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Microbial functional genes are driven 
by gradients in sediment stoichiometry, oxygen, 
and salinity across the Baltic benthic ecosystem
Elias Broman1,2*, Dandan Izabel‑Shen1, Alejandro Rodríguez‑Gijón1,3, Stefano Bonaglia4, Sarahi L. Garcia1,3 and 
Francisco J. A. Nascimento1,2* 

Abstract 

Background:  Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the 
presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized 
by natural physiochemical gradients that structure these microbial communities potentially changing the diversity 
of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how 
environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways 
across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, meas‑
ured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the 
Baltic Sea.

Results:  The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and 
the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabo‑
lism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across 
environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional 
diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene com‑
position when compared to oxic sediments.

Conclusions:  This study highlights how benthic functional genes are structured over spatial distances and by envi‑
ronmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon 
plus nitrogen content will influence functional metabolic pathways in benthic habitats.
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Background
Aquatic microorganisms in the seafloor use a range of 
metabolic pathways to produce, degrade, or transform 
nutrients and biogeochemical elements [1]. Metabolic 
processes are dependent on the presence of functional 
genes within genomes coding for required enzymes 

and transporters. The community assembly of aquatic 
microbes, and consequently the functional genes they 
carry, can show strong spatial heterogeneity that stem 
from both deterministic and stochastic processes [2, 3]. 
Deterministic processes often shape microbial com-
munities by driving adaptations to local environmental 
conditions [4]. As such, environmental gradients have 
been found to be important for the community structure 
of aquatic microorganisms [2–6] and can be expected 
to also impact metabolic capabilities in marine sedi-
ments. Gradients in, e.g., salinity, organic matter content, 
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temperature, and oxygen conditions, occur naturally in 
aquatic ecosystems. In addition, anthropogenic impacts 
to the environment alters the strength of such environ-
mental gradients [5–9], with consequent impacts on the 
structure of benthic microbial communities [10–12]. 
For example, changes in freshwater runoff are expected 
to increase the extent of low-saline areas in enclosed 
water bodies such as the Baltic Sea [8]. This is important 
because salinity can structure the community composi-
tion of micro- and macroorganisms [13–19]. Differences 
in environmental conditions over spatial distances might 
therefore influence the diversity and composition of 
functional genes and metabolic processes.

Previous studies investigating functional gene diver-
sity in benthic environments collected sediments from 
few sampling sites (< 10) [20–24] likely due to the labour 
intensive and complex logistics sampling sediments. 
Conversely, great effort has been done to investigate 
functional gene diversity in the water column on a global 
scale [25]. The benthic environment is understudied 
compared to pelagic water, even though sediment might 
harbor 3–4 orders of magnitude more microorganisms 
per milliliter [26], and their metabolisms are known to 
respond to anthropogenic pressures including climate 
change [10, 11, 27, 28]. Interestingly, settling particles 
from the water column are known to harbor microbial 
communities and might contribute to changes in gene 
diversity and abundance in the sediment surface [29, 
30]. It has been shown in experimental studies that car-
bon and nitrogen resources (carbohydrates, proteins, or 
nucleic acids) as well as the compound structure (mono-
mer and polymer) influences the transcriptional activity 
of functional genes of marine bacteria [31]. Furthermore, 
the type of dissolved organic carbon can select for spe-
cific microbial populations with some bacteria being 
potential specialists for specific compounds [31, 32]. 
Considering the many different types of organic matter 
and the associated microorganisms utilizing these sub-
strates that are found globally in sediments, changes in 
carbon and nitrogen content might be reflected in the 
diversity and composition of functional genes at large 
spatial scales. Benthic environments are therefore com-
plex ecosystems, and it remains unclear which specific 
environmental drivers structure functional gene diversity 
and metabolic pathways in marine sediments. The Bal-
tic Sea, with its pronounced environmental gradients, in 
salinity, nutrient loads and oxygen conditions is an ideal 
model system for studying microbial communities over 
spatial distances and their responses to environmental 
change [33].

Here, we present findings from metagenomic data of 
sediment samples with related abiotic data collected 
between May and June 2019 from 59 stations covering 

1145 km (Baltic Sea) including gradients in water depth, 
salinity, temperature, O2, and total carbon (TC) and total 
nitrogen (TN) availability and isotopic signatures. We 
aimed to investigate the environmental variables struc-
turing the diversity and composition of functional genes 
and metabolic pathways. We hypothesized that changes 
in environmental conditions such as lower oxygen avail-
ability, decreased salinity, and lower TC & TN content 
limit benthic functional capabilities by decreasing the 
diversity and changing the composition of functional 
genes.

Methods
Field sampling and study site
The top 2 cm of sediment was collected at soft bot-
tom clay-muddy habitats from 59 stations from north 
to south in the Baltic Sea during May 10–June 4 2019 
(see Data S1 for a full list of sampling dates and WGS84 
coordinates). The Baltic is a brackish water system with 
a shallow mean water depth of 57 m [15]. In the north, 
salinity is close to freshwater conditions (< 2) that gradu-
ally increase to ca 17 in the south [15]. The Baltic Sea has 
been heavily eutrophicated during the last ~ 50 years and 
today contain large bottom areas being oxygen-deficient 
[9]. The samples were collected by the Swedish National 
and Regional Benthic Monitoring Program [34], and the 
stations were numbered from 1 to 59 based on a decrease 
in latitude coordinates. The stations were grouped into 
regions based on geographic location and known Baltic 
Sea basin bathymetry, with stations below the Bothnian 
Sea sharing the same locations and regions as presented 
in Broman E, Raymond C, Sommer C, Gunnarsson JS, 
Creer S and Nascimento FJA [16]. One sediment core 
was collected per station using a Kajak gravity corer (sur-
face area: 50 cm2, one core per station) and the top 0–2 
cm layer was sliced into a 215-ml polypropylene con-
tainer (207.0215PP, Noax Lab, Sweden). The sediment 
was homogenized and stored at – 20 °C on the boat, kept 
on iced for ~ 2 h during transportation to the university, 
and finally stored again at – 20 °C until DNA extraction. 
Bottom water (~ 20 cm above the sediment surface) was 
collected at each station with a Niskin bottle. This was 
followed by on deck measurements of bottom water tem-
perature, salinity, and dissolved O2 using a portable mul-
timeter (HQ40D, Hach).

Sediment chemical and isotope analyses
From each sample 1.5 mL sediment was dried at 60 °C for 
measurements of total carbon (TC), total nitrogen (TN), 
and stable 13C and 15N isotope compositions. The analy-
ses were performed with an elemental analyzer (Europa 
EA-GSL, Sercon Ltd., Cheshire, UK) coupled to an iso-
tope ratio mass spectrometer (20-22 IRMS, Sercon Ltd.). 
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Concentrations of solid phase TC and TN are reported as 
% by mass, and their ratio denoted as C/N. Isotopic com-
positions are reported using the conventional delta nota-
tion, which reports the isotopic composition of a sample 
as the ‰ deviation of a sample relative to atmospheric N2 
(δ15N ‰) and relative to PDB (δ13C ‰) according to our 
previous protocols [35].

DNA extraction and sequencing
The sediment samples were thawed, homogenized, and a 
subsample of 0.25 g was used for DNA extraction using 
the DNeasy PowerSoil kit (Qiagen) according to the man-
ufacturer’s protocol. The quantity and quality of eluted 
DNA were measured using NanoDrop One spectropho-
tometer and Qubit 2 (both by ThermoFisher Scientific) 
to ensure that samples meet the minimum requirements 
for sequencing. The samples were then sequenced at 
the SciLife laboratories facility on two NovaSeq 6000 S4 
lanes using a 2 × 150 bp setup. Sequencing yielded on 
average 53.0 million reads per sample (min 31.6, max 
99.3). See Data S2 for a full list of station labels, fastq file 
names, and the number of sequences retrieved.

Bioinformatic analyses—quality trimming
Illumina adapters were removed from the raw read data 
using SeqPrep 1.2 and targeting the adapter sequences 
[36]. Removal of any leftover PhiX control sequences 
were conducted by mapping the data onto the PhiX 
genome (NCBI Reference Sequence: NC_001422.1) 
using bowtie2 2.3.5.1 [37]. The reads were  then quality 
trimmed using Trimmomatic 0.36 with settings: LEAD-
ING:20 TRAILING:20 MINLEN:80 [38]. The results 
from the quality trimming were verified with FastQC 
0.11.8 [39] and MultiQC 1.9 [40]. The final quality 
trimmed data (trimmomatic “paired without unpaired” 
output, PwU) consisted on average of 47.0 million reads 
(min 28.5, max 87.9), with an average length of 137 bp 
with a Phred33 quality score of 36 (see Data S2 for full 
details per sample).

Bioinformatic analyses—read annotation
For functional gene analysis a protocol similar to the 
SAMSA2 pipeline was used [41]. In more detail, the 
R1 and R2 reads were merged using PEAR 0.9.10 using 
default settings [42]. After merging the data consisted of 
an average of 39.1 million reads (min 23.1, max 69.7) with 
an average length of 164 bp. The merged reads were clas-
sified against NCBI NR (database downloaded May 30, 
2020) using DIAMOND 2.0.4.142 with default settings, 
i.e., e value threshold 0.001, up to 25 hits per read query, 
and use of the tantan repeat masking algorithm to remove 
spurious hits [43, 44]. The output .daa files were megan-
ized (i.e., accession numbers linked to NCBI taxonomy 

and KEGG KO identifiers) using the tool daa-meganizer 
supplied with the software MEGAN Ultimate Edition 
version 6.20.17 [45] using the software supplied megan-
map-Jan2021-ue.db database. Here, we used the default 
settings with the daa-meganizer tool which will further 
filter the blast results after running DIAMOND. In more 
detail, blast hits with a bit score below 50, and hits out-
side the top 10% of the highest bit score were excluded. 
The meganized .daa files were combined into one .megan 
report file using the tool compute-comparison (setting: 
absolute counts) supplied with MEGAN. The data was 
then imported to MEGAN and analyzed further. On 
average 20.0 million reads (min 4.4, max 32.5) had been 
classified and were imported into MEGAN. The lowest 
read count of 4.4 million was attributed to the sample 
from station 49 (region Dead Zone Mid-South), however 
there was no consistent pattern that Dead Zone sam-
ples had lower read counts than the rest of the samples 
(Data S2). On average 4.9 million reads (min 1.0, max 7.9) 
had been linked to 12,423 unique KEGG KO identifiers 
affiliated with a known KEGG PATHWAY identifier (see 
Data S2 and Data S3 for full details and classifications per 
sample). The KEGG data was extracted and normalized 
between samples as counts per million values (CPM, i.e., 
relative proportion × 1,000,000).

Bioinformatic analyses—metagenome assembled 
genomes (MAGs)
The quality trimmed reads were used to construct 
a metagenome co-assembly using MEGAHIT 1.2.9 
with default settings [46]. The assembly consisted of 
64,413,852 contigs with an average length of 681 bp 
(min 200, max 403,515). This was followed by “binning” 
the assembly into metagenome assembled genomes 
(MAGs) using METABAT 2.12.1 with default settings 
[47]. This yielded 2216 MAGs which was further ana-
lyzed for completeness and contamination using the 
software CheckM 1.1.3 using the default lineage_wf 
pipeline with the standard 43 single copy marker 
genes (SCMG) set [48]. The final data was delimited 
to MAGs ≥ 95% completeness and ≤ 5% contamina-
tion, which resulted in complete or near-complete 46 
MAGs. The quality trimmed reads were mapped to the 
metagenome co-assembly using Bowtie2 2.3.5.1, and 
the sam files were converted to bam and sorted plus 
indexed with samtools 1.12 [49]. The % mapped reads 
per metagenome sample for each MAG was estimated 
with the CheckM coverage and profile commands. 
The MAGs were taxonomically and functionally anno-
tated using DIAMOND + MEGAN as described in 
Bağcı C, Patz S and Huson DH [50]. DIAMOND was 
run in frame-shift-aware alignment mode (settings: -F 
15 --range-culling). The output .daa files were linked 
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to taxonomical (NCBI) and functional (KEGG) anno-
tations using the MEGAN supplied daa-meganizer 
tool (setting: --longReads). The taxonomy and KEGG 
data were retrieved from each MAG using MEGAN 
(see Data S4 for full details and results of % mapped 
reads and KEGG classifications). In addition, prodi-
gal 2.6.3 [51] was used with default settings to predict 
genes in each MAG followed by gene classification 
using BLASTP with a 0.001 e-value threshold against 
the NCBI NR database (database date: September 1, 
2021) (Data S4). Metabolic distances between the high-
quality MAGs were calculated following the method 
described by Giri S, Oña L, Waschina S, Shitut S, Yousif 
G, Kaleta C and Kost C [52], except that here we used 
Jaccard distances rather than Euclidean. In brief, a met-
abolic network model containing the 46 high-quality 
MAGs was constructed using the gapseq 1.1 tool [53] 
with default settings. Columns with zero metabolic 
reactions were removed, metabolic distances were 
power transformed (^2), and Jaccard distances calcu-
lated between each MAGs. The metabolic distances 
between MAGs were compared by grouping MAGs, 
based on the % mapped reads from each station, with 
different salinities: North (< 5 ppt), South (> 8 ppt) and 
Dead Zones. In addition, the metabolic distance between 
MAGs in the North versus the South was also compared. 
See Data S4 for full details and results on the grouping of 
each MAG.

Bioinformatic analyses—taxonomic annotation
The taxonomic annotation of the data closely followed 
the procedure previously described in Broman E, Zil-
ius M, Samuiloviene A, Vybernaite-Lubiene I, Politi 
T, Klawonn I, Voss M, Nascimento FJA and Bonaglia 
S [28]. In brief, the quality trimmed sequences were 
taxonomically classified using the Kraken2 + Bracken2 
combo. Kraken 2.1.0 [54] was used with a paired-end 
setup (parameter: --paired) and the reads were classi-
fied against the NCBI RefSeq database (downloaded: 
August 1 2020). Bracken 2.6.0 [55, 56] was then used 
to estimate relative abundances on genera level using 
settings: -r 135 -l G -t 10 (i.e., bracken database with 
a read length of 135 bp, classified to genus level, and 
using a minimum threshold of 10 counts per genus). 
The bracken reports were then combined into a biom-
format file using the python package kraken-biom 1.0.1 
(parameters: ---fmt hdf5 -max D --min G) [57]. Finally, 
the biom data file was converted to a tab delimited table 
with the python package biom-format 2.1.7 [58]. The 
final data consisted on average of 4.4 million classified 
reads (min 1.1, max 7.9) and was analyzed and normal-
ized as relative abundances (%) in the software Explicet 
2.10.5 [59].

Statistics
Shannon’s H alpha diversity index was analyzed in the 
software Explicet by sub-sampling counts to the low-
est sample size for the NCBI RefSeq taxonomy data 
(1,063,881 counts) and KEGG functional gene data 
(982,326 counts). The analyses were conducted with 
a bootstrap × 100 setting and the mean is reported. 
Bray-Curtis dissimilarity index was used to analyze beta 
diversity, and analyses were performed based on rela-
tive abundances (%) for the NCBI RefSeq taxonomy data, 
CPM values for the KEGG functional gene data, and the 
% mapped reads per bin for the MAG data. The Bray-
Curtis index was calculated and visualized as non-metric 
multi-dimensional scaling (NMDS) multivariate plots 
using the software Past 4.05 [60]. PERMANOVA (9999 
permutations) tests were conducted in Past 4.05 to infer 
significant differences in community composition among 
the sampled regions. Pairwise PERMANOVA compari-
sons between regions with Bonferroni corrected p val-
ues were conducted in the software Past. Statistical tests 
mentioned below were run as two-sided as by default 
settings in the mentioned R packages using R 4.1.1 [61]. 
The bioenv function in the R vegan 3.6.1 package [62] was 
used to infer the main contribution environmental drivers 
affecting the community composition of the KEGG func-
tional gene data (parameter used: method=“spearman”, 
index=“bray”, metric=c(“euclidean”). In addition, dis-
tance-based redundancy analysis (dbRDA; distance = 
“bray”, 999 permutations) was conducted to infer which 
environmental variables was significantly influencing the 
KEGG functional gene and MAG data, using the capscale 
function in the vegan package. The simper function, also 
part of the R vegan package, was run with 999 permu-
tations and used to infer which KEGG functional genes 
contributed the most to changes in functional gene com-
position between the studied regions. Note that SIMPER 
analyses require the difference between the tested groups 
(i.e., regions in our study) to be significant to be mean-
ingful. The distance difference in meters between regions 
were obtained from using the R raster 3.4-10 package 
using the function pointDistance [63]. The input longi-
tude and latitude values were based on averages for each 
region, and the calculated km distance difference was 
then used with the SIMPER results of between group 
dissimilarity. Linear models of the KEGG pathways and 
abiotic variables were computed using the lm function 
in R. Multicollinearity was accounted for by visualizing 
correlograms and estimating the variance inflation fac-
tor using the vif function of the linear models in R (with 
the criteria of vif < 5). For these reasons, the abiotic vari-
ables latitude and longitude were excluded as they were 
collinear with each other and salinity, TC % and TN % as 
they were collinear with TC (μmol/g) and TN (μmol/g), 
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and TN which was collinear with TC (when running the 
linear model for the nitrate/nitrite transporter genes TC 
was substituted with TN). Pearson correlations between 
the abiotic variables were conducted using the rcorr func-
tion in the R package Hmisc 4.3.0 and delimited to sig-
nificant correlations with an r value > 0.7 or < -0.7 [64]. 
Statistical differences of genes between the studied 
regions were tested with Kruskal-Wallis tests and Dunn 
multiple comparisons with Benjamini-Hochberg P value 
adjustments using the dunn.test function in the dunn.test 
1.3.5 R package [65].

Results
Sediment samples (top 0–2 cm layer) were collected 
during May–June 2019 from 59 stations in the brackish 
Baltic Sea, that presents conditions close to freshwater 
(salinity < 2) in the north gradually increasing to ~ 17 in 
the south (Fig. 1A and Table 1). Stations were sampled for 

bottom water (water depth, salinity, temperature, O2) and 
sediment chemistry data (TC %, TN %, δ13C ‰, δ15N ‰) 
(Table 1 and Data S1). Environmental gradients included, 
e.g.,: water depth (13–125 m); salinity (2.6–16.2); dis-
solved O2 (0.2–11.5 mg/L); and C/N ratio (7.6–13.8); (see 
Table 1, Data S1, and Text S1 for full lists of all variables 
and their statistical analyses). DNA from all sediment 
samples was extracted, sequenced, and all good-quality 
reads were analyzed for functional genes, metabolic path-
ways, and taxonomy. Moreover, assembly and binning 
recovered 46 high-quality MAGs (≥ 95% completeness) 
that represented 1.64 % (± 0.14) of the reads.

Benthic functional gene composition shows strong 
spatial differentiation influenced by salinity and oxygen 
availability
Read-annotation of the whole metagenome dataset 
yielded on average 8,840 unique KEGG KO gene/protein 

Fig. 1  A Sediment samples (top 0–2 cm) were collected in Baltic Sea during May–June 2019. The map shows the sampled 59 stations as colored 
dots according to their specific region (grouped by spatial location; Table 1). The light brown–blue color gradient on the right y-axis shows the 
water depth (m). Dead zone regions are defined by having hypoxic bottom water (< 2 mg/L O2) and are colored in brown and black. B NMDS 
showing the beta diversity of the functional genes based on sequenced reads for each station. The figure shows the Bray-Curtis dissimilarity based 
on KEGG KO identifier read counts normalized as counts per million (CPM) values. The stations are clustered into regions and shown in different 
colors according to the map and Table 1. C NMDS showing the beta diversity (Bray-Curtis) of 46 high quality (≥ 95% genome completeness and 
≤ 5% contamination) metagenome assembled genomes (MAGs) for each station. The data is based on the % metagenome mapped reads to the 
genes in each MAG for each sample. The PERMANOVA results are based on testing all regions together and shows the pseudo-F values
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Table 1  The top 0–2 cm sediment layer was collected from distinct sediment cores from 59 stations during May–June 2019 from the 
north (latitude 64.65300) to south Baltic Sea (latitude 55.00903)

Station Region Depth (m) Salinity °C O2 mg/L TN (%) TC (%) δ15N (‰) δ13C (‰)

1 Bothnian Bay 27 2.6 4.9 10.3 0.1 1.4 3.2 − 25.0

2 Bothnian Bay 37 2.8 3.3 10.4 0.1 1.0 3.1 − 25.7

3 Bothnian Bay 32 2.7 3.9 10.5 0.1 0.7 4.4 − 25.3

4 Bothnian Bay 122 3.7 0.9 9.5 0.4 4.5 4.7 − 25.4

5 Bothnian Bay 106 3.6 1.0 9.9 0.5 5.5 4.7 − 25.8

6 Bothnian Bay 90 3.5 1.3 9.4 0.5 4.9 4.3 − 25.8

7 Bothnian Bay 75 5.8 3.2 7.2 0.3 2.4 4.0 − 24.2

8 Bothnian Bay 89 5.9 3.3 6.9 0.4 3.3 4.3 − 24.7

9 Bothnian Bay 85 5.9 3.3 7.0 0.4 3.0 4.4 − 24.5

10 Bothnian Sea 17 5.3 2.9 2.4 0.8 7.3 2.2 − 22.3

11 Bothnian Sea 46 5.4 2.2 7.6 0.4 3.5 3.5 − 23.7

12 Bothnian Sea 63 5.6 2.6 6.8 0.2 1.9 3.5 − 23.4

13 Bothnian Sea 30 5.3 2.0 7.8 0.6 5.3 2.4 − 21.9

14 Bothnian Sea 79 5.5 2.4 7.2 0.3 2.6 4.3 − 24.3

15 Bothnian Sea 68 5.4 2.1 7.8 0.3 2.8 4.1 − 24.3

16 Bothnian Sea 67 5.3 1.9 9.3 0.3 2.9 4.1 − 23.9

17 Bothnian Sea 49 5.1 2.7 8.5 0.4 3.4 3.8 − 24.1

18 Bothnian Sea 70 5.2 2.1 10.0 0.4 3.5 3.8 − 24.5

19 Bothnian Sea 77 5.2 2.3 10.1 0.4 3.3 4.1 − 24.4

20 Stockholm 23 5.2 5.2 8.9 0.6 5.2 3.6 − 23.9

21 Stockholm 121 6.8 2.8 10.8 0.4 3.4 3.7 − 24.3

22 Stockholm 110 6.8 2.8 8.0 0.5 3.9 3.7 − 24.4

23 Stockholm 24 4.2 9.7 11.1 0.7 5.1 4.7 − 22.6

24 Stockholm 62 5.7 4.7 7.8 0.2 1.6 3.5 − 22.6

25 Stockholm 40 4.9 5.6 10.4 0.4 2.7 4.0 − 22.8

26 Sörmland 22 5.8 8.1 11.3 0.8 6.0 4.5 − 22.8

27 Sörmland 40 6.2 4.6 9.5 0.8 5.6 4.1 − 23.5

28 Sörmland 37 6.1 4.8 10.3 0.8 5.7 3.9 − 23.4

29 Sörmland 38 6.3 4.0 9.3 0.6 4.4 4.4 − 23.4

30 Sörmland 44 6.3 4.2 10.4 0.2 1.5 4.1 − 23.3

31 Sörmland 53 7.5 4.3 8.4 0.6 4.0 4.3 − 23.4

32 Sörmland 47 7.4 4.0 7.4 0.6 4.2 4.1 − 23.3

33 Sörmland 59 6.7 4.2 9.6 0.5 3.5 4.1 − 23.7

34 Dead Zone (Sörmland) 79 10.0 5.8 0.3 0.8 6.4 3.0 − 24.5

35 Dead Zone (Sörmland) 78 10.0 5.8 0.5 0.5 4.5 3.4 −  24.9

36 Dead Zone (Sörmland) 125 9.8 6.3 0.5 1.1 9.4 2.8 − 25.1

37 Östergötland 13 5.8 11.0 10.1 0.9 7.1 4.5 − 22.0

38 Östergötland 13 5.6 11.5 10.8 1.1 7.6 4.7 − 21.9

39 Östergötland 17 5.7 11.6 10.5 1.0 7.4 5.0 − 19.9

40 Östergötland 20 5.7 10.2 8.7 1.1 7.8 4.9 − 22.5

41 Östergötland 20 6.1 9.0 10.6 1.2 8.3 4.6 − 21.9

42 Östergötland 39 5.7 5.9 11.5 1.0 7.1 4.4 − 22.6

43 Östergötland 33 5.6 6.8 11.5 0.9 6.6 4.4 − 22.5

44 Östergötland 25 5.6 8.4 11.1 0.8 6.1 4.0 − 22.5

45 Östergötland 32 5.6 7.9 11.3 0.8 6.0 4.0 − 22.5

46 Östergötland 33 5.7 7.8 11.0 1.2 8.1 3.9 − 23.0

47 Östergötland 29 5.7 8.7 11.2 0.8 5.9 4.0 − 22.1

48 Dead Zone (Mid-South) 79 8.7 5.8 0.3 1.1 8.2 3.5 − 23.5
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identifiers per sediment sample (min: 7,759, max: 9,406; 
see Data S2 for number of reads before quality trimming, 
after merging of reads, etc.; see Data S3 for all KEGG 
database hits). There was no correlation in functional 
gene (KEGG KOs) alpha diversity (Pearson’s r = 0.11; 
10.89 ± 0.005 Shannon’s H; Fig. S1) among our sam-
pled stations, indicating that changes between basins in 
functional diversity are likely attributed to changes in the 
composition of genes, rather than the number of differ-
ent genes. Non-metric multidimensional scaling (NMDS) 
analysis of the Bray-Curtis dissimilarity of the KEGG 
KO identifiers showed that the functional gene compo-
sitional diversity was different between the regions in the 
Baltic Sea (PERMANOVA (9999 permutations), pseudo-
F = 9.6, P = 0.0001; Fig. 1B). To further look into detail 
of some of these differences in functional gene diver-
sity we performed a similar analysis on data from indi-
vidual MAGs. Interestingly, a difference in beta diversity 
(Bray-Curtis) was also observed when the representation 
of functional genes within the high quality MAGs were 
analyzed between the studied regions (PERMANOVA, 
pseudo-F = 7.24, P = 0.0001; Fig. 1C and Data S4). SIM-
PER analysis revealed a positive correlation between 
functional gene dissimilarity (%) and the km distance 
between region with oxic sediments (r = 0.91, P < 0.001; 
Fig. 2A; Data S5). To test the difference between regions, 
stations were considered replicates within their specific 
region (n = 3–12) (see methods for more details). How-
ever, this was not evident when including data from the 
hypoxic (< 2 mg/L O2) dead zone regions (r = 0.35, P > 
0.05; Fig. 2A). This shows that that gene dissimilarity was 
higher when comparing dead zones with oxic regions 
(up to 16% dissimilarity), while the largest dissimilar-
ity between oxic regions was found when comparing the 
Bothnian Bay with the Southern Baltic (10% dissimilarity; 

Data S5). A BIOENV analysis showed that the best 
explanatory variables for the functional gene composi-
tional diversity (Bray-Curtis) across the 59 stations in 
the Baltic Sea were latitude, water depth, salinity, oxygen, 
TC %, C/N, and δ15N ‰ (Spearman’s rho = 0.69). Simi-
larly, dbRDA analysis showed that salinity, water depth, 
oxygen, TC %, C/N, temperature, and δ15N ‰ were sig-
nificantly influencing the functional gene community 
composition (all P < 0.05), as well as the composition of 
the high-quality MAGs (all P < 0.05; full statistics avail-
able in Data S6).

Stoichiometry controls the availability of genes for major 
metabolic pathways including environmental sensing, 
membrane transport of nutrients, and carbon metabolism
The top 10 metabolic pathways in the sediment metage-
nomes for all stations (based on the average CPM values 
(counts per million reads) of the KEGG pathways for all 
stations), were dominated by the ATP-Binding Cassette 
(ABC) transporters pathway which is crucial in trans-
fer of substrates over the cell membrane (Fig. S2). Other 
top pathways were associated with environmental sens-
ing and biofilm formation (two-component system and 
quorum sensing), energy and respiration (e.g., glycolysis/
gluconeogenesis and oxidative phosphorylation), and cell 
maintenance such as replication and repair (Fig. S2). Lin-
ear model analyses of the top 10 pathways, with abiotic 
variables as explanatory variables, showed that variables 
with the strongest effect (P < 0.01) were salinity, water 
depth, C/N, and δ15N (Table S1, see Data S7 full statisti-
cal results). Salinity was one of the significant variables 
for the glycolysis/gluconeogenesis, oxidative phosphoryl-
ation, quorum sensing, and replication and repair path-
ways (P < 0.05; Table S1). Looking in more detail at the 
significant explanatory variables for the top 3 pathways: 

The table shows the stations listed as clusters from north to south (stations 1 to 59, respectively), water depth (m), bottom water salinity, temperature (°C), and 
dissolved O2 (mg/L). Total nitrogen (%), total carbon (%), and isotope ratios (δ15N and δ13C ‰) were measured on sampled sediment

Table 1  (continued)

Station Region Depth (m) Salinity °C O2 mg/L TN (%) TC (%) δ15N (‰) δ13C (‰)

49 Dead Zone (Mid-South) 111 11.6 7.3 0.3 1.8 16.8 3.0 − 21.2

50 Dead Zone (Mid-South) 71 15.2 8.6 1.1 0.6 4.9 3.3 − 25.1

51 Dead Zone (Mid-South) 80 15.1 8.8 0.2 0.7 5.8 3.1 − 24.8

52 Southern Baltic 91 16.2 8.7 0.5 0.7 6.7 3.3 − 24.1

53 Southern Baltic 41 12.3 5.8 5.3 0.2 1.7 4.6 − 23.6

54 Southern Baltic 43 12.5 6.5 7.6 0.8 6.1 4.0 − 23.9

55 Southern Baltic 41 12.8 6.8 6.4 0.4 2.9 4.2 − 23.5

56 Southern Baltic 41 11.7 5.9 5.2 0.4 3.1 4.0 − 23.7

57 Southern Baltic 45 11.9 7.4 8.6 0.8 6.7 4.0 − 23.0

58 Southern Baltic 39 12.4 9.0 9.6 0.2 1.9 4.1 − 22.5

59 Southern Baltic 48 15.0 8.1 8.5 0.7 6.1 4.3 − 22.7
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water depth and C/N were significant for ABC trans-
porters; C/N, TC, and δ15N for two-component system; 
and salinity, C/N, temperature and δ15N for glycolysis/
gluconeogenesis (Table S1). Taken together, salinity was 
found to be a significant variable for some specific meta-
bolic pathways used with, e.g., carbohydrate metabo-
lism, but other variables such as the C/N ratio were 
more important for, e.g., ABC transporters that are used 
for membrane transport of nutrients (Fig.  2B). Similar 
to the functional gene dataset (i.e. individual genes not 
clustered into pathways), the beta diversity of the top 10 
dominant pathways also showed a difference between 
regions (PERMANOVA tests, pseudo-F = 6.19–11.81, 
P = 0.0001; Fig.  3). The distinctly different Dead Zone 
regions likely explained part of the dissimilarity, however 

beta diversity changed along the spatial gradient even 
in the oxic sediments for the pathways: ABC transport-
ers, Two-component system, glycolysis/gluconeogenesis, 
purine metabolism, glyoxylate, and the citrate cycle. In 
contrast, for the pathways aminoacyl-tRNA biosynthesis 
and replication and repair clustered more closely among 
regions (Fig.  3). PERMANOVA pairwise comparisons 
between the regions for the top 10 pathways listed above 
showed that the Bothnian Bay and Southern Baltic had 
the highest number of significant comparisons with other 
regions (Data S6), indicating that the large difference in 
salinity at these regions likely influenced the functional 
gene composition. Salinity was a major variable explain-
ing the gene composition for nutrient uptake as indicated 
by linear models analyses on the nitrate/nitrite ABC 

Fig. 2  A The change in functional genes dissimilarity (%) over km distances in the Baltic Sea. The % dissimilarity between regions were estimated 
with SIMPER analyses, based on pairwise-test of regions, and distances calculated based in the average latitude and longitude for each region. The 
data is based on pairwise-tests between regions (i.e., one dot is the distance between two regions) with dead zone regions (Dead Zone (Sörmland) 
and Dead zone (Mid-South)) denoted as black dots. B CPM-values of the top three pathways vs the C/N ratio for all stations. The dashed line shows 
a linear trendline. C CPM-values of the nitrate/nitrite ABC transporter complex nrtABCD genes vs salinity and TN

(See figure on next page.)
Fig. 3  NMDS panels showing the beta diversity (Bray-Curtis dissimilarity) of the functional genes in all reads of the metagenomes within the top 
10 KEGG Pathways (based on the average CPM-values for all 59 stations). The metabolic pathways that attributed the highest number of DNA 
sequences in the Baltic Sea sediments samples are, in order: A ABC transporters, B two-component system, C glycolysis/gluconeogenesis, D purine 
metabolism, E aminoacyl-tRNA biosynthesis, F replication and repair, G oxidative phosphorylation, H glyoxylate and dicarboxylate metabolism, I 
quorum sensing, J and the citrate cycle (TCA cycle). The PERMANOVA results are based on testing all regions together and shows the pseudo-F 
values
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Fig. 3  (See legend on previous page.)
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transporter complex nrtABCD genes. The results showed 
there was a lower gene abundance of nrtA, nrtB, and nrtC 
at higher salinities (P < 0.05; Fig.  2C; statistics available 
in Data S8). A similar pattern was found when nrtABCD 
genes were plotted against TN (μmol/g) but this was 
not statistically significant in the linear model analysis 
(Fig. 2C; note the high TN values in the figure from one 
of the dead zone samples (station 49; Data S1)). Look-
ing closer at the functional gene diversity within the top 
3 pathways (ABC transporters, two-component systems, 
and glycolysis/gluconeogenesis) examples of statistically 
significant genes include, e.g., similar genes cusA/silA 
coding for copper/silver efflux system protein that was 
higher in the Bothnian Bay and Bothnian Sea when 
compared to the more southern regions Östergötland, 
Southern Baltic and both Dead Zones (KW test, df = 7, 
H = 30.4; with Dunn comparison test between regions, 
Benjamini-Hochberg adjusted P values < 0.05; Fig. 4). In 
contrast, the genes zrA/HydG coding for a NrtC (nitro-
gen regulatory protein C) family response regulator was 
higher in the southern parts of the Baltic (Östergötland 
and the Southern Baltic compared to both the Bothnian 

Bay and Sea; KW, df = 7, H = 50.0; Dunn test adjusted P 
values < 0.05; Fig.  4). ALDH genes coding for Aldehyde 
dehydrogenases, shown to be used in, e.g., carbon metab-
olism and osmoprotection [66], had more reads in the 
mid and northern part of the Baltic, with the Bothnian 
Bay and Sea, Stockholm and Sörmland all being higher 
than the Southern Baltic and the Dead Zone regions 
(KW, df = 7, H = 32.9; Dunn test adjusted P values < 
0.05; Fig. 4). The number of reads attributed to the pstS 
gene coding for a Phosphate transport system substrate-
binding protein involved in phosphate import was higher 
in the Bothnian Bay and Sea, Stockholm, and Östergöt-
land when compared to the Southern Baltic (KW, df = 7, 
H = 32.6; Dunn test adjusted P values < 0.05; Fig. 4).

In addition to the major metabolic pathways and their 
gene diversity, we also investigated the top functional 
genes in the studied system. Dominant genes in the Bal-
tic Sea sediments included, e.g., a gene coding a large 
repetitive protein used in biofilm formation, a putative 
transposase which, are proteins known to be used in 
genome plasticity, arylsulfatase that is involved in the 
hydrolysis of sulfur ester-bonds common in algal sulfated 
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polysaccharides, and genes used in, e.g., fatty acid bio-
synthesis, DNA replication and repair, and metabolism 
of purines and pyrimidines which are key components in 
nucleic acids (Fig. S2). Looking closer at a few examples 
of what genes in the sediment contributed significantly 
(SIMPER analysis, P < 0.05) to the functional gene dis-
similarity between the studied regions: the gene bapA 
coding for a large repetitive protein used in biofilm for-
mation had the most attributed reads in the Southern 
Baltic (Data S5); an unnamed Arylsulfatase gene had 
more read counts in the mid-Baltic and Southern Bal-
tic, except for the Dead Zone regions (Data S5); the gene 
hdrA2 coding for the enzyme “heterodisulfide reductase 
subunit A” used in methanogenesis was more abundant 
in the Dead Zone regions (Data S5); and a multidrug 
efflux pump gene coding for resistance against beta-
Lactam antibiotics was higher in the northern Baltic and 
mid-Baltic (Stockholm and Sörmland) when compared 
to the Southern Baltic (Data S5).

Microbial MAGs in dead zones are metabolically more 
similar than those in oxic sediments
Furthermore, Jaccard distances calculated from meta-
bolic distances of the 46 high-quality MAGs with major-
ity of their mapped reads (%) at the low saline North (< 
5), high saline South (> 8), or low oxygen Dead Zones 
showed that the dead zones had a lower metabolic dis-
tance between the MAGs (Kruskal-Wallis (KW) test, df 
= 3, H = 40.9, with multiple comparison Dunn test, P < 
0.05; Fig. S5 and Data S4). This indicates that genomes 
are metabolically more similar in dead zones compared 
to both low- and high-saline regions with oxic sediments 
in the Baltic. The metabolic distance between MAGs in 
the North and South also showed a high dissimilarity 
(Jaccard distance > 0.9), however this was not different 
from the metabolic distances within the North region (> 
0.9; Fig. S5).

Microbial community composition is also structured 
by strong changes in salinity and oxygen
Taxonomic classification of the metagenome data on the 
lowest classified level, i.e., genus (NCBI RefSeq database, 
Data S9) showed that the Shannon’s H alpha diversity 
index only had a weak correlation with spatial location (r 
= 0.57). Also, there was no large differences between the 
north and south Baltic (Bothnian Bay 8.40 ± 0.02, South-
ern Baltic 8.67 ± 0.02 Shannon’s H) (Fig. S3). The Bray-
Curtis beta diversity of the microbial community showed 
a statistical significance (PERMANOVA, pseudo-F = 
8.47, P = 0.0001); however, the pattern along our regional 
spatial gradient was not as clear as the functional gene 
data. Instead, the largest differences in the Bray-Curtis 
diversity were related to strong changes in salinity and 

oxygen: the north (Bothnian Bay), Southern Baltic, and 
Dead Zone areas (Fig. S4). The dataset showed that the 
relative abundance of bacterial phyla was similar across 
our Baltic Sea stations (including dead zone areas), with 
only minor differences (Fig.  5). Actinobacteria and Pro-
teobacteria had the highest relative abundance (%) that 
together represented 80.28 ± 1.20% of the dataset (based 
on all 59 stations; Fig.  5). These two groups showed 
minor variation along the Baltic Sea, with Actinobacteria 
(24.22 ± 0.003%), Proteobacteria classes gamma (18.27 ± 
0.002%), alpha (17.27 ± 0.002%), beta (13.93 ± 0.003%), 
and Delta (6.45 ± 0.001%; Fig. 5). On genus level, three 
genera among the most abundant taxa were distinctly 
different either increasing, decreasing, or showing a high 
variation in their relative abundance, across the Baltic Sea 
spatial gradient. These were Nitrosopumilus, Burkholde-
ria, and Desulfosarcina (Fig. S6). Our abiotic variables 
were unable to explain the variation in the archaeal nitri-
fier Nitrosopumilus (Spearman correlations, P > 0.05), 
however salinity correlated negatively with Betaproteo-
bacteria Burkholderia (rho = − 0.65, P < 0.0001) which 
had the highest relative abundance in the north Baltic. 
Conversely, salinity correlated negatively with the sulfate-
reducing bacteria Desulfosarcina (rho = 0.76, P < 0.0001) 
which had the highest relative abundance in the south 
Baltic Sea (Fig. S6). Finally, BIOENV analysis on genus 
level showed that the best combination of  explanatory 
variables for the community composition (Bray-Curtis) 
included latitude, salinity, oxygen, TC %, C/N, and δ15N 
‰ (Spearman’s rho = 0.72).

Discussion
We have shown here that the composition of functional 
genes, metabolic pathways, and microbial communities 
in the seafloor spanning over 1000 km distance is struc-
tured not only by environmental conditions like salinity 
and oxygen, but also by carbon and nitrogen origin and 
availability. Functional gene dissimilarity increased by 
geographic distance, and salinity was one of the main 
drivers of functional gene composition in sediment. Sedi-
ments located in higher saline water are known to harbor 
a higher biodiversity of benthic micro- and macrofauna 
[15, 16]; however, this pattern was not observed for 
pelagic prokaryotes in the Baltic Sea [14]. While a higher 
species richness of prokaryotic operational taxonomic 
units (OTUs) based on rRNA has been detected in the 
mid-Baltic compared to the south and north [67], we did 
not find a difference in alpha diversity for both microbial 
genera or functional genes in the sediments. These find-
ings are in contrast to our hypothesis that lower oxygen 
and salinity would decrease diversity and limit functional 
capabilities. Our findings are in accordance with studies 
that found salinity to influence the gene composition of 
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sediment microbial communities in systems such as lakes 
and estuaries [68, 69]. For example, a study conducted in 
the Hangzhou Bay estuary identified salinity to be one of 
the most influential variables for gene categories related 
to, e.g., phosphorous, sulfur, and nitrogen cycling [68], 
while another study found that salinity was an important 
factor shaping microbial communities in the Baltic Sea 
[70], and Qinghai-Tibetan Plateau lake sediments [69]. 
In our study, major pathways such as ABC transporters, 
two-component systems, and glycolysis/gluconeogenesis 

had a gene composition that changed along the spatial 
gradient, seemingly controlled by variables related to 
resource availability (e.g., C/N, TC, and δ15N) in addi-
tion to salinity and temperature as indicated by the lin-
ear models. However, nutrient uptake transporters such 
as the nitrate/nitrite transporter genes nrtABCD were 
significantly explained by salinity but not TN, indicat-
ing that salinity had a larger influence on these ABC 
transporter genes than the availability of nitrogen in the 
sediment. These spatial differences in gene abundance of 
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major pathways suggest potential consequences for car-
bon cycling. Indeed, high variability of organic carbon 
recycling rates within the Baltic Sea basins has been pre-
viously reported, with the mid-Baltic (i.e., Baltic Proper) 
showing higher recycling rates compared to the northern 
Baltic [71]. Moreover, the Baltic Proper has a history of 
stronger exposure to eutrophication compared to the 
northern basins [72], and together these differences in 
carbon recycling and nutrient load might partly explain 
changes in gene composition related to carbon cycling 
and nutrient membrane transport in our dataset. Addi-
tionally, salinity has been shown to be a factor promot-
ing sulfate reduction and biofilm formation in sediments 
[73], and partly explaining why the relative abundance 
of sulfate reducing Desulfosarcina and genes for biofilm 
function were more prevalent in the saline southern Bal-
tic. As suggested by the clustering of stations within the 
studied regions in the NMDS plots, our results indicate 
that environmental variables like oxygen, temperature, 
organic matter, and nutrients have a larger influence on 
community and gene composition than relatively sta-
ble parameters such as salinity [10, 74, 75]. We found 
essential pathways such as Aminoacyl-tRNA biosynthe-
sis and replication and repair to cluster more closely in 
the NMDS plots among regions (compared to the path-
ways described above). Synthesis of Aminoacyl-tRNA 
is essential in protein synthesis for living organisms as 
Aminoacyl-tRNAs are involved in the ligation of amino 
acids to tRNAs [76]. Replication and repair contain cod-
ing genes such as DNA helicases and polymerases used 
in, e.g., transcription and DNA repair plus replication 
[77]. Finally, because the higher eutrophication in the 
Baltic Proper [72], the large deposition of algal matter 
on the seafloor could explain why the Baltic Proper and 
southern Baltic had more genes for potential degradation 
of algal sulfated lipids (i.e., arylsulfatase) [78] compared 
to the northern Baltic. Taken together our results indi-
cate that sediment stoichiometry (such as the C:N ratio), 
salinity, and oxygen concentration influence functional 
gene composition and control the availability of genes for 
major metabolic pathways in sediments.

Because of the aforementioned extensive eutrophica-
tion with subsequent decreased oxygen availability in the 
bottom waters [79], the Baltic Sea has today one of the 
largest dead zones in the world [80]. Metabolic pathways 
were clearly impacted in our dead zones sediments as 
also indicated by the role of oxygen in driving functional 
gene composition. In an environment that favors anaero-
bic metabolic processes, with a large range of associated 
electron acceptors, dead zones are  metabolically differ-
ent from oxic sediments [1]. This was also reflected in the 
metabolic distance analyses of the high-quality MAGs, 

which suggested that dead zones contain genomes that 
are metabolically more similar between each other than 
when compared to genomes in oxic sediments. Oxy-
gen manipulations of sediments changed the prokary-
otic alpha diversity (both increase and decrease) [10, 
81], however in our dataset we did not observe a large 
difference in alpha diversity between oxic station and 
stations with long-term anoxic sediments. A possible rea-
son is our use of metagenome sequencing compared to 
the more common amplicon sequencing approach used 
in those studies to estimate alpha diversity. Dead zone 
sediments were some of the most dissimilar sediments 
in terms of functional gene composition across the Bal-
tic Sea. Since many Baltic Sea dead zones have been in 
that state for more than 50 years, and have stable envi-
ronmental conditions below a permanent halocline [79] 
it is possible that these microbial communities are an 
effect of selective survival [82] or adaptive evolution. The 
long-term anoxic conditions selecting for anaerobic pro-
cesses in these sediments likely explain why these zones 
had the most dissimilar functional gene composition and 
most metabolically similar MAGs when compared to 
oxic areas. Finally, we found that δ15N (‰) explained part 
of the gene composition in the dataset, with δ15N (‰) 
values closer to 0 being an indicator of higher organic 
matter content derived from N2-fixation such as by 
cyanobacteria [83]. These findings explain why the Dead 
Zones stations had lower δ15N (‰) values as these areas 
can accumulate large quantities of algal material, includ-
ing diazotrophic organisms [9, 79, 84] that potentially 
remains longer in the sediment because degradation is 
slower under anoxic conditions [85, 86]. These findings 
indicate that the expansion of oxygen deficient waters 
have long-term effects on benthic microbial communities 
and the composition of functional genes.

Climate change is currently altering biological, chemi-
cal, and physical factors in the oceans and coastal 
ecosystems [87]. The relevant studied environmental 
parameters here, such as changes in salinity, decrease 
in oxygen, and eutrophication are major threats to bio-
diversity [88]. Biodiversity supports ecosystems services 
such as food availability and provision of clean water, but 
also ecosystems processes including, e.g., nutrient cycling 
[88]. However, even though the alpha diversity of ben-
thic meiofauna (animals < 1 mm) and macrofauna are 
pronounced over environmental gradients [15, 16], this 
was not obvious for the microorganisms or their func-
tional gene composition. It can be expected that in sedi-
ments, which include a redox cascade with both aerobic 
and anaerobic metabolic pathways [1], are especially rich 
in the repertoire of functional genes. The large variety of 
metabolic capabilities might therefore persist in benthic 
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habitats under environmental change (i.e., core functions 
are preserved) [22]; however, anthropogenically stressed 
areas might have less/more abundance of some func-
tional genes limiting the potential of related metabolic 
processes. Interestingly, according to our multivariate 
analyses this compositional change in functional genes is 
more prominent across the studied gradients than taxo-
nomic composition. The composition of bacterial phyla 
in our dataset was essentially constant across the salin-
ity gradient in the Baltic, but based on previous findings 
using amplicon sequencing larger differences in phyla are 
expected at higher salinities close to a fully marine setting 
[67]. Considering that sinking particles from the water 
column harbors microbial communities [29, 30] and that 
the Baltic Sea is a relatively shallow system (average water 
depth 56 m) [89] it is likely that a portion of microbes in 
the sediment have been recruited from the water column. 
This possible recruitment from the water column can to 
some extent influence the functional gene diversity in 
the sediment surface. However, it remains to be studied 
to what extent such sinking particles contribute to func-
tional gene diversity and abundance. Moreover, because 
of the large number of functional genes in sediments 
compared to microbial genera, changes in functional 
gene abundances in response to environmental gradi-
ents might be easier to detect. However, it is possible 
that marine bacteria can adapt to different environmental 
conditions via selective loss of genes (genomic streamlin-
ing) or acquire traits from other bacteria [90, 91]. Our 
data suggests that that functional gene diversity, rather 
than taxonomic diversity, is a determining driver of 
microbial adaptation to local environmental conditions in 
benthic habitats. Amplicon-based PCR approaches used 
to investigate microbial taxonomy, although very useful 
for the study of biodiversity and community structure 
responses, might not fully elucidate functional patterns 
solely by comparing taxonomy with geochemical data. 
Future impacts of climate change with alterations in bio-
geochemical cycles and effects, like water deoxygenation, 
increased freshwater runoff, and enhanced eutrophica-
tion [5–8], are therefore expected to alter functional gene 
composition and metabolic pathways in benthic habitats 
of the inhabiting sediment microbial communities.

Conclusions
We found that the composition of functional genes was 
driven by gradients in salinity, oxygen, and carbon and 
nitrogen at the regional scale of the Baltic Sea. This 
change in functional genes over the environmental gradi-
ents was more prominent than changes in microbial gen-
era, and indicate that functional diversity is an important 
mediator of adaption to different local environmental 

conditions. Compared to oxic sediments, oxygen defi-
cient areas had a higher gene dissimilarity and meta-
bolically more similar MAGs. Our findings indicate that 
natural or anthropogenic changes in, e.g., oxygenation, 
salinity, and carbon plus nitrogen content will alter func-
tional gene composition and metabolic pathways in ben-
thic habitats.
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with EC numbers” pathway was not included in subpanel (A). The data 
shown is based on the average CPM-values for all 59 stations (±SE). 
Figure S3. Shannon’s H of the NCBI RefSeq taxonomy based for each sta‑
tion. The data was normalized by sub-sampling to the lowest read count 
(1,063,881). Each dot in the graphs shows the mean after bootstrap × 
100. Figure S4. NMDS showing the beta diversity (Bray-Curtis dissimilar‑
ity) of the microbial community (NCBI RefSeq classified taxonomy) at 
the lowest classified level, i.e. genus. The data was normalized as relative 
abundances (%). The PERMANOVA results are based on testing all regions 
together and shows the pseudo-F value. Figure S5. The figure shows 
the Jaccard distance (y-axis) based on the metabolic distance between 
the high-quality MAGs in different areas of the Baltic Sea. The MAGs were 
grouped according to salinity as North (<5), South (>8), or Dead Zones. 
The metabolic distance between MAGs present in the North and South 
were also calculated and is shown as “North vs South”. The error bars show 
SE. Figure S6. Heatmap showing the top relative abundant (%, color 
legend shown on the y-axis) classified hits on the lowest taxonomic level 
(genus) based on the NCBI RefSeq data. The heatmap is delimited to only 
show genera > 0.5% average of all samples. The x-axis shows the results 
for each station. Table S1. Results from the linear models of the top 10 
pathways. The CPM is based on the average CPM values for all station (n = 
59) as shown in Fig. S1. The stars denote: * = P < 0.05; ** = P < 0.01 ; *** = 
P < 0.001. Text S1. Correlations between abiotic variables.
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