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Abstract 

Background:  The emergence of antimicrobial resistance is a major threat to global health and has placed pressure 
on the livestock industry to eliminate the use of antibiotic growth promotants (AGPs) as feed additives. To mitigate 
their removal, efficacious alternatives are required. AGPs are thought to operate through modulating the gut micro-
biome to limit opportunities for colonization by pathogens, increase nutrient utilization, and reduce inflammation. 
However, little is known concerning the underlying mechanisms. Previous studies investigating the effects of AGPs on 
the poultry gut microbiome have largely focused on 16S rDNA surveys based on a single gastrointestinal (GI) site, diet, 
and/or timepoint, resulting in an inconsistent view of their impact on community composition.

Methods:  In this study, we perform a systematic investigation of both the composition and function of the chicken 
gut microbiome, in response to AGPs. Birds were raised under two different diets and AGP treatments, and 16S rDNA 
surveys applied to six GI sites sampled at three key timepoints of the poultry life cycle. Functional investigations were 
performed through metatranscriptomics analyses and metabolomics.

Results:  Our study reveals a more nuanced view of the impact of AGPs, dependent on age of bird, diet, and intestinal 
site sampled. Although AGPs have a limited impact on taxonomic abundances, they do appear to redefine influ-
ential taxa that may promote the exclusion of other taxa. Microbiome expression profiles further reveal a complex 
landscape in both the expression and taxonomic representation of multiple pathways including cell wall biogenesis, 
antimicrobial resistance, and several involved in energy, amino acid, and nucleotide metabolism. Many AGP-induced 
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Introduction
Over the past 70 years, the chicken industry has made 
remarkable gains in production efficiency largely driven 
by intensive breeding programs. Augmenting these 
breeding programs has been the use of sub-therapeu-
tic doses of antibiotics (antibiotic growth promotants 
(AGPs)), added to chicken feed to enhance produc-
tion efficiency [1]. AGPs are thought to operate through 
modulating the gut microbiome to limit opportunities for 
colonization by pathogens, increase nutrient utilization, 
and reduce inflammation [2–4]. However, due to global 
concerns over the association of AGPs with antimicro-
bial resistance (AMR) [5–7], there is increasing pressure 
to phase out their use; Europe banned their use in 2003, 
while the USA and Canada have recently implemented 
strategies to eliminate their use. Such bans are not with-
out consequences [8]. In Europe, for example, the ban 
on AGPs has resulted in the increase of systemic infec-
tions [9], requiring greater application of therapeutic 
doses [10, 11]; a study of drug-free programs in Canada 
identified a reduction in production efficiency [12]. Con-
sequently, to mitigate against the removal of AGPs, effi-
cacious alternatives are urgently required. Given their 
role in modulating the microbiome, much attention has 
focused on the use of prebiotics and probiotics [13–15]. 
The key to identifying and developing appropriate formu-
lations is understanding what impact AGPs have on the 
gut microbiome.

Previous studies of the chicken gut microbiome have 
typically used 16S rRNA sequence surveys to ana-
lyze community composition, i.e., which taxa are pre-
sent and in what abundance [16–19]. Consequently, a 
major focus has been on community dynamics, with 
only limited functional insights. Prior to hatching, the 
chicken gut is considered sterile [20]; although bacte-
rial DNA has been reported in eggs [21], live bacteria 
have yet to be recovered [22]. Development of the gut 
microbiome starts with an initial wave of colonization 
by aerobic and facultative anaerobes including Escheri-
chia coli, lactobacilli, and Streptococci [23], after which 
obligate anaerobes including members of Bacteroides, 

Bifidobacterium, and Clostridium dominate. Although 
stable, these communities vary over the length of the 
gastrointestinal (GI) tract, with lactobacilli dominating 
the upper GI and Clostridiales dominating the lower GI 
[6, 7, 24, 25]. Helping define these community dynam-
ics are alterations in diet, together with contributions 
from host genetics and other environmental factors 
such as geography and housing [26–31]. For exam-
ple, chickens raised on different diets, such as corn or 
wheat, exhibit significant shifts in microbiota compo-
sition and function, reflecting differences in nutrient 
content [26, 27], while the use of reused (as opposed 
to fresh) litter has been shown to increase the relative 
abundance of Faecalibacterium prausnitzii, a notable 
butyrate producer [30]. Complementing these stud-
ies, several investigations have explored the impact of 
AGPs. For example, virginiamycin treatment reduced 
the relative abundance of lactobacilli [7, 32], although 
the effects were greatest in the small intestine. Consist-
ent with this, avilamycin treatment has different effects 
on the ileum and cecal microbiome, increasing diver-
sity in the former while reducing diversity in the latter 
[33]. However, in contrast, a study examining treatment 
with bacitracin methylene disalicylate found no signifi-
cant impact on diversity in either ileal or cecal commu-
nities [34]. Together, these studies suggest that AGPs 
have a limited impact on microbiome structure that 
may be restricted to specific taxa at specific sites within 
the GI tract. However, due to their reliance on marker 
gene technologies such as 16S rRNA surveys, they yield 
only limited functional insights.

Here, we not only perform a comprehensive inves-
tigation of the role of diet, age, and AGP treatment 
on community structure across the chicken GI tract 
but also additionally apply whole microbiome RNA 
sequencing (metatranscriptomics), to reveal expressed 
functions and the taxa responsible [35–37]. Crucially, 
as we show here, the use of metatranscriptomics has 
the potential to reveal changes in microbiome function 
even in the absence of changes in community composi-
tion [38].

changes in metabolic enzyme expression likely serve to redirect metabolic flux with the potential to regulate bacterial 
growth or produce metabolites that impact the host.

Conclusions:  As alternative feed additives are developed to mimic the action of AGPs, our study highlights the need 
to ensure such alternatives result in functional changes that are consistent with site-, age-, and diet-associated taxa. 
The genes and pathways identified in this study are therefore expected to drive future studies, applying tools such 
as community-based metabolic modeling, focusing on the mechanistic impact of different dietary regimes on the 
microbiome. Consequently, the data generated in this study will be crucial for the development of next-generation 
feed additives targeting gut health and poultry production.
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Results
Microbiome composition and diversity varies across GI site, 
diet, and age
To investigate the role of diet, age, GI site, and AGPs on 
microbiome structure and function, we raised 60 broil-
ers (Ross 708, Aviagen) under four feeding regimes: corn 
based, wheat based, corn based with bacitracin methyl-
ene disalicylate (BMD; Zoetis Canada Inc., Kirkland, QC) 
and monensin (Coban, Elanco Canada Limited, Guelph, 
ON) supplementation, and wheat based with bacitracin 
and monensin supplementation (see “Methods”; Fig.  1). 
Consistent with commercial feed practices that optimize 
production, birds were initially fed a starter diet for 10 
days post hatch, followed by a grower diet until day 24 
and finally fed a finisher diet until day 40 post hatch (Sup-
plemental Table  1). In line with these switches in diet, 
five birds from each regime were sacrificed at 10, 24, and 
40 days post hatch. From each bird, blood samples were 
obtained for metabolomics analyses and the contents of 
six GI sites prepared for 16S rRNA survey sequencing. 
For birds sacrificed at days 24 and 40, we additionally per-
formed whole microbiome RNASeq (metatranscriptom-
ics) on jejunum and cecal samples. As expected, given the 
low number of replicates, no statistically significant differ-
ences in body weight were observed in pairwise compari-
sons between treatment groups (Supplemental Table 2).

Overall, we collected samples for 335 sites from 53 birds. 
From these samples, we generated 23,513,050 reads for 16S 
rRNA analysis of which 15,532,459 reads were used for 
analysis of OTUs (Fig.  1; Table  1; Supplemental Table  2). 
Read depth varied across samples, with the colon exhib-
iting the highest number of assigned reads (84,930 per 
sample) and the duodenum the lowest (9127 per sample). 
Across samples, we found that different body sites exhib-
ited differences in community composition and complex-
ity (Fig. 1; Tables 1 and 2; Supplemental Table 3). The colon 
and ceca samples had the greatest number of OTUs (51.5 
and 52 per sample respectively), while the ileum, gizzard, 
and jejunum had the fewest (19.1, 20.4, and 21.1 per sam-
ple respectively). Unlike the jejunum and ileum, which tend 
to be dominated by members of Lactobacillaceae, duode-
nal samples contained additional members of the Staphy-
lococcaeae family, together with unidentified members of 
the Clostridiales order absent from the jejunum or ileum. 

These additional taxa help drive the relative increase in 
diversity associated with the duodenum (Table 1; Supple-
mental Table 3).

As the GI tract transitions to a more anaerobic envi-
ronment, we observed the replacement of Lactobacil-
laceae with Clostridiales as the dominant family in 
the ceca and colon. Indeed, in general, the taxonomic 
profiles of the ceca and colon were distinct from other 
sites, featuring obligate anaerobes from the Clostridia 
order (e.g., Ruminococcaceae and Lachnospiraceae), 
as well as many OTUs that could only be classified at 
the level of phylum (Firmicutes), class (Clostridia), 
or order (Clostridiales), resulting in the significant 
increase in diversity observed in these two sites (Sup-
plemental Table 3). Linking the upper and lower GI, we 
found the ileum featured a distinctively high relative 
abundance of Erysipelotrichaceae particularly for birds 
fed a corn diet and sampled at days 24 and 40. Also 
noteworthy was a relatively high proportion of reads 
from day 10 samples obtained from the ceca and colon, 
mapping to Enterobacteriaceae, which decreases with 
the later timepoints (and almost absent in the birds 
fed the corn-based diets). Overall, these results are 
consistent with previous studies that suggest that GI 
site, diet, and age have a major impact on microbiome 
structure [16, 19, 25–27, 39, 40].

Site of sampling and host age have greater impact 
on microbiome structure than diet and AGPs
To further examine the relative influence of GI site, 
diet, and age on microbiome structure, we performed a 
weighted UniFrac analysis (Fig. 1D) of all samples. This 
analysis reveals that site of sampling has the greatest 
impact on microbiome structure, followed by host age, 
with diet and AGPs having minimal relative impact. 
PCoA plots reveal a clear separation between samples 
collected from the gizzard and those from the ceca and 
colon, reflecting the significant physicochemical dif-
ferences associated with these sites. Samples from the 
remaining three sites (duodenum, jejunum, and ileum) 
exhibit considerable overlap. Focusing on sampling age, 
we find that dispersion of samples depends on the site 
being sampled (Supplemental Fig. 1). For example, day 
10 samples from the ceca and colon cluster separately 

(See figure on next page.)
Fig. 1  Overview of study design and summary of 16S rRNA data. A Birds are fed one of two diets (corn and wheat) in the presence and absence of 
AGPs to yield four conditions. Sets of five birds are harvested at days 10, 24, and 40. B From each bird, six intestinal sites were sampled for 16S rRNA 
analysis; two intestinal sites (jejunum and ceca) were sampled for metatranscriptomics and blood samples collected for metabolomics analysis. 
C Area plots showing major taxa identified in the six sampling sites of the chicken GI tract at days 10, 24, and 40 across 4 different treatments. 
Only taxa with an abundance > 1% were included. Note, relative to the older birds, the upper GI sites (gizzard, duodenum, and jejunum) of the 
10-day-old birds featured a high proportion of reads mapping to Streptophyta, likely reflecting a reduced breakdown of the plant-based dietary 
components. D PCoA plots of weighted UniFrac distances for all samples and samples grouped by sampling sites, age, diet, and AGPs. For each plot, 
results from PERMANOVA and PERMDISP calculations are shown



Page 4 of 29Zou et al. Microbiome          (2022) 10:127 

Fig. 1  (See legend on previous page.)
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from the more mature samples. Jejunal and ileal sam-
ples, particularly those associated with a wheat-based 
diet, also appear to delineate by age while those from 
the gizzard and duodenum do not. To examine the 
influence of diet and addition of AGPs on community 
structure, we grouped samples by age and sampling 
sites and performed PERMANOVA tests (Table  2). 
Our analysis reveals that diet had a greater impact on 
microbiome structure than AGPs, with more sites and 
timepoints exhibiting significant differences in micro-
biome structure. Furthermore, while the diet had a 
significant impact on microbiome structure across all 
three timepoints for the gizzard and ileum, the colon 
samples were unperturbed regardless of treatment.

Revisiting the diversity analyses (Supplemental Table 3) 
reveals a complex landscape of response to diet and 
AGPs that varies according to site and age of sampling. 
For example, under specific diet/AGP treatments, several 
sites respond with either an increase in diversity at day 
24 relative to the other timepoints (e.g., gizzard/wheat 
and duodenum/wheat) or a decrease in diversity at day 
24 relative to the other timepoints (e.g., duodenum/corn 
+ AGPs and ileum/all treatments). Such nuance is other-
wise lost when simply relying on changes in the relative 
abundance of different taxa (Fig. 1C).

Together, these findings highlight the complex relation-
ships between diet, age, and AGPs, with microbial com-
munity structure across different sites in the GI tract. In 

Table 1  Overview of rRNA sequencing — average number of reads and OTUs generated for each site

GI site Raw (pairs) Merged (pairs) Filtered (reads) Final (reads) Observed OTUs

Gizzard 78297.38 68914.39 56924.55 56770.07 20.41

Duodenum 20298.34 17733.02 9225.90 9127.33 40.34

Jejunum 41324.11 35743.49 25318.60 25236.29 21.06

Ileum 84388.45 73348.41 58219.43 57851.79 19.12

Ceca 77254.05 66116.41 47573.59 46057.88 51.95

Colon 121839.81 104843.98 86704.26 84930.36 51.45

Table 2  Influence of diet, AGPs, and combined treatment (“interaction” column) on microbiome structure as measured by 
PERMANOVA using weighted UniFrac distances

PERMDISP displays p-values as calculated through the PERMDISP test. Statistical significance is represented by the following: *p < 0.05; **p < 0.01; ***p < 0.001

GI site Time Diet (Accounting for AGPs) AGPs (Accounting for diet) Interaction

R2 p-val R2 p-val R2 p-val PERMDISP

Gizzard D10 0.779 *** 0.008 0.444 0.015 0.282 0.622

D24 0.325 *** 0.032 0.525 0.127 * 0.136

D40 0.741 *** 0.014 0.332 0.012 0.383 0.475

Duodenum D10 0.121 * 0.227 ** 0.052 0.229 0.16

D24 0.105 0.169 0.024 0.856 0.023 0.863 0.988

D40 0.064 0.218 0.125 * 0.037 0.637 **

Jejunum D10 0.404 *** 0.085 0.085 0.034 0.356 0.536

D24 0.014 0.897 0.05 0.582 0.079 0.336 0.7332

D40 0.053 0.386 0.049 0.442 0.035 0.67 0.363

Ileum D10 0.297 *** 0.202 ** 0.098 * 0.547

D24 0.187 ** 0.024 0.808 0.074 0.218 0.81

D40 0.308 *** 0.025 0.609 0.029 0.529 0.182

Ceca D10 0.13 0.052 0.04 0.486 0.085 0.141 0.941

D24 0.249 ** 0.066 0.229 0.043 0.461 **

D40 0.105 ** 0.136 *** 0.077 * 0.066

Colon D10 0.118 0.054 0.099 0.101 0.039 0.549 0.97

D24 0.106 0.206 0.034 0.752 0.12 0.164 0.89

D40 0.113 0.053 0.1 0.075 0.035 0.583 0.737
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the following section, we explore how these relationships 
might translate to changes in the relative abundance of 
specific taxa.

Changes to specific taxonomic groups as a result of diet 
and AGPs
Representing one of the most diverse sites in the chicken 
GI tract, cecal microbiota have been shown to play a 
critical role in immune response [41] and growth perfor-
mance [42]. We therefore examined how specific taxa in 
the ceca responded to changes in diet and AGP exposure. 
In initial analyses, we performed an ANOVA-like analy-
sis (see “Methods”) to examine the impact of main effects 
(diet and AGPs) as well as their interaction on taxon 
abundance in day 24 and day 40 samples (Supplemental 
Table  4). Consistent with our previous PERMANOVA 
analyses on community structure (Table  2), changes in 
diet had a greater impact on the community than the 
application of AGPs. We also found a greater impact on 
the day 40 samples (37 taxa impacted by diet only, 12 taxa 
impacted by AGPs only, 4 taxa impacted by both diet and 
AGPs) relative to the day 24 samples (6 taxa impacted by 
diet only, 2 taxa impacted by AGPs only), likely reflect-
ing the greater complexity associated with these sam-
ples. Furthermore, we found that diet and AGPs had a 
significant interaction effect on eight taxa in the day 40 
samples (comprising four Clostridiales; two Enterobac-
teriaceae, and two uncharacterized Firmicutes) and only 
a single taxon in the day 24 samples (Corynebacterineae 
spp.). Given this complex landscape of the effects of age, 
diet, and AGPs on taxa, we next dissected these relation-
ships by exploring each combination of diet and AGP in 
isolation.

Applying DESeq2, we identified a total of 251 of the 
1519 taxa associated with day 24 and day 40 cecal sam-
ples, exhibiting significant differences in abundance 
in the eight pairwise comparisons involving diet and 
AGPs (Supplemental Fig. 2; Supplemental Table 4). As 
before, most were associated with day 40 comparisons 
(187 taxa) with little overlap between day 24 and day 
40 comparisons (25 taxa; Fig. 2A). Focusing on the day 
40 samples, while there was relatively low concordance 
in responses to diet in the presence and absence of 
AGPs (i.e., comparisons involving corn v wheat — 134 

taxa and corn + AGPs v wheat + AGPs — 48 taxa), 
of the 23 taxa that were significantly perturbed in 
both comparisons, 20 exhibited the same direction in 
response to diet, irrespective of AGPs. Since they were 
also unperturbed by the addition of AGPs when the 
diet did not change (i.e., comparisons involving corn v 
corn + AGPs and wheat v wheat + AGPs), these rep-
resent taxa that are sensitive to diet but unaffected by 
AGPs. Conversely, of the 28 taxa that responded only 
to AGP treatment in the day 40 samples (i.e., corn v 
corn + AGPs and/or wheat v wheat + AGPs), only 3 
were common to both diets (Fig. 2B). Since these taxa 
also exhibited a similar direction of response to AGPs 
irrespective of diet, they represent taxa that are sensi-
tive to AGPs but unaffected by diet. In general, how-
ever, consistent with the complexity observed in the 
diversity and main effects analysis, taxon responses 
to AGPs were dependent on diet. For example, in the 
day 40 samples, 43 taxa were perturbed only in the 
corn v wheat and corn v corn + AGPs comparisons, 
while 16 taxa were perturbed only in the corn v wheat 
and wheat v wheat + AGPs comparisons (Supplemen-
tal Fig.  2; Supplemental Table  4). The consistency in 
responses across conditions (e.g., higher abundance 
in corn relative to wheat or AGPs) suggests that AGPs 
may eliminate dietary-induced specificities associated 
with these taxa.

Analysis of the day 24 samples revealed that unlike 
the day 40 samples, more taxa were perturbed upon 
change in diet in the presence of AGPs (corn v wheat 
— 21 taxa; corn + AGPs v wheat + AGPs — 65 taxa). 
Also, unlike the day 40 samples, only half of the 10 taxa 
shared in these comparisons exhibited the same direc-
tion of response. This suggests that AGPs increase 
the sensitivity of the day 24 microbiome to dietary 
perturbation more than the day 40 microbiome. It is 
important to note, however, that these results may be 
confounded by the lower number of replicates asso-
ciated with this timepoint for the two corn-based 
treatments (3 and 4 for the corn and corn + AGPs 
treatments, respectively).

In summary, at least for day 40 samples, more taxa 
were affected by diet than by AGPs. In addition, we 
identified taxa that were robust to AGPs but sensitive 

Fig. 2  Microbial changes and interactions within the ceca. A Upset plot showing overlap in taxa exhibiting significant differential abundance 
across cecal comparisons between the four treatments over two timepoints (W = wheat; WA = wheat + AGPs; C = corn; CA = corn + AGPs). 
Only combinations with at least three taxa exhibiting significant changes are shown; remaining combinations are summarized in the last column. 
Note, to reflect the inability of 16S rRNA surveys to provide equal taxonomic resolution across all phyla and in line with previous studies [43], taxa 
are represented by a mix of taxonomic levels. B Box and whisker plots showing the 28 taxa that exhibit significant differences (as indicated by 
asterisks) in abundance due to AGPs (and not diet) in the day 40 cecal samples. C Co-occurrence networks generated with DGCA [44] for day 40 
ceca samples. Each node represents a genus, shaded according to higher taxonomic levels (see inset). Links between genera indicate a significant 
correlation within that dataset

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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to a change in diet, as well as a smaller number of taxa 
that were robust to a change in diet but sensitive to 
AGPs. In the next section, we explore how these effects 
translate in changes in community organization.

Co‑occurrence networks reveal AGPs disrupt microbial 
community organization in the ceca
Previous analyses have shown that microbial commu-
nities in the chicken ceca may be organized through 
influential taxa that serve to promote the presence or 
absence of other taxa [31]. We were therefore interested 
in examining if AGPs might perturb interactions between 
taxa resulting in their mutual presence or absence. Due 
to their greater complexity, we focused our analyses on 
the day 40 cecal samples. Employing the Differential 
Gene Correlation Analysis R package (DGCA [44];), we 
constructed networks of interactions between genera 
for each diet/AGP combination. In addition to reveal-
ing interactions between taxa representing their mutual 
presence or exclusion in each sample type, we also 
identified interactions that were significantly altered 
in response to AGP exposure (Fig.  2C). Despite sharing 
the vast majority of genera, few interactions were shared 
between diets, and the addition of AGPs resulted in dra-
matic changes to their respective networks. Under a 
corn diet, AGPs promote a gain in correlations between 
the presence/absence of genera (44 v 18 significant cor-
relations in the presence and absence of AGPs respec-
tively). This gain was largely driven by a group of genera 
comprising positive correlations between Acinetobac-
ter, Novosphingobium, Stenotrophomonas, Turicibacter, 
Clostridirum XIVb, Sphingomonas, and Anaerotruncus. 
Furthermore, two of these interactions (Sphingomonas 
and Novosphingobium and Turicibacter and Clostridirum 
XIVb) were common to both diets, suggesting they rep-
resent mutually supporting taxa, which together exert a 
significant influence on other taxa, such as the exclusion 
of Clostridium XVIII (associated with 3 of the 6 interac-
tions that were significantly different between control 
and AGP samples under a corn diet). While no dramatic 
gain in correlations was observed for the wheat diet (40 
v 31 significant correlations in the presence and absence 
of AGPs respectively), only 3 correlations were common 
to both treatments, again emphasizing a dramatic shift in 
community organization.

Based on our analyses of 16S rRNA datasets, relative 
to other factors such as diet and age, AGPs have only a 
limited impact on the composition of the chicken gut 
microbiome. However, the changes in community net-
work structure observed under both diets suggest that 
AGPs mediate a key role in community organization, 
potentially defining influential taxa that may promote 
the exclusion of other taxa. The identification of these 

influencers and their ability to exclude potential patho-
gens may therefore offer alternatives to AGPs that pro-
mote poultry gut health. In the following sections, we 
explore how such organizational changes associated with 
diet and AGPs may also be related to functional changes 
in the microbiome.

Taxonomic profiles derived from metatranscriptomics are 
similar but not identical to 16S rRNA surveys
To investigate functional changes within the chicken GI 
tract, we selectively deployed whole microbiome RNASeq 
(metatranscriptomics) to samples collected from birds at 
24 and 40 days of age. We focused on two sites: jejunum 
(a key site of digestion and absorption) and the ceca (a 
major site for invasive enteric pathogens, even in appar-
ently healthy birds). Across the 16 different combina-
tions of diets, GI site, age, and AGP regime, we generated 
an average of ~35 million reads for each of 73 samples 
(Table 3; Supplemental Table 5). The resultant sequence 
datasets were parsed through our in-house metatran-
scriptomic pipeline (see “Methods”), identifying an aver-
age of 23.6 and 3 million reads that could be assigned to 
a microbial transcript for the cecal and jejunum samples 
respectively. Across all datasets, 184,692 unique bacterial 
transcripts were identified (Supplemental Table  6). The 
major source of sequence disparity between the two sites 
appears to be related to host contamination, with 8.3 and 
28.8 million reads assigned to chicken transcripts for the 
cecal and jejunum samples respectively. While it is pos-
sible that jejunal gut epithelial cells may be more active 
than those in cecum, we expect that such a difference in 
host contamination largely reflects differences in the den-
sity of bacteria in the two locations [45].

Table 3  Summary of metatranscriptomics data generated from 
samples obtained from the jejunum and ceca

GI site

Jejunum Ceca

Samples 36 37

Read distribution 
(Average per sample)

Total reads 35,656,008 35,024,959

Adaptor/low quality 882,679 1,220,289

Dereplicated reads 6,819,170 14,545,294

Host 28,831,231 8,329,729

Diet associated 2,186,540 303,640

rRNA 716,066 1,567,325

Putative mRNA 3,039,403 23,603,976

Reads mapped to 
known transcript

1,771,348 13,254,020

Unique transcripts 49,354 184,279

Unique enzymes 1,034 1,140
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Comparisons between the taxonomic representation 
of metatranscriptomic reads with those obtained from 
16S rRNA surveys from the same samples reveal the 
two methodologies yield similar but not identical pro-
files (Fig.  3). For example, in the cecal samples, relative 
to metatranscriptomics, 16S surveys reveal an abundance 
of reads mapping to “Other Clostridiales,” “Other Fir-
micutes,” and “Other Bacteria,” suggesting taxa assigned 
to these groups have limited activity. Conversely, in the 
metatranscriptomic profiles of the cecal samples, we see 
an increase in the relative abundance of reads mapping 
to Lachnospiraceae, Clostridiaceae, Lactobacillaceae, 
Enterobacteriaceae, Alphaproteobacteria, and “Other 
Proteobacteria,” taxa that likely mediate highly active 

roles in the microbiome. Comparisons between jeju-
num samples exhibit similar discrepancies, with the day 
40 samples being notable for an increase in transcripts 
from Erysipelotrichaceae. As for the 16S surveys, we find 
the jejunum samples are dominated by reads mapping 
to Lactobacillaceae transcripts. Interestingly, taxonomic 
profiles based on reads mapping rRNA in the metatran-
scriptomic dataset do not reflect those from either the 
complete set of metatranscriptomic assignments or those 
based on 16S surveys. This highlights taxonomic biases 
in the rRNA depletion kit used during preparation of the 
metatranscriptomic libraries and emphasizes why rRNA 
datasets derived from these libraries cannot be used to 
provide useful taxonomic readouts.

Fig. 3  Comparison of taxon distributions for metatranscriptomic and 16S rRNA datasets. Taxonomic breakdown of sequences generated for each 
sample from the following: all metatranscriptomic reads mapping to a known gene/genome (top), metatranscriptomic reads mapping to rRNA 
sequences (middle), and mapped 16S rRNA reads (bottom)
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Beyond taxonomic representation, we find that the 
cecal samples are associated with over three times 
more unique microbial genes than the jejunum samples 
(184,279 v 49,354, respectively). However, the cecal sam-
ples are only associated with ~100 more unique enzymes. 
Rarefaction analyses suggest that while the sequencing 
depth associated with cecal samples was sufficient to 
recover most enzymatic activities, many jejunum sam-
ples do not appear saturated in terms of sequence cov-
erage (Fig.  4A). Consequently, we focus our subsequent 
analyses on cecal samples. Principal component analy-
sis based on gene expression of the cecal samples reveal 
the first two components are able to separate samples on 
the basis of diet and, at least for wheat samples, day of 
sampling (Fig. 4B). Furthermore, these components also 
separate two types of AGP samples (day 24 wheat and 
day 40 corn), suggesting that at least under these com-
binations of diet:day of sampling, the addition of AGPs 
impacts microbial gene expression. To examine diet and 

AGP effects further, we performed differential expression 
analysis, using DESeq2 [46, 47] within an ANOVA-like 
framework similar to that performed on taxa abun-
dances (see “Methods”; Supplemental Table  7). Consist-
ent with our previous analyses, changes in diet had a 
greater impact on the community than the application of 
AGPs, and day 40 samples (3422 genes impacted by diet; 
866 transcripts impacted by AGPs) were more affected 
than day 24 samples (1218 transcripts impacted by diet; 
23 genes impacted by AGPs). Interestingly, we identi-
fied only 30 transcripts in the day 40 samples (and none 
in the day 24 samples) as being subject to diet by anti-
biotic interactions. This may reflect both the relatively 
low number of samples used in this study and the large 
number of microbial genes identified, which together 
limit our ability to identify genes subject to diet by AGP 
interactions. Therefore, to further dissect these relation-
ships further and identify the types of genes and func-
tions impacted by diet and AGPs, we performed pairwise 

Fig. 4  Overview of metatranscriptomic analysis. A Rarefaction analysis showing the number of enzymes detected (as defined by unique EC 
numbers) as a function of read depth for ceca and jejunum samples. B Principal component analysis (PCA) based on annotated microbial 
gene expression in ceca samples. Each node represents an individual ceca sample (see inset key for type of sample). C Overlap of significantly 
differentially expressed genes across ceca samples, comparing AGP treatments (left) and diet (right)
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comparisons of gene expression differences for each 
combination of diet and AGP in isolation.

From our pairwise comparisons of AGP treatments, 
we identified 26,829 and 1059 microbial transcripts that 
exhibited significant differential expression for cecal sam-
ples and jejunum samples respectively (Fig.  4C). For the 
pairwise comparisons of diets, we identified 35,461 and 
990 microbial transcripts that exhibited significant differ-
ential expression for cecal samples and jejunum samples 
respectively. Although most of these genes were unique 
to a specific pairwise comparison, we identified core sets 
of 202 and 469 microbial transcripts that exhibited sig-
nificant differential expression across all AGP and dietary 
comparisons respectively (Supplemental Table  8). Gene 
set enrichment analyses (GSEA) reveal these core sets are 
associated with several metabolic pathways as defined by 
the Kyoto Encyclopedia of Genes and Genomes (KEGG; 
Supplemental Table 9). For the core set of dietary compar-
isons, we identified several pathways involved in nucleo-
tide metabolism (purine and pyrimidine metabolism), 
amino acid biosynthesis (alanine, aspartate and glutamate 
metabolism, and arginine biosynthesis) and the produc-
tion of energy (glyoxylate and dicarboxylate metabolism; 
pentose phosphate pathway and glycolysis). This likely 
reflects transcriptional responses to different nutrient 
environments. For the AGP comparisons, in addition to 
the two amino acid pathways identified in the diet com-
parisons, we also noted an enrichment of the purine path-
way. This latter pathway is of interest as previous studies 
have shown that cellular stress associated with antibiotics 
results in a depletion of purine nucleotides [48].

Having identified metabolic pathways associated 
with core sets of genes associated with changes in diet 
or administration of AGPs, in the following section, 
we extend these analyses to further dissect the impact 
of AGPs, diet, and age on the expression of metabolic 
enzymes and pathways encoded by the microbiome.

AGPs alter the expression of multiple metabolic pathways
Focusing on the set of 26,829 transcripts that exhibited 
significant differences in expression across the four pair-
wise comparisons involving AGPs in the ceca (i.e., day 24, 
the presence and absence of AGPs for corn- and wheat-
based diets; day 40, the presence and absence of AGPs for 
corn- and wheat-based diets), we identified 744 unique 
enzymes. Placing these in the context of KEGG-defined 

metabolic pathways and applying GSEA identified 32 
pathways significantly enriched in these enzymes, many 
featuring complex patterns of response to diet and/or 
AGPs (Fig. 5). Of these, 20 pathways exhibited significant 
differences across all four comparisons. We also identified 
several pathways restricted to specific comparisons. For 
example, five pathways (phenylalanine, tyrosine and tryp-
tophan biosynthesis, amino sugar and nucleotide sugar 
metabolism, galactose metabolism, starch and sucrose 
metabolism, and thiamine metabolism) exhibited signifi-
cant changes in pathway expression across all comparisons 
with the exception of day 40 wheat-based samples. These 
and other pathways restricted to specific comparisons are 
likely related to changes in other feed ingredients associ-
ated with the grower and finisher diets; relative to the 
finisher diets, the grower diets contain a higher percent-
age of soybean meal at the expense of corn/wheat, canola 
meal, and vegetable fat (Supplemental Table 1). From the 
profiles of changes in enzyme expression observed in the 
four pairwise comparisons (Supplemental Table  10), we 
found that the corn-based diets exhibit fewer upregu-
lated enzymes in the presence of AGPs than the wheat-
based samples at 24 days (340 v 592 enzymes respectively). 
However, this pattern appears reversed for the 40-day 
samples (556 v 310 enzymes respectively). Interestingly, 
differentially expressed enzymes associated with the pen-
tose phosphate pathway were all upregulated in the pres-
ence of AGPs, with the exception of samples derived from 
birds fed a corn diet at day 40, which also exhibited some 
enzymes that were downregulated. This diet-sensitive pat-
tern suggests that AGPs may interfere with regular path-
ways microbiota rely on for energy production.

Related comparisons of the 35,461 transcripts exhibiting 
significant differential expression between diets (i.e., day 24, 
corn v wheat in the presence and absence of AGPs; day 40, 
corn v wheat in the presence and absence of AGPs) revealed 
1141 unique enzymes (Supplemental Fig.  3; Supplemental 
Table 10) enriched in 33 KEGG-defined pathways. Of these, 
22 pathways exhibited significant differences across all four 
comparisons (day 24, corn v wheat in the presence and 
absence of AGPs; day 40, corn v wheat in the presence and 
absence of AGPs). As for the comparisons between AGPs 
and controls, we identified several pathways restricted to 
specific comparisons. For example, four pathways (galac-
tose metabolism, pentose and glucuronate interconversions, 
starch and sucrose metabolism, and thiamine metabolism) 

(See figure on next page.)
Fig. 5  Metabolic pathways significantly enriched with enzymes exhibiting significant changes in abundance in the presence and absence of AGP. 
Thirty-two pathways as defined by KEGG were enriched in enzymes exhibiting significant changes in expression in either ceca or jejunum samples, 
in the presence or absence of AGPs. Each pie chart shows the proportion of enzymes that were significantly up- (orange) or down-(blue) regulated 
in the presence of AGPs. White sectors indicate enzymes that were identified in the pathway but which did not exhibit significant differential 
expression
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Fig. 5  (See legend on previous page.)
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were restricted to the 2-day 24 comparisons. Conversely, 
pantothenate and CoA biosynthesis were restricted to day 
40 comparisons. As noted above, the restriction of enzyme 
expression patterns to specific pairwise comparisons is 
likely a reflection of changes in diets used to raise the birds. 
Profiles of enzyme expression patterns in these dietary 
comparisons revealed that at 24 days, fewer enzymes are 
significantly upregulated under a wheat-based diet rela-
tive to a corn-based diet in the absence of AGPs (186 v 522 
enzymes in the absence and presence of AGPs respectively; 
Supplemental Fig.  3; Supplemental Table  10). As before, 
this pattern was reversed for the day 40 samples (522 v 262 
enzymes in the absence and presence of AGPs respectively). 
Consistent with the analysis performed for all transcripts, 
principal component analysis (PCA) of enzyme expression 
profiles (Supplemental Fig.  4) reveals samples from day 
24 birds fed wheat with AGPs, cluster separately from the 
other samples. This again highlights complex interactions 
between diet and AGP use on microbial gene expression.

For the jejunum samples, consistent with transcript 
expression, we identified fewer enzymes exhibiting differen-
tial expression across samples and consequently fewer met-
abolic pathways enriched in these enzymes (Fig. 5). Notable 
pathways exhibiting consistent differential responses 
include glycolysis, pyruvate metabolism, and purine metab-
olism. For both cecal and jejunum samples, these path-
ways were also among those exhibiting the highest levels 
of expression (Supplemental Fig.  5). Conversely, pathways 
involved in amino acid metabolism, lipopolysaccharide bio-
synthesis, fatty acid biosynthesis, and co-factor and vitamin 
metabolism exhibited the lowest levels of expression.

Our findings that AGPs impact the expression of many 
pathways involved in carbohydrate metabolism and energy 
production are in line with a recent study of the murine gut 
microbiome, which found that antibiotic exposure, particu-
larly in the presence of glucose and polysaccharides, alters 
metabolic pathway expression [49].

Diet and AGPs alter enzyme expression patterns 
in pathways involving the production of energy
Given their interconnected roles in the production of 
energy, relatively high expression, and response to dietary/
AGP treatments, we examined changes in the patterns of 
expression of enzymes involved in the energy production 
pathways (glycolysis, the pentose phosphate pathway, and 
the TCA cycle; Supplemental Table  11). Comparing the 

samples collected at 24 days (Fig. 6), Lactobacillaceae dom-
inate enzyme expression in glycolysis under a corn-based 
diet, while Lachnospiraceae, Clostridiaceae, and Entero-
bacteriaceae dominate under a wheat-based diet. This is 
consistent with the change in taxonomic profiles associ-
ated with all transcripts relative to the 16S rRNA datasets, 
emphasizing that these two taxa are among the more active 
in the community (Fig. 3). At the same time, it is interesting 
to note the dominance of the Lactobacillaceae in the corn 
diet, despite both diets exhibiting similar relative abun-
dances of Lachnospiraceae. Such taxonomic differences in 
glycolytic enzyme representation were absent in the sam-
ples collected at 40 days (Supplemental Fig.  6). Similarly, 
while AGPs significantly increase the expression of mul-
tiple enzymes in glycolysis in the day 24 samples (12 v 7: 
corn v corn + AGPs; 19 v 1: wheat v wheat + AGPs), day 
40 samples exhibited fewer differences in the number of 
glycolytic enzymes with increased expression (10 v 9: corn 
v corn + AGPs; 11 v 10: wheat v wheat + AGPs).

Comparisons of enzyme expression between pathways 
reveal relatively high levels of expression in glycolysis com-
pared to the pentose phosphate pathway and the TCA 
cycle, across all treatments. While it is important to note 
that enzyme expression does not directly correlate with 
pathway flux, these findings nonetheless suggest that glyc-
olysis is a major route for energy production. Relatively few 
enzymes appear consistently differentially regulated across 
all conditions. Examples include phosphoglycerate mutase 
(GpmA, EC 5.4.2.11), which appears upregulated in the 
presence of AGPs, while glucose-6-phosphate isomerase 
(Pgl, EC 5.3.1.9), phosphogluconate dehydrogenase (Gnd, 
EC 1.1.1.44), and ribulose-5-phosphate 3-epimerase (Rpe, 
EC 5.1.3.1), members of the pentose phosphate pathway, 
are also consistently upregulated in the presence of AGPs. 
We speculate that this may be related to the production 
of ribose-5-phosphate, an important precursor for purine 
metabolism; as noted above, cellular stress associated with 
antibiotics results in a depletion of purine nucleotides [48]. 
The downregulation of components of the pyruvate dehy-
drogenase complex (AceE, AceF, and Lpd), responsible for 
the production of acetyl-CoA, in the presence of AGPs in 
day 40 samples, as well as the corn sample from day 24, 
suggests a potential shift in the flux of metabolites feeding 
into the TCA cycle.

In terms of taxonomy, many enzymes exhibit simi-
lar representation in their expression in the presence 

Fig. 6  Taxonomic contributions to gene expression for enzymes involved in energy production. The expression of enzymes involved in glycolysis/
gluconeogenesis, pentose phosphate, and tricarboxylic acid (TCA) cycle pathways is indicated for cecal samples obtained from day 24. Each pie 
chart represents the taxonomic contributions of enzyme expression (see key for color code). The size of pie charts indicates the average expression 
value (with log2 transform) of enzymes across all samples analyzed for each condition. Red arrows indicate enzymes that are significantly 
upregulated in comparisons involving the presence/absence of AGPs. Enzyme abbreviations are listed in Supplemental Table 11

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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and absence of AGPs (e.g., glyceraldehyde-3-phosphate 
dehydrogenase (GapA, EC 1.2.1.12), transketolase (Tkt, 
EC 2.2.1.1), fructose-bisphosphate aldolase (Fba, EC 
4.1.2.13), phosphoglycerate mutase (GpmB, EC 5.4.2.12), 
and 6-phosphofructokinase (Pfk, EC 2.7.1.11)). Nota-
bly, the latter lacks representation by Lactobacillaceae 
in corn-based samples. Given broad representation of 
Lactobacillaceae across glycolysis in these samples, we 
suggest that transcripts assigned to the enzyme that are 
classified as “Other Bacilli” lack resolution to be classi-
fied at the higher taxonomic level of Lactobacillaceae.

In summary, these investigations reveal AGPs have a 
dramatic impact on the expression of enzymes in core 
energy production pathways, with samples from day 24 
exhibiting an overall increase in expression. That similar 
changes were not observed in the day 40 samples may 
reflect differences in response to the grower and finisher 
diets used prior to collection of these samples.

Diet and AGPs alter enzyme expression patterns in purine 
metabolism
Given the enrichment of significantly differentially 
expressed enzymes in the purine pathway and its previ-
ous association with antibiotic usage, we next examined 
gene expression in the context of the complementary, 
de novo biosynthetic and salvage pathways (Supplemen-
tal Figs.  7 and 8; Supplemental Table  11). Focusing on 
the day 24 ceca samples (Supplemental Fig. 7), as for the 
energy production pathways highlighted above, we again 
observe relatively high representation of Lactobacillaceae 
and Lachnospiraceae in the corn- and wheat-based diets 
respectively, although such dominance is restricted to 
the salvage pathway for the corn-based samples. Further-
more, representation by these two taxa is more limited 
in the samples collected at 40 days (Supplemental Fig. 8). 
More consistently, for both timepoints, we observe a 
greater diversity in taxonomic representation for the 
four enzymes involved in the interconversions involv-
ing guanosine, xanthosine, and inosine (5′-nucleotidase 
(SurE, EC 3.1.3.5), xanthine phosphoribosyltransferase 
(Xpt, EC 2.4.2.22), purine-nucleoside phosphorylase 
(PunA, EC 2.4.2.1), and hypoxanthine phosphoribo-
syltransferase (HprT, EC 2.4.2.8)). With the addition of 
AGPs, we see notable differences in the taxonomic rep-
resentation of enzymes involved in the salvage pathway. 
For example, corn samples exhibit reduced representa-
tion by Lactobacillaceae. Across the entire pathway, we 
found more enzymes significantly upregulated in the 
presence of AGPs for three of the four comparisons (19 
v 14 and 31 v 5 for corn- and wheat-based samples col-
lected at day 24; 26 v 10 for corn-based samples collected 
at day 40). The single exception was for wheat samples 
collected at day 40 which displayed similar numbers of 

significantly upregulated enzymes in the presence and 
absence of AGPs (18 v 18). We observed fewer taxonomic 
perturbations associated with the de novo pathway 
expression profiles, with similar taxonomic contribu-
tions for multiple genes. Intriguingly, the expression of 
some enzymes was dominated by a single taxon. Most 
notably, across all samples, Lactobacillaceae dominate 
expression of deoxyguanosine kinase (Dgk, EC 2.7.1.113), 
while other enzymes exhibit such taxon domination only 
under specific conditions (e.g., adenylate kinase — Adk: 
EC 2.7.4.3— represented by Erysipelotrichaceae in day 
24 Corn and 5′-nucleotidase — SurE: EC 3.1.3.5 — repre-
sented by Oscillospiraceae in day 24 wheat + AGPs.

Overall, these results highlight complex relation-
ships between the expression (and taxa responsible) of 
enzymes involved in purine biosynthesis and AGP treat-
ment that may reflect a response to cellular stress and 
depletion of purine nucleotides [48]. Further interpreta-
tion of these changes would benefit from the application 
of metabolic modeling approaches, capable of predicting 
metabolic flux and growth for individual taxa [50, 51].

Age‑dependent metabolic changes disappear 
in the presence of antibiotics
In an attempt to shed light on the downstream conse-
quences of changes in metabolic pathway expression, 
we applied targeted metabolomics to serum samples 
collected from all 60 birds used in the study. The result-
ant profiles capture 139 metabolites, covering a vari-
ety of carbohydrates, fatty acids, and amino acids. To 
examine the impact of diet and AGPs, as well as their 
interaction, we performed a permutation-based facto-
rial ANOVA for each metabolite, stratifying by age. We 
identified no main or interaction effects on any metab-
olite at any of the three timepoints. However, principal 
component analysis (PCA) found that in the absence 
of AGPs, these profiles segregated according to age of 
bird (Supplemental Fig. 9). This suggests that the birds 
exhibit age-related changes in their metabolism, poten-
tially due, at least in part, to the various diets used in 
the poultry life cycle. Interestingly, this age effect is 
lost in birds fed AGPs. To investigate this effect further, 
we identified metabolites correlating with age in both 
control and AGP-treated samples. Consistent with the 
PCA, 55 and 27 metabolites were found to correlate 
with age in control and AGP-treated samples respec-
tively (Supplemental Table 12). Among the 55 metabo-
lites identified as correlating with age in control (and 
not AGP-treated) samples, four of the six metabolites 
associated with the urea cycle significantly decreased 
with bird age (Fig.  7). Despite possessing many of the 
enzymes associated with the urea cycle, this pathway is 
considered nonfunctional in chickens, potentially due 
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to the lack of N-acetylglutamate synthase (NAGS), and 
may therefore provide some alternative function [52]. 
As NAGS converts glutamate to N-acetyl glutamate, its 
absence in the chicken genome may in part explain the 
age-associated increase in glutamate that appears con-
trary to other metabolites in this pathway.

These results indicate that the influence of AGPs 
extends beyond microbial metabolism to directly 
impact metabolites in the host. Further studies are 

needed to dissect the mechanisms involved and the 
downstream consequences for the host.

AGP supplementation increases expression of microbial 
genes involved in cell wall biogenesis
Since the two AGPs used in this study both target the 
cell wall (monensin targets cell membranes and disrupts 
the ion gradients required for nutrient transport and the 
generation of the proton motive force, while bacitracin 

Fig. 7  Metabolites associated with the urea cycle do not decrease with age in the presence of AGPs. The main graphic shows a section of the 
urea cycle indicating metabolites with concentrations that change with age. Bar graphs indicate normalized metabolite concentrations at each 
of the three timepoints for samples obtained from control and AGP-treated birds. With the exception of L-Asp, age-related changes in metabolite 
concentrations are associated only with control samples. Note chickens are thought to lack N-acetylglutamate synthase, a key enzyme in the 
conversion of glutamate to N-acetylornithine [52]
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interferes with the biosynthesis of cell walls), we were 
interested in transcriptional responses of genes involved 
in cell wall biogenesis. To explore this, we integrated our 
metatranscriptomic data into a high-quality map of pro-
tein-protein interactions for gene products involved in 
cell wall biogenesis and cell division previously generated 
for E. coli [53].

Comparing between the 24-day cecal samples, we 
observed a consistent increase in the expression of genes 
involved in cell wall biogenesis in the presence of AGPs, 
with 29 and 14 (of 45 total) gene families upregulated 
under wheat and corn diets respectively, compared with 
only 3 and 7 genes families exhibiting downregulation 
(Fig. 8). Notably, 13 of the upregulated gene families were 
common to both diets, including the outer membrane 
protein, ompA, the cell division genes ftsZ and ftsK, 
and multiple genes involved in peptidoglycan biosyn-
thesis (mrcA, mrdA, mrdB, murC, murD, murF, murG, 

ddl). Compared to changes in diet, the addition of AGPs 
reveals subtle differences in the taxonomic representa-
tion of gene expression. For example, under a wheat diet, 
the increase in expression of homologs of secA, ftsA, and 
murE associated with AGP treatment is driven at least 
in part by Lactobacillaceae. Similarly, under a corn diet, 
the increase in the expression of mrcA, mrdB, and murF 
homologs associated with AGP-treated samples is driven 
by various clades of Proteobacteria. Consistent with 
previous analyses of mouse ceca and cow rumen micro-
biomes [36], we found that ftsZ, secA, and secY were 
among the most highly expressed genes, likely reflect-
ing their essential roles and high conservation. Interest-
ingly, under a corn diet, the addition of AGPs resulted in 
a dramatic increase in the expression of mrdB and ddl, 
driven by reads assigned to the genus Helicobacter for 
the former and by reads assigned to Lactobacillus and 
Corynebacterium for the latter. In addition to predicting 

Fig. 8  Taxonomic contributions to gene expression profiles for proteins involved in cell wall biogenesis for ceca samples collected at day 24. Each 
node in the network indicates groups of orthologs corresponding to a specific E. coli gene (as indicated) involved in cell wall biogenesis. Links 
between nodes indicate a functional interaction as previously defined [53]. Size of the node indicates the relative expression of genes associated 
with each set of orthologs, with sector colors indicating the taxonomic contribution to gene expression (see key for color code). Red arrows indicate 
sets of orthologs that are significantly upregulated in comparisons involving the presence/absence of AGPs
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a potential mechanism by which these taxa respond to 
AGP exposure, these findings again highlight the com-
plex interplay between diet, AGPs, and gene expression.

Focusing on cecal samples from 40-day-old chickens, 
we observed a similar pattern of increased expression of 
genes involved in cell wall biogenesis with AGPs (Supple-
mental Fig. 10). As for the 24-day samples, various clades 
of proteobacteria appear to be associated with increases 
in the expression of several genes including homologs 
of murF, yjjK, ftsZ, and ftsK. However, for the samples 
obtained from the wheat diet, the addition of AGPs did 
not reveal a consistent pattern of response. For exam-
ple, while the expression of secA homologs increased 
due to greater representation by Lactobacillaceae, the 
expression of homologs of mrcA, ftsI, and ftsK exhibited 
decreased expression, particularly for Lactobacillaceae.

As with overall taxonomic contributions to gene 
expression (Fig. 3), cell wall biogenesis gene expression in 
jejunal samples were largely associated with a more lim-
ited set of taxa including Erysipelotrichaceae, Lactobacil-
laceae, and Peptostreptococcaceae. Furthermore, unlike 
the 24-day-old cecal samples, both 24- and 40-day jejunal 
samples did not exhibit any consistent changes in pat-
terns of expression of cell wall biogenesis genes (Supple-
mental Fig. 11). Together, these findings suggest that the 
greater influence of AGPs on the cecal microbiome may 
reflect its slower passage rate relative to the other GI sites 
[26] resulting in a longer exposure to the effects of AGPs.

AGP supplementation increases expression 
of antimicrobial resistance genes
There have been numerous studies linking the use of 
antibiotics with an increase in antimicrobial resistance 
(AMR). We therefore examined if AGP supplementation 
resulted in an increase in the expression of genes asso-
ciated with AMR. For each sample, we used the Resist-
ance Gene Identifier (RGI) tool to predict their resistome 
based on homology and SNP models derived from the 
Comprehensive Antibiotic Resistance Database (CARD) 
[54]. Across all cecal samples, we predict 179 transcripts 
associated with five categories of resistance mechanism: 
antibiotic efflux, antibiotic target protection, antibiotic 
inactivation, antibiotic target alteration, and reduced 
permeability to antibiotic (Supplemental Table  13). To 
reduce the impact of individual AMR genes exhibiting 
high expression, we ranked the expression of each gene 
and analyzed the shift in ranking in the presence and 
absence of AGPs (Fig. 9). With the exception of birds fed 
a wheat-based diet and sampled at day 40, the addition 
of AGPs significantly increased the relative expression 
of AMR gene expression. Interestingly ~50% of AMR 
genes detected were assigned to homologs from two taxa: 
Escherichia coli IAI39 (41 genes) and E. coli O157:H7 

str. SS17 (48 genes). Expression of these genes suggests 
these two taxa are mutually exclusive, with individual 
metatranscriptome datasets associated with only one of 
the two taxa. Noteworthy, AMR expression in jejunal 
samples was dominated with representatives from E. coli 
O157:H7 str. SS17 but not Escherichia coli IAI39 (Sup-
plemental Table 14). Together, these findings reveal AGPs 
to exert effects on additional microbial pathways beyond 
metabolism, with the potential to directly impact cell 
growth and division.

Discussion
In this study, we performed a systematic survey of micro-
bial communities in the gizzard, duodenum, jejunum, 
ileum, cecum, and colon in broilers raised on two differ-
ent diets in the presence and absence of AGPs. Samples 
were collected at three timepoints that represent distinct 
phases of poultry growth and dietary changes (days 10, 
24, and 40). Previous poultry microbiome studies have 
largely focused on the ceca, due to its role in host health 
and high species richness [16, 40, 55–57]. Other intesti-
nal sites have typically been neglected with only a lim-
ited number of studies utilizing material from feces [17, 
58, 59] or the small intestine [25, 60, 61]. Furthermore, 
where studies have attempted more systematic compari-
sons, they have either focused on longitudinal sampling 
over one or two sites [17, 19] or sampling several intes-
tinal sites at a single timepoint [25]. We also note that 
few studies have investigated the influence of AGPs in 
the context of wheat-based diets. Consequently, through 
sampling six sites over three timepoints, this study rep-
resents the first attempt to systematically perform a deep 
taxonomic and functional analysis of the dynamics of the 
chicken gut microbiome.

Focusing on community composition, our analyses 
revealed each site is associated with a discrete commu-
nity, with the exception of the cecal and colon communi-
ties (Fig. 1D). Our findings are in broad agreement with 
previous studies with a dominance of lactobacilli in the 
upper GI, being replaced with obligate anaerobes, largely 
from the phylum, Firmicutes, in the lower GI. These latter 
taxa include Lachnospiraceae and other clostridia, which 
are associated with the processing of more complex car-
bohydrates and the production of short-chain fatty acids 
(SCFAs) that helps maintain gut health [45]. Interest-
ingly, unlike several previous studies [25, 62, 63], mem-
bers of the Bacteroidetes were not found to dominate the 
lower GI. However, while the emergence of Bacteroidetes 
is often associated with a more mature microbiome [16, 
17], we note other studies also report the relatively low 
abundance of Bacteroidetes in older birds [40, 57]. Since 
both sets of reporting use similar diets, breeds, and 
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methods of analysis, this suggests that the abundance of 
Bacteroidetes varies significantly between farms.

Results from our longitudinal analyses were more 
consistent with previous studies. For example, in ileal 
samples, we found an initial high abundance of Lacto-
bacillaceae subsequently replaced by members of the 
Peptostreptococcaceae and Erysipelotrichaceae at later 
timepoints [19]. Similarly, we found the ceca to be first 
colonized by rapidly growing Enterobacteriaceae and 
subsequently replaced by slower growing taxa such as 
Clostridiales. For the upper GI, community dynamics 
were more limited, with little separation of the day 24 
and 40 samples, from the day 10 samples (Supplemental 
Fig. 1). This highlights an important finding, namely that 

while microbial diversity in cecal datasets increased with 
age consistent with previous studies [7, 39, 56, 64], this 
was not the case for all sites and treatments (Supplemen-
tal Table 3). For example, under a corn diet supplemented 
with AGPs, the Shannon diversity of the jejunum appears 
to decrease with age. Thus, by focusing only on the cecal 
microbiome, treatments predicted to be beneficial to gut 
health may ignore potential adverse effects that occur 
at another GI site. Aside from site and time, diet also 
impacted community composition (Supplemental Fig. 1), 
likely reflecting differences in nutrient content [26, 27].

In contrast to other factors, we found that AGPs 
had only a modest impact on community composi-
tion. Of note however, we identified taxa, common to 

Fig. 9  Antimicrobial resistance gene expression increases with AGP supplementation. Top panel: violin plots showing distribution of ranks of the 
expression values of 179 CARD genes for each sample type (1st (highest) rank = highest expression across all cecal samples). With the exception of 
day 40 wheat samples, CARD genes exhibit significantly higher rankings of expression in samples from birds fed AGPs relative to controls (** = p < 
0.01 two-sample paired t-test). Lower panel: change in ranking of 179 CARD genes (ranked across all cecal samples) in day 24 wheat samples upon 
supplementation with AGPs
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samples from both corn- and wheat-fed birds, which 
were impacted only under one of the diets. For example, 
in the day 40 cecal samples, 29 taxa exhibit altered abun-
dance in both corn v wheat comparisons, as well as corn 
v corn + AGP comparisons, but are unaffected in wheat 
diets in the presence or absence of AGPs (Fig. 2A). Con-
versely, 19 taxa exhibit altered abundance in both corn 
v wheat comparisons, as well as wheat v wheat + AGP 
comparisons, but are unaffected in corn diets in the pres-
ence or absence of AGPs. This highlights the context of 
diet on the influence of AGPs and suggests that for many 
taxa, the effects of AGPs may be mediated through addi-
tional mechanisms, perhaps involving metabolism. For 
example, such effects may involve AGPs directly affect-
ing an influential taxon (perhaps present in only one diet) 
that typically influences the growth or inhibition of other 
taxa (e.g., through cross-feeding or the production of 
inhibitory metabolites).

Supporting this idea is the finding that co-occurrence 
networks were reorganized in the presence of AGPs, with 
the disruption of interactions involving several influen-
tial taxa. This disruption is consistent with a previous 
study of cow rumen microbiomes, in which antibiotics 
decreased the number of interactions and connectiv-
ity of their co-occurrence networks [65]. These nuanced 
interactions between diet and AGP interaction may in 
part explain inconsistencies between studies that suggest 
either AGPs impact community structure (e.g., [18, 33, 
66, 67]) or have only a minimal impact (e.g., [60, 64, 68]). 
Thus, in addition to site, studies attempting to identify 
additives that beneficially modulate the gut microbiome 
need to consider diet as a potential confounding factor.

Beyond community composition, it is important to 
investigate how AGPs might alter the function of the 
gut microbiome. To date, functional studies of the poul-
try gut microbiome have been limited to the applica-
tion of metagenomics (whole microbiome shotgun DNA 
sequencing). Focusing on antimicrobial resistance genes, 
such studies reveal AGPs to have minimal impact on the 
abundance of such genes [69, 70]. However, in previous 
work, we used metatranscriptomics (whole microbiome 
RNASeq) to show that similar microbial communities in 
the mouse gut can exhibit dramatic differences in gene 
expression in different host genotypes [38]. Similarly, 
here we found that AGPs have a dramatic impact on the 
expression of microbial genes including many involved in 
metabolic pathways, cell wall biogenesis, and antimicro-
bial resistance.

Relative to cecal samples, we found that the jejunum 
samples contained more reads of host and diet origin, 
suggesting a lower density of bacteria. Encouragingly, 
taxonomic profiles were similar between the 16S RNA 
survey samples and the metatranscriptomic samples, 

albeit with certain taxa exhibiting different levels of activ-
ity, suggesting our pipelines are relatively robust in terms 
of taxonomic assignment. Pairwise comparisons revealed 
diet to have a greater impact on gene expression than 
AGPs, with changes in the expression of genes associated 
with several metabolic pathways, likely associated with 
differences in chemical composition in the two diets. 
Among the pathways altered by AGPs were those respon-
sible for the production of energy and nucleotides. This is 
consistent with previous studies that have shown the fol-
lowing: (1) the murine gut microbiome alters metabolic 
pathway expression in the presence with antibiotics, with 
the effects driven by dietary components such as glu-
cose and polysaccharides [49], and (2) bacteria respond 
to the stress of antibiotics through the diversion of ATP 
from core metabolic processes to drive the maintenance 
of ion gradients [48]. Beyond these general findings, we 
observed a complex landscape of metabolic pathway 
expression by different taxa in response to changes in diet 
and age. For example, many changes in glycolytic enzyme 
expression in the cecal microbiome of 24-day old birds 
are associated with Lactobacillaceae with a corn-diet and 
Lachnospiraceae, Clostridiaceae, and Enterobacteriaceae 
with a wheat-based diet. These findings raise an impor-
tant consideration: to what extent are these changes in 
enzyme expression driven simply by changes in taxon 
abundance. We therefore compared fold-change differ-
ences in taxon abundance and global taxon expression 
with pathway-specific expression for individual taxa (see 
“Methods”). Focusing on three pathways discussed above 
(glycolysis, purine metabolism, and cell wall biogene-
sis), we found that pathway-specific expression for most 
taxa deviates by at least twofold from either changes in 
their abundance or global taxon gene expression (Sup-
plemental Fig.  12). These findings suggest that changes 
in pathway expression are largely driven by differential 
regulation that is specific to those pathways.

While maps of metabolic pathways such as that pre-
sented in Fig. 6 provide a useful scaffold to reveal global 
taxonomic shifts in pathway expression, practical limita-
tions in sequencing depth, together with loss of sequence 
conservation associated with poorly characterized taxa, 
limit our ability to reconstruct entire metabolic path-
ways for individual taxa. As a consequence, investigations 
focused on the metabolic contributions of individual taxa 
within a community remain challenging. Instead, com-
plementary approaches such as community-based meta-
bolic modeling offer alternative routes to systematically 
analyze metabolic interactions and cross-feeding rela-
tionships within a microbiome [50, 71].

Beyond the abrogation of the age-associated decrease 
in four metabolites associated with the urea cycle, we 
did not identify significant differences between AGP 
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treatment and any of the metabolites measured in host 
serum. While it might be expected that host metabo-
lite concentrations might correlate with the observed 
changes in expression of metabolic enzymes encoded 
by the microbiome, we note that our analysis only cap-
tured a limited number (139) of metabolites investigated. 
Furthermore, it has been shown that enzyme expres-
sion does not always translate to changes in metabolic 
flux [72], while the relationship between gut and serum 
metabolites also appears complex [73, 74].

In addition to metabolic interactions, which are reliant 
only on metabolites shared by enzymes and are therefore 
largely taxon agnostic, our ability to interpret metatran-
scriptomic data in the context of other bacterial systems 
is limited by the lack of appropriate resources. For exam-
ple, the analysis of cell wall biogenesis genes presented 
in Fig. 8 relied on a high-quality network of interactions 
previously generated for E. coli. In addition to requir-
ing the identification of homologs to E. coli genes, this 
analysis is unable to capture interactions representing 
taxon-specific innovations. To illustrate these issues, we 
constructed species-specific networks for the three most 
abundant taxa represented within the 24-day ceca sam-
ples from corn-fed birds (Lactobacillus reuteri, Rumino-
coccaceae bacterium, and Lachnospiraceae bacterium), 
using the STRING protein interaction database [75]. 
While we identified a core of conserved interactions 
involving homologs of genes involved in peptidoglycan 
biosynthesis, ftsZ, secA, and secE, each species lacked 
detectable homologs for many other genes (Supplemen-
tal Fig. 13). Furthermore, we note that many interactions 
are not conserved for each of the three taxa while also 
identifying additional interactions not captured by the 
E. coli-based network. This highlights the need for more 
taxon-agnostic scaffolds, providing generic representa-
tions of bacterial systems, while at the same time, capable 
of presenting taxon-specific innovations.

Previous studies have shown that DNA and RNA 
extraction methods can bias taxa recovered (e.g., [76]); 
we are nevertheless reassured that the extraction meth-
ods had a smaller impact on microbiome composition 
than biological factors such as sample collection site. 
For example, in Fig.  1, we find cecal and colon samples 
co-cluster, as do jejunum with duodenum samples. This 
is despite the DNA for these samples being extracted 
using different methods (TRIzol for ceca, DNeasy Pow-
erSoil for colon and duodenum, RNA PowerSoil DNA 
elution kit for jejunum). An additional caveat to note 
in that although this study highlights several impor-
tant microbial processes that respond to treatment with 
AGPs, in the absence of data showing absolute microbial 
abundance, we cannot rule out a major impact of AGPs 
being the lowering of abundance of bacteria in the GI 

microbiome. However, we do note that from our analy-
sis of jejunum samples, a lowering of density of microbes 
might result in an increase in the abundance of host 
reads. No such increase was observed in the cecal sam-
ples from birds consuming AGPs.

In the search for treatments that may serve to replace 
AGPs, the findings from this study highlight several con-
siderations that may be critical in developing efficacious 
alternatives. First, AGPs appear to redefine influential 
taxa in the microbiome that promote the presence and 
absence of other taxa. An obvious route to mimicking 
this effect would be to incorporate such “organizers” in 
probiotic formulations. Second, through altering micro-
bial enzyme expression in pathways associated with 
nucleotide, amino acid, and carbohydrate and energy 
metabolism, AGPs may serve to redirect metabolic flux 
with the potential to regulate bacterial growth or produce 
metabolites that impact the host. As noted above, sys-
tem-based approaches are required to further elucidate 
the downstream consequences of these alterations and 
identify alternative routes to effect such changes. Finally, 
the impact of AGPs is modulated by additional factors 
including age, diet, and GI site. Thus, solutions that are 
identified for, e.g., birds raised on one diet may not be 
effective for birds raised on an alternative diet. For exam-
ple, if the upregulation of glycolysis in Lactobacillaceae 
provides a beneficial effect for birds fed a corn diet, the 
same effects may require upregulation of glycolysis in 
Lachnospiraceae, Clostridiaceae, and Enterobacteriaceae 
in birds fed a wheat diet.

Conclusions
Previous studies of the impact of AGPs on the gut micro-
biome have largely focused on 16S rRNA surveys, reveal-
ing an inconsistent view of their impact on community 
composition. In this study, we highlight a more nuanced 
view of the impact of AGPs that is dependent on age of 
bird, diet, and intestinal site sampled. Applying metatran-
scriptomics, we show that the poultry GI microbiome 
responds to the presence of AGPs through changes in 
the expression of multiple biological systems, including 
the upregulation of pathways involved in cell wall biogen-
esis and antimicrobial resistance mechanisms, as well as 
more subtle changes in the expression of metabolic path-
ways, particularly those involved in energy, amino acid, 
and nucleotide metabolism. The wealth of novel data 
generated in this study represents a key advance towards 
understanding more causal relationships involving diet 
and the microbiome. Furthermore, we expect that some 
of the genes and pathways identified in this study will 
help drive future investigations that more closely exam-
ine the mechanistic effects that different diets impart 
on the microbiome. Of particular interest will be the 
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application of system-based approaches such as commu-
nity-based metabolic modeling tools, capable of dissect-
ing these complex interrelationships.

Methods
Animal trials
Animal trials were carried out at the Poultry Research 
Center in Edmonton, Alberta, between November 2016 
and January 2017. A total of sixty Ross 708 broilers were 
obtained from a commercial hatchery (Sofina Foods, 
Edmonton, AB). Post hatching, birds were allocated to 
8 pens 21″ × 47″ × 17.5″ in size, and then, half of the 
birds were moved to new pens on day 11 so that 16 pens 
in total were occupied. The litter in each pen was wood 
shavings. Birds were fed a commercial starter diet until 
day 1 and then switched to a grower diet until day 24, and 
from day 25, the birds were fed a finisher diet (Supple-
mental Table  1). Corn-(typical of diets used in Ontario, 
Canada) and wheat-(typical of diets used in Alberta, 
Canada) based diets were formulated to meet or exceed 
all nutrient recommendations of the Ross 708 nutri-
tional recommendations (Aviagen, Huntsville, Alabama, 
USA). Each pen was randomly assigned to a dietary treat-
ment: corn-based diet, wheat-based diet, corn-based diet 
with 500 g/ton bacitracin methylene disalicylate (BMD; 
BMD110, Zoetis Canada, Kirkland QC) and 500 g/tonne 
monensin (Coban, Elanco Canada, Ltd., Guelph, ON) 
(Alpharma Canada Corporation, Mississauga, ON), and 
wheat-based diet with 500 g/tonne BMD and 500 g/ton 
monensin. AGPs were given to the birds in the AGP+ 
treatments during the entire trial. For the AGP-free diets 
(AGP−), 400 g/tonne of chemical coccidiostat (Nicar-
bazin, Nicarb 25%, Huvepharma, Sofia, Bulgaria) was 
added to the grower and finisher diets for wheat- and 
corn-based diets. Feed was prepared in-house with ingre-
dients sourced from the University of Alberta feed mill.

Fifteen birds were allocated for each dietary regime, 
with five euthanized by cervical dislocation at three dis-
crete timepoints: 10 days, 24 days, and 40 days of age. 
Intestinal wall and 5 ml washings were harvested from 
each bird’s gizzard, duodenum, jejunum, ileum, cecum, 
and colon (N = 5 for each tissue for each treatment/time-
point). Samples were flash frozen and sent for 16S rRNA 
survey sequencing and metatranscriptomics. A blood 
sample was drawn by brachial venipuncture prior to 
euthanasia (5 ml) from each bird, and serum was sent for 
targeted metabolomics at the Metabolomics Innovation 
Centre (University of Alberta).

Nucleotide extraction
DNA was extracted from the gizzard, duodenum, 
ileum, and colon samples with Qiagen DNeasy Power-
Soil kit, following the instructions of the manufacturer’s 

protocol. RNA was simultaneously extracted from jeju-
num and ceca samples for metatranscriptomics analyses. 
For jejunum samples, the Qiagen RNA PowerSoil kit was 
used for RNA extraction, and DNA extraction was per-
formed simultaneously using the RNA PowerSoil DNA 
Elution Accessory kit to co-elute DNA from the extrac-
tion columns. The DNA was eluted in 50 uL of the elu-
tion buffer. For ceca samples, the PureLink TRIzol Plus 
Total Transcriptome protocol was followed for ceca 
RNA extraction, and total DNA was extracted simulta-
neously using the TRIzol reagent. Samples were thawed 
on ice, and 50–100 uL of sample was mixed with 1 mL 
of the TRIzol reagent. The TRIzol-sample mixture was 
vortexed for 30 s and incubated at room temperature 
for 5 min. RNA extraction was performed according to 
the PureLink RNA Mini Kit instructions, and DNA was 
isolated as described in the TRIzol Reagent protocol. 
The DNA pellets were resuspended in 300 uL of 8 mM 
NaOH. Some samples failed to yield DNA and/or RNA 
resulting in a final set of 336 DNA samples and 73 RNA 
samples (Supplemental Tables 2 and 5).

16S rDNA sequencing
The V4 hypervariable region of the 16S rRNA gene is 
amplified using a universal forward sequencing primer 
and a uniquely barcoded reverse sequencing primer 
to allow for multiplexing. Amplification reactions are 
performed using 12.5 uL of KAPA2G Robust HotStart 
ReadyMix (KAPA Biosystems), 1.5 uL of 10 uM forward 
and reverse primers, 8.5 uL of sterile water, and 2 uL of 
DNA. The V4 region was amplified by cycling the reac-
tion at 95 °C for 3 min, 24× cycles of 95 °C for 15 s, 50 
°C for 15 s, and 72 °C for 15 s, followed by a 5-min 72 °C 
extension. All amplification reactions were done in tripli-
cate, checked on a 1% agarose Tris-borate-EDTA (TBE) 
gel, and then pooled in a single sample to reduce ampli-
fication bias. Pooled PCR product libraries were purified 
using 0.8× magnetic Ampure XP beads, selecting for 
the bacterial V4 amplified band. Purified libraries were 
quantified and sequenced by Illumina MiSeq, according 
to manufacturer instructions (Illumina, San Diego, CA). 
Sequencing was performed using the V2 (150 bp × 2) 
chemistry.

Analysis of 16S rRNA sequence datasets
The UNOISE pipeline, available through USEARCH 
version 9.2 [77], was used for sequence analysis. The 
last base, typically error prone, was removed from 
all sequences. Sequences were assembled and quality 
trimmed using fastq_mergepairs and fastq_filter, with a 
fastq_maxee set at 1.0 and 0.5, respectively. Assembled 
sequences less than 233 bp were removed. Dereplica-
tion of sequences resulted in a set of unique sequences 
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with corresponding abundances (number of reads match-
ing each unique sequence). The unique set of sequences 
was then sorted, and singletons were removed using 
VSEARCH [78]. Resulting sequences were then denoised 
and chimeras filtered using the unoise2 command in 
USEARCH v. 9.2. The final set of sequences were then 
used for de novo OTU picking, using a 97% identity cut-
off and using the otutab command. Taxonomy assign-
ment of OTUs was executed by utax, available through 
USEARCH, using the Ribosomal Database Project (RDP) 
database version 16 [79], with a minimum confidence 
cutoff of 0.9. OTUs were aligned using PyNAST accessed 
through QIIME [80]. Sequences that did not align were 
removed from the dataset, and a phylogenetic tree of the 
filtered aligned sequence data was generated using Fast-
Tree [81]. Low abundance OTUs (< 0.005% relative abun-
dance) were removed from subsequent analyses.

Downstream diversity analyses were performed using 
QIIME [80]. Alpha (within sample) diversity was calcu-
lated with the Shannon index. Samples were subsam-
pled to 219 sequences per sample (the lowest number of 
sequences found in a single sample) to generate alpha rar-
efaction plots using the Shannon index to retain as many 
samples as possible. T-tests were used to assess whether 
alpha diversity was significantly different between group-
ings. Beta (between sample) diversity was measured 
using weighted UniFrac distances. Permutation multi-
variate analysis of variance (PERMANOVA) analyses 
with 9999 permutations were performed with the adonis 
function in the vegan R [82]. Permutational analysis of 
multivariate dispersions (PERMDISP) tests with 9999 
permutations was performed in QIIME. All p-values 
were corrected for multiple comparisons using Benjamini 
and Hochberg’s false discovery rate method [83]. DESeq2 
R package [47] was used to normalize raw OTU abun-
dances with the “poscounts” method and to investigate 
whether any taxa were differentially abundant.

To examine main and interaction effects of AGPs and 
diet on the abundance of individual taxa (OTUs), we 
applied likelihood ratio tests on different negative bino-
mial general linear models. In brief, likelihood ratio tests 
assess the significance of model terms by comparing the 
full model to a reduced model where those terms are 
missing. To assess the significance of diet main effects, 
a likelihood ratio test was performed for each taxon 
by comparing the performance of the model “taxon 
abundance~diet + AGPs” versus the reduced model 
“taxon abundance~AGPs.” To assess AGP main effects, a 
full model of “taxon abundance~diet + AGPs” was com-
pared to the reduced model “taxon abundance~diet.” 
Finally, to access the significance of diet by AGPs interac-
tions, a full model of “taxon abundance~diet + AGPs + 
diet × AGPs” was compared to the reduced model “taxon 

abundance~diet + AGPs.” False discovery rate (FDR) 
correction was performed on p-values across all taxa sep-
arately within each different likelihood ratio tests using 
the BH procedure (i.e., diet main effect, AGP main effect, 
and diet by AGP interaction), with an FDR cutoff of 5% 
(or 0.05) taken for statistical significance.

A correlation network was built from cecal content 
samples taken at day 40 using DGCA [44]. To reduce 
noise and complexity, the 1370 OTUs associated with the 
day 40 samples were grouped into 86 OTUs at the level 
of genus using phyloseq [84]. Next, we applied DESeq2 
to normalize raw OTU abundances with the “poscounts” 
method [47]. The 86 OTUs were subsequently filtered 
to a set of 30 OTUs with DGCA’s recommended filter-
ing function, filterGenes, using central tendency filtering 
(median method with a threshold set to the 30th percen-
tile). DGCA was used to calculate Spearman correlation 
coefficients between OTUs within treatment groups; cor-
relations with p-values less than 0.05 were considered 
significant. Additionally, DGCA calculated the difference 
of the z-transformed correlation values between treat-
ment groups, yielding an adjusted p-value (Benjamini-
Hochberg method) of the difference in z-scores. Adjusted 
p-values less than 0.05 were considered significant and 
were used to identify differential correlation between 
OTUs across different treatment groups. Visualization of 
the correlation network was performed using Cytoscape 
(v. 3.8.2) [85].

Metatranscriptomic sequencing and analysis
RNA samples were depleted of human and bacterial ribo-
somal using RNA Ribo-Zero Gold rRNA Removal Kit 
(Epidemiology kit), followed by construction of libraries 
using the NEBNext® Ultra™ II RNA Library Prep kits. 
Sequencing was performed on a HiSeq 4000 platform 
at the Center for Applied Genomics (TCAG, Toronto, 
Canada) to generate ~30 million single end 150-bp 
reads per sample. Sequence reads were processed by 
our metatranscriptomic pipeline as described previously 
[36]. In brief, low quality and adaptor contaminants were 
trimmed using Trimmomatic v.0.36 [86] and VSEARCH 
v.2.4.4 [78], respectively. Duplicated reads were identi-
fied and removed by CD-HIT v.4.6.6 [87]. Next, host- and 
diet-associated reads were filtered using BWA [88], and 
BLAT [89] sequence similarity searches against the fol-
lowing: for host — the chicken genome and transcrip-
tome (assembly Gallus_gallus-5.0 obtained from the 
National Centre for Biotechnology Information (NCBI; 
GCF_000002315.4 [90];) and ENSEMBL (release 90 [91];) 
respectively) and for diet — the corn, wheat, and soybean 
genomes (NCBI; GCF_000005005.2, GCA_900519105.1, 
and GCF_000004515.5). rRNA and tRNA reads were fil-
tered using Infernal v.1.1.2 with the Rfam db (v13.0) [92]. 
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The resulting reads of putative mRNA origin were then 
assembled into contigs using SPAdes v. 3.11.1 [93]. Con-
tigs and unassembled reads were then annotated through 
a tiered set of similarity searches (BWA, BLAT, and DIA-
MOND [94]) against a database of sequenced microbial 
genomes (downloaded from NCBI October 2017; com-
plete genomes and scaffolds), as well as the protein non-
redundant database (downloaded from NCBI November 
2017). After dereplication of sequence reads, transcripts 
with fewer than 5 reads were removed and expression 
levels normalized across samples with DEseq2 [46].

Transcripts were annotated with enzyme functions 
using our established pipeline [36] involving an ensemble 
method based on predictions obtained using DETECT 
[95], PRIAM [96], and Diamond v.0.9.10 [94] similarity 
searches against UniProt (downloaded may 2018 [97];). 
Protein-protein interaction data was obtained from a 
previously published study of functional interactions pre-
dicted for E. coli [53]. To map transcripts to this network, 
E. coli homologs were identified through DIAMOND 
sequence similarity searches filtering for matches that 
were either greater than 100 bp in length with bit score 
greater than 60 or had sequence identity greater than 
85% with a percentage of overlap greater than 65.

To examine main and interaction effects of AGPs and 
diet on gene expression, we applied the same likelihood 
ratio test framework as described above for taxa abun-
dance. For these analyses, genes were filtered for those 
found with at least 5 counts in at least 4 samples. As 
before false discovery rate (FDR), correction was per-
formed on p-values across all genes separately within 
each different likelihood ratio test using the BH pro-
cedure (i.e., diet main effect, AGP main effect, and diet 
by AGP interaction), with an FDR cutoff of 5% (or 0.05) 
taken for statistical significance.

Metabolomics processing
From the collected serum samples, metabolomics profil-
ing was performed for 139 metabolites by The Metabo-
lomics Innovation Centre (TMIC; University of Alberta, 
Edmonton, AB) using their TMIC Prime Metabolomics 
Profiling Assay service. MetaboAnalyst [98] was used 
for data analysis, AGP-treated samples were normalized 
to sample D40-18, and control samples were normal-
ized to sample D10-13; the normalization parameters 
were “SamplePQN” and “AutoNorm.” Spearman rank 
was used to correlate metabolite profiles to the pattern 
“1-2-3” to identify metabolites correlated with age using 
the “Match.Pattern” function. PCA was conducted using 
standard parameters with the “PCA.Anal” function. To 
investigate diet differences, antibiotic differences, and 
diet by antibiotic interactions in the metabolomics data, a 
permutation-based factorial ANOVA was used. Analyses 

were run separately for each metabolite. The BH proce-
dure was used to correct for FDR within main effect and 
interaction terms across all metabolites, and FDR < = 
0.05 was taken as significant. Permutation ANOVA tests 
were implemented using the analysis function aovp in the 
lmPerm R package (setting Ca = 1/1,000,000, maxIter = 
1,000,000).

Additional statistical analyses of metatranscriptomics data
Principle component analyses
To reveal the correlation of the overall expression dis-
tributions relating to transcripts across samples, we 
applied principal component analysis (PCA) using the 
prcomp function from R [82]. PERMANOVA [99] tests 
were applied to analyze treatment separation, imple-
mented through the f_npManov function of the MAT-
LAB (R2015a, The MathWorks Inc., Natick, MA, USA) 
toolbox Fathom [100], using 100,000 replicate label per-
mutations and adjusting p-values with the Benjamini-
Hochberg procedure [83]. The cutoff of the adjusted 
p-value was set as 0.05.

Differential expression analysis of transcripts and enzymes
Differential expression analysis of mapped transcripts 
for pairwise comparisons was performed using DESeq2 
[47]. Significantly differentially expressed transcripts were 
defined as those assigned q-values < 0.05 (using the Ben-
jamini-Hochberg procedure to correct p-values), together 
with log2 fold change in expression between samples 
greater than 1. Enzymes were defined as significantly dif-
ferentially expressed if at least one significantly differen-
tially expressed transcript was mapped to that enzyme.

Gene set enrichment analysis of metabolic pathways
To test if KEGG-defined pathways [101] were enriched 
with significantly differentially expressed enzymes, gene 
set enrichment analyses (GSEA) were performed using 
a hypergeometric test with a minimum of two genes per 
gene set. In these analyses, to ensure consistency across 
sample comparison, we examined enrichment relative to 
the total pool of all transcripts identified across all ceca 
or jejunum samples. We used a false discovery rate (FDR) 
adjustment with the Benjamini-Hochberg procedure to 
correct p-values. Hypergeometric tests were performed 
using the hygecdf and mafdr functions from MATLAB 
with a FDR cutoff of 0.05.

Contribution of taxon abundance and global gene expression 
on changes in pathway‑specific expression
To examine the influence of taxon abundance and global 
gene expression for a taxon on differences observed in the 
expression of three selected pathways (glycolysis, purine 
metabolism, and cell wall biogenesis), we first calculate 
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taxon-specific changes of gene expression for each of the 
three pathways (as measured by the mean log2 fold change 
of all genes in the pathway for that taxon). These calcula-
tions were performed for each of the four treatment com-
parisons: corn + AGPs v corn, wheat + AGPs v wheat, 
corn v wheat, and corn + AGPs v wheat + AGPs. We then 
calculated the absolute difference of these pathway-specific 
values to the following: (1) the relative change in abundance 
of that taxon (as measured by the log2 fold change associ-
ated with that taxon according to its 16S rDNA-based rela-
tive abundance) and (2) the total change in RNA for that 
taxon (as measured by the log2 fold change in total taxon 
RNA, calculated by summing RPKM values for all genes 
for that taxon). Values close to zero indicate that the shift 
in pathway gene expression was driven by a general shift in 
either taxon abundance (16S) and/or global taxon expres-
sion. Single sample Wilcoxon tests were then applied to 
determine if the median difference in fold change for all 
taxa associated with that pathway was greater than 2. For 
these analyses, OTUs are grouped into genera; thus, each 
taxon represents an individual genus.
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Additional file 1: Supplemental Figure 1. PCoA plots of weighted 
UniFrac distances for samples associated with each gastrointestinal site. 
Samples are coloured according to time of sampling. Sample shape 
represents diet.

Additional file 2: Supplemental Figure 2. Heatmap showing normalized 
abundance of taxa for taxa exhibiting significant differential abundance 
in at least one of the comparisons shown on the right. Each column in 
the heatmap represents a single sample, grouped by treatment. Each row 
indicates an individual taxon. Columns on the right indicate significant 
differences in abundance across each of eight pair-wise comparisons. Taxa 
are ordered on the basis of magnitude of fold change across the various 
pairwise comparisons.

Additional file 3: Supplemental Figure 3. Pie-chart heatmap of 
metabolic pathways enriched with significantly differentially expressed 
enzymes through comparisons between diets. There are 35 KEGG 
metabolic pathways enriched with significantly differentially expressed 
enzymes which were annotated from either ceca or jejunum samples 
based on comparisons between diets. Each node in the heatmap is a pie 
chart showing proportion of enzymes that were significantly up-regulated 
(orange), significantly down-regulated (blue), and not significantly 
different (white) with the wheat diet. In addition, the size of each node 
indicates the number of expressed enzymes in each KEGG pathway.

Additional file 4: Supplemental Figure 4. Principal component analysis 
based on annotated metabolic enzymes expression in ceca samples. 
Each node represents an individual ceca sample, with colours and shapes 
indicating specific treatment types (see inset key).

Additional file 5: Supplemental Figure 5. Expression heatmap of 
metabolic pathways enriched in significantly differentially expressed 
enzymes. There are 35 KEGG metabolic pathways enriched in significantly 
differentially expressed enzymes associated with samples from either ceca 
or jejunum. Changes of the average expression value (log2) of each gene 
associated with an enzyme in that pathway are indicated by red-green or 
blue-yellow gradients for ceca and jejunum samples, respectively.

Additional file 6: Supplemental Figure 6. Taxonomic contributions to 
expressed enzymes in metabolic pathways across different AGP treat-
ments and diets with Day40 ceca samples. Glycolysis/Gluconeogenesis, 
Pentose Phosphate and Tricarboxylic acid (TCA) cycle pathways are shown 
here integrated with data generated from cecal samples collected at day 
40. Each pie chart represents the taxonomic distributions of an enzyme 
(see key for color code). The size of pie charts indicates the average 
expression value (with log2 transform) of genes encoding that enzyme. 
Pie charts with red arrows refer to enzymes that are significantly up-
regulated relative to the paired (+/- AGPs) sample. The abbreviations used 
here can be found in Supplemental Table 11.

Additional file 7: Supplemental Figure 7. Taxonomic contributions to 
expressed enzymes in Purine metabolic pathway across different AGP 
treatments and diets with Day24 ceca samples. Shown here are the De 
novo biosynthesis and salvage pathways for purine, integrated with data 
generated from ceca collected at day 24. Each pie chart represents the 
taxonomic distributions of an enzyme (see key for color code). The size of 
pie charts indicates the average expression value (with log2 transform) of 
genes encoding that enzyme. Pie charts with red arrows refer to enzymes 
that are significantly up-regulated relative to the paired (+/- AGPs) sam-
ple. The abbreviations used here can be found in Supplemental Table 11.

Additional file 8: Supplemental Figure 8. Taxonomic contributions to 
expressed enzymes in Purine metabolic pathway across different AGP 
treatments and diets with Day40 ceca samples. Shown here are the De 
novo biosynthesis and salvage pathways for purine, integrated with data 
generated from ceca collected at day 40. Each pie chart represents the 
taxonomic distributions of an enzyme (see key for color code). The size of 
pie charts indicates the average expression value (with log2 transform) of 
genes encoding that enzyme. Pie charts with red arrows refer to enzymes 
that are significantly up-regulated relative to the paired (+/- AGPs) sam-
ple. The abbreviations used here can be found in Supplemental Table 11.

Additional file 9: Supplemental Figure 9. AGPs disrupt age related 
changes in metabolite profiles from chicken serum. PCA of metabolomic 
profiles generated from either AGP+ or AGP- samples. Samples are 
coloured and grouped based on age of bird from which the sample was 
taken.

Additional file 10: Supplemental Figure 10. Taxonomic contributions 
to gene expression profiles for proteins involved in cell wall biogenesis 
for ceca samples collected at day 40. Each node in the network indicates 
groups of orthologs corresponding to a specific E. coli gene (as indicated) 
involved in cell wall biogenesis. Links between nodes indicate a functional 
interaction as previously defined [53]. Size of the node indicates the rela-
tive expression of genes associated with each set of orthologs, with sector 
colours indicating the taxonomic contribution to gene expression (see key 
for color code). Red arrows indicate sets of orthologs that are significantly 
up-regulated in comparisons involving the presence/absence of AGPs.

Additional file 11: Supplemental Figure 11. Taxonomic contributions 
to gene expression profiles for proteins involved in cell wall biogenesis for 
jejunum samples collected at day 40. Each node in the network indicates 
groups of orthologs corresponding to a specific E. coli gene (as indicated) 
involved in cell wall biogenesis. Links between nodes indicate a functional 
interaction as previously defined [53]. Size of the node indicates the rela-
tive expression of genes associated with each set of orthologs, with sector 
colours indicating the taxonomic contribution to gene expression (see key 
for color code). Red arrows indicate sets of orthologs that are significantly 
up-regulated in comparisons involving the presence/absence of AGPs.

Additional file 12: Supplemental Figure 12. Comparison of changes in 
pathway-specific gene expression, with changes in taxon abundance and 
global gene expression for three select pathways. For each pathway (gly-
colysis, purine metabolism and cell wall biogenesis) we calculate the shift 
in expression across the four conditions tested (i.e. corn + AGPs v corn; 
wheat + AGPs v wheat; corn v wheat; and corn + AGPs v wheat + AGPs). 
The absolute deviation of these changes in pathway-specific expression 
were then calculated relative to: 1) the relative change in abundance of 
that taxon (as measured by the log2 fold-change associated with that 
taxon according to 16S rDNA-based relative abundance); and 2) the total 
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change in RNA for that taxon (as measured by the log2 fold-change in 
total taxon RNA, calculated by summing RPKM values for all genes for that 
taxon). Here OTUs are grouped into genera. In the box-plots, taxa with val-
ues close to zero, indicate that the shift in pathway gene expression was 
driven by a general shift in either taxon abundance (16S) and/or global 
taxon expression. Of the 48 comparisons presented, 42 show that at least 
60% of taxa with pathway expression, deviate by greater than a log2 fold 
change from changes in relative abundance (as measured by 16S rDNA) 
or global taxon expression (as measured by total taxon RPKM). Note, due 
to lack of phylogenetic resolution associated with the 16S rDNA datasets, 
these comparisons feature fewer taxa than the comparisons involving 
taxon-specific global gene-expression. Single sample Wilcoxon tests fur-
ther reveal that for 43 of the datasets, pathway-specific gene-expression 
significantly deviates from either taxon-abundance or global gene expres-
sion (* p<0.05; ** p< 0.01; *** p<0.001). The lower panels show the 20 
genera exhibiting the greatest divergence in pathway expression relative 
to global gene expression. For the Corn v Corn+AGP comparison for the 
glycolysis pathway, we identified ‘Other Bacteria’ and various Proteobacte-
rial groups as possessing the greatest deviation between pathway-specific 
and global fold change expression. For the Wheat v Wheat+AGP com-
parison. among the taxa with the greatest deviation between pathway-
specific and global fold change expression, were taxa classified as ‘Other 
Bacteria’, ‘Peptostreptococcaceae’ and ‘Clostridiaceae’.

Additional file 13: Supplemental Figure 13. Taxon-specific expression 
profiles for genes encoding proteins involved in cell wall biogenesis for 
ceca samples collected at day 24. Each network represents proteins and 
their interactions associated with the three select taxa. Nodes represent 
an ortholog of an E. coli protein previously predicted to be involved in 
cell wall biogenesis [53]. Size of the node indicates the relative expres-
sion of genes associated with the ortholog for that taxon. Links between 
nodes indicate a functional interaction as defined by the STRING protein 
interaction database [75], with those in green also found in the previously 
described E. coli network, and those in orange, not found in the previously 
described E. coli network.

Additional file 14: Supplemental Table 1. Ingredient and calculated 
nutrient composition of experimental broiler chicken diets.

Additional file 15: Supplemental Table 2. Details of Samples and 16S 
Survey Sequencing Statistics.

Additional file 16: Supplemental Table 3. Shannon diversity indices of 
samples classified according to age, site, and treatment. Averages of each 
grouping are shown with standard deviation in brackets.

Additional file 17: Supplemental Table 4. Abundance of Taxa in Cecal 
Samples Exhibiting Significant Changes in Abundance Across Different 
Treatments.

Additional file 18: Supplemental Table 5. Details of Metatranscriptome 
Sequencing Statistics.

Additional file 19: Supplemental Table 6. List of bacterial transcripts 
and their relative expression (RPKM) across all samples.

Additional file 20: Supplemental Table 7. Main and Interaction Effects 
of Diet and AGPs on Gene Expression for Day24 and Day40 Cecal Samples.

Additional file 21: Supplemental Table 8. Transcripts expressed in the 
ceca exhibiting significant differential expression between AGPs and diets.

Additional file 22: Supplemental Table 9. Metabolic pathways enriched 
in transcripts expressed in the ceca exhibiting significant differential 
expression between AGPs and diets.

Additional file 23: Supplemental Table 10. Enzymes detected in 73 
metatranscriptomic datasets.

Additional file 24: Supplemental Table 11. List of Abbreviations of 
Compounds and Enzymes.

Additional file 25: Supplemental Table 12. Metabolite profiles of serum 
samples collected from all 60 birds used in the study. Supplemental 
Table 12 Metabolite profiles of serum samples collected from all 60 birds 
used in the study.

Additional file 26: Supplemental Table 13. Expression of transcripts 
(RPKM) associated with antimicrobial resistance mechanisms across cecal 
samples.

Additional file 27: Supplemental Table 14. Expression of transcripts 
(RPKM) associated with antimicrobial resistance mechanisms across 
jejunum samples.
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