-based prediction algorithms, and six alpha 
diversity measures on the whole microbiome community. 
The evaluation of MRSα using the GMHI integrated data-
set which consists of independent discovery and valida-
tion cohorts reveals the notable reproducibility of MRSα 
in terms of disease prediction.

Combining omics datasets that provide biological 
information from different layers is vital to compre-
hensively study phenotypes and accurately predict dis-
eases. However, complex data structures, for example, 
high-dimensionality, sparsity, compositionality, inter-
dependence, and hierarchical tree structures, all make 
multi-omics data integration challenging. In this paper, 
the proposed MRS provides a straightforward and flex-
ible way to incorporate multi-omics datasets and explore 
the microbial interactions with other omics profiles. 
Integration of the proposed MRS and the risk scores 
constructed from other omics data increases the abil-
ity for disease prediction. Integrations of metagen-
omic with metatranscriptomic and host transcriptomic 
datasets from NYULH COVID-19 cohort underline 
the critical and insightful utility of the constructed risk 
scores for disease prediction and the promising ability 
of multi-omics data integration for predictive accuracy 
improvement. Additionally, the data from TEDDY study 
illuminates the potential in combining MRS and PRS to 
explore genetic-microbial interaction and identify the 
high-risk population.

Apart from the ANCOM-BC and Shannon index 
used in the proposed MRSα, there are other differential 
abundance methods available to identify the signature 
microbial taxa associated with disease and other alpha 
diversity indices to characterize the community diversity. 
Here, we investigate how does using two other differen-
tial abundance methods (ALDEx2 [56] and Maaslin2 [57] 
suggested by [32, 33]) and Simpson and observed alpha 

Fig. 8  Results for T1D prediction in the TEDDY study. A ROC curves and AUC values for predicting T1D status using various risk score. PRS_hla is 
constructed from the HLA alleles alone, and PRS is constructed from all SNPs found in the TEDDY cohort based on the existing PRS algorithm [49]. 
MRSα is the negative alpha diversity (Shannon index) calculated on the selected sub-community, which is selected by ANCOM-BC method and P+T 
method. B–D. Kaplan–Meier plots for the groups of subjects at high and low risk of developing T1D, based on PRS, MRSα, and the combination of 
PRS and MRSα, respectively. Subjects whose risk scores are above the third quartile are defined as high risk, others as low risk
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diversity indices to construct MRSα affect the predictive 
performance of the MRS framework in terms of AUC 
value and 95% CI in the discovery and validation cohorts 
[27] separately. Figure S5 shows that no single MRSα can 
uniformly perform best for all predictions in the dis-
covery and validation cohorts, as various DA methods 
have different model assumptions and test hypotheses 
and various alpha diversities indices have different defi-
nitions, while links between microbiome profile with 
various healthy or disease conditions are different. Spe-
cifically, given an alpha diversity index in the second 
step, DA method has no effect on the prediction perfor-
mance of MRSα in both discovery and validation cohorts 
(p value>0.05) using the Kruskal-Wallis test on the 
AUC, except for Simpson index in the discovery cohort 
(p value=0.03) (Figure S6). MRSαs constructed with 
ANCOM-BC, ALDEx2, and Maaslin2, which all have 
been well-recognized [32, 33] and have comparable per-
formances. It supports our suggestion that to carry over 
the evaluation results of the DA tests from an objective 
benchmark work to guide the selection of DA test in the 
MRS framework. In terms of comparisons among Shan-
non, Simpson, and Observed indices, Observed index-
based MRSα has the highest AUCs, followed by Shannon 
index, while Simpson index has the lowest AUCs, in the 
discovery cohort (Figure S7). On the other hand, Shan-
non index consistently has better or comparable AUCs in 
the validation cohort. Meanwhile, Observed and Simp-
son indices introduce more variation in the predictive 
performance of MRSα (Figure S7). Observed index lacks 
some reproducibility in the validation cohort, compared 
to its impressing performance in the discovery cohort, 
probably because it only accounts for species richness. 
Taken together, Shannon index based MRSα has relatively 
more robust and consistent prediction performance. 
With existing discussions [32, 33] and the observations 
above in this manuscript, we include various DA meth-
ods commonly used and recommended in the micro-
biome association studies and various alpha diversity 
indices in the MRS R package to let the proposed MRS 
framework informative and more practically valuable.

The findings of this study have some limitations. First, 
considering microbial profile varies across ethnicities as 
well as geographies [58–60], it is necessary to evaluate the 
portability of MRS between populations. More advanced 
methods will be required to reduce the bias due to ethni-
cal or geographical differences. Second, the microbiome 
data have versatile characteristics and unique features, 
such as phylogenetic tree structure, functional structure, 
hierarchical taxonomy, and dynamic nature, which also 
play critical roles in analytical accuracy and efficiency 
[61, 62]. Incorporating such features may improve the 
accuracy of MRS. Third, derivation and validation of 

MRS require large-scale microbiome studies. However, 
the high cost of metagenomics sequencing restrict the 
comprehensive external validation. Despite the above 
challenges, this paper proposes a practicable way to sum-
marize the microbial profiles and provides promising 
findings for comprehensive microbiome research to bol-
ster the microbiome’s utility as a potential source of novel 
therapeutic features.

Conclusions
This paper sheds light on the utility of the microbiome 
data for disease prediction and multi-omics integration 
by converting the complex microbial profile into a con-
tinuous risk score. The proposed MRS tool provides a 
great potential in studying the complex microbial eco-
system, understanding the microbiome’s role in disease 
diagnosis and prognosis, and exploring microbiome’s full 
clinical potential.
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