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Abstract 

Background:  Complex interactions between the gut microbiome and immune cells in infancy are thought to be 
part of the pathogenesis for the marked rise in pediatric allergic diseases, particularly food allergies. Food protein-
induced allergic proctocolitis (FPIAP) is commonly the earliest recognized non-immunoglobulin E (IgE)-mediated 
food allergy in infancy and is associated with atopic dermatitis and subsequent IgE-mediated food allergy later in 
childhood. Yet, a large prospective longitudinal study of the microbiome of infants with FPIAP, including samples prior 
to symptom onset, has not been done.

Results:  Here, we analyzed 954 longitudinal samples from 160 infants in a nested case-control study (81 who 
developed FPIAP and 79 matched controls) from 1 week to 1 year of age by 16S rRNA ribosomal gene sequencing 
as part of the Gastrointestinal Microbiome and Allergic Proctocolitis (GMAP) study. We found key differences in the 
microbiome of infants with FPIAP, most strongly a higher abundance of a genus of Enterobacteriaceae and a lower 
abundance of a family of Clostridiales during the symptomatic period. We saw some of these significant taxonomic 
differences even prior to symptom onset. There were no consistent longitudinal differences in richness or stability 
diversity metrics between infants with FPIAP and healthy controls.

Conclusions:  This study is the first to identify differences in the infant gut microbiome in children who develop 
FPIAP, some even before they develop symptoms, and provides a foundation for more mechanistic investigation into 
the pathogenesis of FPIAP and subsequent food allergic diseases in childhood.
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mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Food protein-induced allergic proctocolitis (FPIAP) is a 
commonly recognized and burdensome form of non-IgE-
mediated food allergy of early infancy with rates as high 
as 17% recently reported in the USA from the GMAP 
study [1]. FPIAP is typically diagnosed clinically by the 
presence of bloody and mucoid stools during the first few 

months of life in a generally healthy infant that resolves 
with dietary restriction (most commonly of milk protein 
and sometimes soy) [2]. FPIAP can be seen in both chil-
dren who are breastfed and formula fed, but exclusively 
formula-fed infants are at increased risk [1]. The patho-
physiology of FPIAP is not well studied or understood. 
It resolves for most affected patients within the first 12 
months of life; however, it has been associated with an 
increased risk of developing both IgE-mediated food 
allergy (IgE-FA) [3] and eosinophilic esophagitis [4]. The 
rate of rise of food allergies strongly implicates environ-
mental factors (antibiotics, diet, and other exposures) 
resulting in dysbiosis (microbial imbalance) which has 
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been already associated with other forms of pediatric 
allergy [5, 6]. Complex cross talk between the intestinal 
microbiome, food antigens, intestinal inflammation, and 
the innate immune system early in life likely contributes 
to the mechanisms responsible for either healthy toler-
ance acquisition or food allergy development [7]. Given 
the early onset of FPIAP, association with feeding prac-
tices, and symptoms of the lower (and often also upper) 
GI tract, we hypothesized that the developing infant 
microbiome plays a role in FPIAP development and sub-
sequent loss of oral tolerance.

There is a growing body of  evidence that the gut 
microbiome plays a key role in the development of 
IgE- and non-IgE-mediated food allergy [8–15]. Infants 
with IgE-mediated cow’s milk allergy (IgE-CMA) have 
key taxonomic differences when compared to healthy 
infant counterparts [9, 12, 13]. They have additionally 
been shown to have taxonomic differences once started 
on extensively hydrolyzed formula and after achiev-
ing tolerance to milk protein, suggesting a role for the 
microbiome in disease resolution [12, 13, 16]. Litera-
ture on non-IgE-mediated cow’s milk protein allergy has 
similarly demonstrated taxonomic differences between 
healthy and allergic infants, infants on an extensively 
hydrolyzed formula diet, and infants tolerant to milk 
protein [8–11, 17, 18]. This literature, however, has been 
limited by cross-sectional design [8, 9], lack of strict 
diagnostic criteria for non-IgE-CMA [10, 11], detection 
methods by culture [10, 11], and pooling of non-IgE 
with IgE-CMA [9, 13]. To our knowledge, there is no 
study that has analyzed samples longitudinally includ-
ing those collected prior to symptom or disease onset.

The Gastrointestinal Microbiome and Allergic Proc-
tocolitis (GMAP) study is the first prospective observa-
tional healthy infant cohort study specifically designed to 
investigate the epidemiology, clinical presentation, and 
potential role of the longitudinal microbiome in FPIAP 
[1] and subsequent IgE-FA [3]. Over 1000 healthy infants 
were enrolled at their first pediatrics visit in the first 
week of life, stool samples were collected very frequently 
across the first year, and they are being followed clinically 
with ongoing sample collection through age 18. A total of 
17% of these healthy children went on to develop FPIAP 
[1], and 6% went on to develop IgE-FA [3]. This large 
cohort addresses the many limitations in the literature, 
as we enrolled infants in an unbiased fashion, sampled 
infants frequently very early in life, and thus have sam-
pling before, during, and after disease onset. This pro-
vided us with a well-matched control population, dense 
early sampling, and the ability to examine factors which 
may precede disease onset, herald symptom progression, 
or be associated with disease resolution.

Results
Participant profiles
From the GMAP cohort [1], we selected the first 81 
infants prospectively diagnosed with food protein-
induced allergic proctocolitis (FPIAP) in the cohort with 
adequate longitudinal sampling and 79 matched controls 
with robust fecal microbiome sampling across their first 
year of life (Fig. 1, see also “Methods”). For infants who 
developed FPIAP, samples were selected from before 
symptom onset, during their symptomatic period, and 
after their symptoms resolved (Fig.  1). A total of 954 
samples met quality control criteria (“Methods”) when 
sequenced using 16S ribosomal RNA gene sequencing. 
The median number of samples in the first year per child 
was 5 [7, 19]. Data were analyzed using QIIME2 (see 
“Methods”), generating a genus-level composition map 
for each sample. A total of 45% were female, 65% were 
delivered vaginally, 63% were initially exclusively breast-
fed, and 56% were perinatally exposed to antibiotics 
(maternal 46%, perinatal infant 3%, or both 7%) (Fig. 1). 
No significant differences among any of these factors 
were noted between infants with FPIAP and controls 
(Supplemental Table 1), with the exception of the initial 
infant diet which was more commonly formula in the 
children who developed FPIAP as has been previously 
reported [1].

Overall microbiome composition
We first examined the microbiome collectively across all 
infants, looking for characteristic features of the devel-
oping infant gut microbiome in the first year of life. We 
found a predominance of Bifidobacterium, Bacteroides, 
Enterobacteriales, and Clostridium at the earliest time 
points as has been previously shown [19–22] (Supple-
mental Fig.  1A). We also saw the characteristic rise in 
overall microbial richness from birth to age 1 [19, 22, 
23] (Supplemental Fig.  1B). Consistent with existing lit-
erature [24, 25], we found that infants who were vaginally 
delivered had a greater abundance of Bacteroides (p = 
5.25 × 10−7, q-value = 5.06 × 10−6, coefficient = 0.23) 
compared to those delivered by C-section, and infants 
who were exclusively breastfed had a greater abundance 
of Bifidobacterium (p = 3.82 × 10−4, q = 2.25 × 10−3, c 
= 0.13) (Supplemental Fig. 1C). Additionally, infants who 
received any probiotics in the first year (predominantly 
Lactobacillus rhamnosus GG in this cohort) had a greater 
abundance of Lactobacillus (Supplemental Fig.  1C). 
Therefore, as we turned our attention to exploring taxo-
nomic features that differentiated infants with FPIAP 
compared to healthy controls, we included age, mode 
of delivery, diet, and probiotic exposure in all of our 
multivariate linear models (using EasyMap, our newly 
developed interactive tool; “Methods”) reported here. 
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Fig. 1  GMAP study cohort design, key clinical characteristics, and longitudinal sampling. A Key clinical and environmental features of the cohort 
analyzed including antibiotic exposure, mode of delivery, and infant diet over time and the timeline for sample collection. B Number of samples 
analyzed across the first year, binned by the age of the infant at the time of sample collection, and colored by whether that infant was a healthy 
control or a child with FPIAP. Samples from infants with FPIAP are colored by their symptom state at the time of sample collection. C Sample map 
showing the samples analyzed plotted by the age of the infant at time of collection and colored by their disease and symptom state. The horizontal 
light gray bars represent the time from diagnosis to resolution of symptoms
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Including perinatal antibiotic exposure in the model 
did not meaningfully change the results. Only results 
that met an absolute coefficient threshold of > 0.05 and 
q-value < 0.20 are reported (“Methods”). A complete 
table of all significant findings are available in Supple-
mental Table 2.

Taxonomic differences between FPIAP cases and controls
In examining potential differences in the infant micro-
biome in children who developed FPIAP compared to 
those who did not, we first looked for overall differences 
in community structure across the first year. While the 
overall first year composition was similar between cases 
and controls (Fig. 2A), we found a greater abundance of 
an unknown genus of Enterobacteriaceae (most likely, 
represented by Escherichia; “Methods”) in infants with 
FPIAP compared to controls. This genus of Enterobac-
teriaceae is also found in greater abundance in sympto-
matic FPIAP cases (p = 2.7 × 10−2, q = 1.13 × 10−1, c = 
0.09) when analyzing all samples (Supplemental Table 2). 
We did not find any statistically significant differences 
between the overall microbial richness (Fig.  2B) or sta-
bility (Supplemental Fig.  2) across the first year when 
comparing FPIAP cases and controls, though some pair-
wise differences were noted at 4 and 6 months (between 
symptomatic cases and resolved cases respectively com-
pared to controls, Fig. 2B).

Given that FPIAP presents so early in infancy (median 
age of diagnosis = 1 month, > 75% diagnosed by 2.5 
months), we took two approaches to narrow our focus 
on samples from children at the times of most interest 
in this disease. First, we focused on all samples collected 
between 0 and 2 months of age (when the majority of 
cases of FPIAP have presented). Second, we made three 
key sample subsets: last pre-symptomatic (where for 
each case of FPIAP, we chose their last pre-symptomatic 
sample and then the nearest age-matched control), first 
symptomatic (where for each case of FPIAP, we chose 
their first symptomatic sample and then the nearest age-
matched control), and first resolved (where for each case 
of FPIAP, we chose their first resolved sample and then 
the nearest age-matched control; Supplemental Fig. 3).

In the 0–2 months sample subset, we again found a 
greater abundance of the unknown genus of Enterobacte-
riaceae (p = 1.54 × 10−2, q = 0.11, c = 0.140) and a lower 
abundance of the unknown family of Clostridiaceae (p = 
4.8 × 10−5, q = 1.27 × 10−3, c = −0.063) in FPIAP cases 
compared to controls (Fig. 3A).

Taxonomic differences between FPIAP disease states 
and controls
We next looked for taxonomic differences that 
might differentiate phases of FPIAP development 

(pre-symptomatic, symptomatic, and resolved) from 
controls (“Methods”). Comparing infants with FPIAP 
before they developed symptoms (“pre-symptomatic”) 
to matched controls over the first 2 months of life, we 
again found a greater abundance of the same unknown 
genus of Enterobacteriaceae (p = 1.89 × 10−2, q = 0.16, 
c = 0.15) and a lower abundance of the unknown family 
of Clostridiales (p = 3.41 × 10−3, q = 5.21 × 10−2, c = 
−0.052) (Fig. 3B). Within the last pre-symptomatic sub-
set, we saw the same enrichment of Enterobacteriaceae 
(p = 0.134, q = 0.192, c = 0.202) in infants with FPIAP 
(Fig.  3A). Next, we looked at the symptomatic FPIAP 
cases and found a greater abundance of the Enterobac-
teriaceae genus (p = 1.54 × 10−2, q = 1.13 × 10−1, c 
= 1.4 × 10−1) and a lower abundance of the family of 
Clostridiales (p = 4.8 × 10−6, q = 1.27 × 10−3, c = −6.33 
× 10−2) in FPIAP cases compared to controls over the 
first 2 months. The same enrichment of the unknown 
genus of Enterobacteriaceae and lower abundance of 
the family of Clostridiales was seen in the first sympto-
matic sample subset (p = 2.05 × 10−3, q = 3.77 × 10−2, 
c = 0.217; p = 5.99 × 10−6, q = 5.5 × 10−4, c = −0.087, 
respectively) (Fig. 3A). Finally, in the first resolved sam-
ple subset, we found an enrichment of the genus Lacto-
bacillus (p = 5.86 × 10−3, q = 7.17 × 10−2, c = 0.07) and 
a decreased abundance of the genus Blautia (p = 1.22 × 
10−2, q = 0.105, c = −0.06) in infants with FPIAP which 
had resolved compared to controls (Fig. 3A).

Next, we were interested in the trajectories over 
time of each of these most significantly differential 
taxa as the infants’ disease progressed from pre-symp-
tomatic, to symptomatic, to resolved states. Looking 
at all samples across the first year, the unknown fam-
ily of the Clostridiales class was significantly lower 
in children with FPIAP, before they became sympto-
matic, while they had symptoms, and after they had 
resolved when compared to controls (Fig. 3C) with a 
relatively static trajectory. Lactobacillus, on the other 
hand, was lowest when infants were pre-symptomatic 
(comparable to controls), rose sharply as they became 
symptomatic, and then reached a significantly higher 
abundance than controls when infants’ symptoms 
had resolved (Fig. 3C). Infants with FPIAP were more 
likely to receive Lactobacillus-containing probiot-
ics, so we next examined whether this could explain 
the differential abundance of Lactobacillus. Stratify-
ing by probiotic exposure in the first year, we found 
that while indeed infants receiving probiotics had a 
higher abundance of Lactobacillus, the differential 
trajectory was seen in both groups, regardless of pro-
biotic use (Supplemental Fig. 4). The unknown genus 
of Enterobacteriaceae also has an interesting trajec-
tory: peaking during the symptomatic period (there 
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is a nonsignificant higher relative abundance than 
controls even in the pre-symptomatic group and then 
abundance rises significantly higher than controls as 
infants become symptomatic and then decreases but 
remaining nonsignificantly higher than controls even 
once symptoms have resolved (Fig. 3C).

Machine learning approach for predicting disease state 
from microbial community
Finally, we applied an independent machine learning algo-
rithm to try to distinguish between the microbial commu-
nities across the disease states and compared to control 
samples. Instead of searching for individual taxonomic 

Fig. 2  Longitudinal microbiome composition in infants with FPIAP compared to controls. A Composition plots showing the mean relative 
abundance of the top 15 abundant taxa and their longitudinal taxonomic assemblage over the first year in infants with FPIAP (left) compared to 
controls (right). B Alpha diversity measured by chao1 richness index in controls compared to infants with FPIAP before symptom onset, during the 
symptomatic period, and after symptom resolution over the first year (p-values calculated by t-test)
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features that are differential, the random forest approach 
incorporates information from multiple features simulta-
neously to predict the disease state. We estimated our suc-
cess by examining the prediction accuracy in each of the 
disease states, and we found that overall, the true classifi-
cation is the most probable one (Fig. 4A). When examin-
ing the importance of specific features in the accuracy of 

the prediction, we find some novel features and also con-
firm some of the taxonomic features also identified by the 
multivariate analysis (Fig. 4B). The most recurring findings 
in all models were the unknown family of Clostridiales, 
and the unknown genus of Enterobacteriaceae, which were 
further validated here by being independently identified in 
this orthogonal analytic approach.

Fig. 3  Summary of key differential taxa between infants with FPIAP and healthy controls. A Significantly different taxa comparing infants with FPIAP 
to healthy controls (q < 0.20; absolute coefficient > = 0.05) when looking at sample subsets: 0–2 months, last pre-symptomatic, first symptomatic, 
and first resolved. Bars to the right are enriched in infants with FPIAP, while bars to the left are enriched in the controls. Number of samples in each 
group is shown under the name of the subset analyzed in that model (FPIAP, control). B Significantly different taxa (q < 0.20) when comparing 
infants with FPIAP to matched controls before their symptom onset (top section) and then during the symptomatic period (lower section) over the 
first 2 months of age. Association directionality and numbers are as in (A). C Relative abundance trajectories of the key differential taxa between 
FPIAP cases and controls identified in A and B across symptom states (from pre-symptomatic to symptomatic to resolved). “q” indicates q-value and 
“c” indicates coefficient. Only significant q- and c-values are shown. Both values are directly generated from MaAsLin2 analysis. All models in this 
panel take into account all five variables: (a) case/control or symptoms, (b) mode of delivery, (c) age at visit, (d) diet, and (e) probiotics use in the first 
year of life
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Next, we observed that our model correctly classified 
the resolved samples with particularly high probability 
(74%). We wanted to identify the features that enable 
this specific separation. Towards this end, we focused 
on a simpler scenario, using samples from age 6 months 
and older (when most samples are either from a control 
or resolved). Running the random forest model on this 

smaller subset of samples (133 control and 182 resolved) 
was as successful in correctly classifying the resolved 
samples (76%; Fig.  4C). The most important feature in 
this classification was found to be Lactobacillus abun-
dance (as in the multivariate model above), and interest-
ingly, the sample age did not play as an important role as 
in the null model (Fig. 4D).

Fig. 4  Independent machine learning approach identifies similar differential taxa between infants with FPIAP and healthy controls. A–C Random 
forest prediction accuracy across all samples (A) and in those over 6 months comparing controls with resolved FPIAP cases (C). Most important 
features identified in differentiating disease states across all samples (B) and those over 6 months (D). Colored taxa in B and D represent those also 
independently identified in our multivariate analyses shown in Fig. 3
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Discussion
Food protein-induced allergic proctocolitis (FPIAP) is 
often the earliest manifestation of food allergy in chil-
dren, and yet little is known about its pathogenesis. Few 
studies have examined the microbiome of infants with 
FPIAP, and to our knowledge, none has dense longitudi-
nal sampling which includes samples prior to symptom 
onset. From the GMAP study, we performed 16S rRNA 
gene sequencing on 954 longitudinal samples from 160 
infants (81 with FPIAP and 79 matched controls) from 1 
week to 1 year of age. While overall the composition and 
richness of the infants’ microbiome was similar in infants 
with FPIAP compared to controls, we identified sev-
eral taxonomic differences in infants with FPIAP across 
symptom states (from pre-symptomatic to resolved). 
Importantly, some differential features were seen before 
symptom onset and after symptom resolution, suggest-
ing that these features are not simply a reflection of the 
inflammatory disease state.

We found an increased abundance of an unknown 
genus of the Enterobacteriaceae family which was most 
prominent when infants were symptomatic with FPIAP 
but was elevated even prior to symptom onset. The 
Enterobacteriaceae family contains species known to 
bloom in other inflammatory settings in the GI tract 
[26] and has previously been associated with cow’s milk 
allergy [13, 16] and other food allergies [27]. We also 
found a decreased abundance of an unknown family of 
Clostridiales. Some families within this order (Pepto-
streptococcaceae, Lachnospiraceae, some Clostridium 
species) have been previously associated with decreased 
relative abundance in children with IgE- and non IgE-
mediated food allergies [9, 28, 29], although many other 
Clostridiales species are enriched. Previous reports sug-
gest that specific species of Clostridia drive the separa-
tion between allergic children and their nonallergic 
siblings and controls [28]. Among these families are spe-
cies which are important for gut permeability/integrity as 
well as butyrate production, both of which have impor-
tant potential mechanistic roles in FPIAP warranting fur-
ther study [8, 30]. We also found a greater abundance of 
members of the genus Lactobacillus as infants with FPI-
AP’s symptoms resolved compared to controls (irrespec-
tive of probiotic use). Other studies of infants with a mix 
of IgE- and non-IgE-mediated cow’s milk allergy have 
shown an increase in Lactobacillus when infants were 
treated with hypoallergenic formula [13], FMT [31], or 
hypoallergenic formula + LGG [8]. Finally, we found an 
unknown family of the Clostridiaceae family which was 
significantly lower across symptom states in these allergic 
infants. A few IgE-FA studies have also shown decreased 
Clostridia species [16, 32] in food allergic subjects.

One limitation inherent to studying the microbiome of 
FPIAP is how early in infancy the disease presents. The 
microbiome composition in the first few months of life 
is highly dynamic, making it more difficult to detect dif-
ferences between clinical groups. This likely accounts 
for some of our findings which appeared in some sam-
ple subsets but not others but also underscores the sig-
nificance of those findings that were replicated in several 
subsets and across time. The limited number of samples 
in our pre-symptomatic sample subset, due to very young 
age, also likely limited our power to identify differences in 
that subset. Another challenge to understanding FPIAP 
pathogenesis with respect to the microbiome is that the 
diet often changes as infants are diagnosed (some with 
maternal dietary elimination, few with changes from 
breastmilk to formula, and some with changes to differ-
ent formula types) which can have a significant impact 
on the microbiome and cannot be fully accounted for in 
these models. This is why we focused many of our anal-
yses on subsets prior to or at the time of disease onset 
(before dietary changes would have been made). There 
are a few other limitations to our study. We were not able 
to adequately capture, and therefore control for, infec-
tious episodes or infant antibiotic use at the time of each 
sample. However, including perinatal antibiotic exposure 
in our model did not meaningfully change our results. 
Additionally, the time of resolution of FPIAP was not 
prospectively systematically assessed and so was esti-
mated based on parent report and chart review as previ-
ously published [1].

Conclusions
In summary, our unique longitudinal pediatric cohort 
enabled us to carefully investigate the role of the micro-
biome in one of the earliest manifestations of allergy in 
children (FPIAP). Because of the prospective healthy 
infant cohort design, we were able to identify key taxo-
nomic differences in children who developed FPIAP, even 
before they became symptomatic, as well as after their 
disease resolved. We were also able to contribute to the 
growing body of literature describing the early compo-
sition of the infant microbiome in nonallergic children 
and highlight several potential areas of important further 
investigation. Our study provides a foundation for testable 
hypotheses around the underlying role of potentially key 
taxa including Enterobacteriaceae and Clostridiales in the 
pathophysiology of FPIAP. It remains important to further 
determine these mechanisms as they may provide novel 
opportunities for early targeted interventions to prevent 
IgE and non-IgE-mediated food allergy more broadly and 
perhaps to better support an optimal pediatric microbi-
ome promoting healthier nonallergic phenotypes.
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Methods
Patient characteristics
From the GMAP prospective observational healthy 
infant cohort, we selected the first 81 infants diagnosed 
with food protein-induced allergic proctocolitis (FPIAP) 
who had a minimum of 4 longitudinal stool samples in 
the first year. FPIAP was diagnosed by the treating phy-
sician and confirmed by comprehensive study staff chart 
review. Prespecified case inclusion criteria included 
guaiac positive or grossly bloody stool as previously pub-
lished [1]. We then selected all possible controls who met 
the same sampling criteria and volume and from those 
randomly selected controls at 1:1 ratio. We confirmed by 
testing equality of proportions that the selected nested 
case-control cohort for this microbiome study matched 
the reported GMAP cohort at large with respect to key 
covariates including mode of delivery, perinatal antibiotic 
exposure, and initial infant diet [1].

Sample collection
Fresh diapers were brought to the clinic visit, where stool 
samples were collected by research study staff into sterile 
tubes using established protocols, stored immediately at 
−20 °C, and then transferred to −80 °C for storage until 
processing.

DNA extraction and sequencing
We used the Qiagen DNeasy PowerSoil htp 96 (Cat no./ID: 
12955-4) to extract stool samples that were stored at −80 °C 
and “chipped” while frozen to obtain 100–150 mg of sam-
ple for extraction. Bead beating was performed on a Tissue-
Lyser at 20 Hz for 10 min as per manufacturer’s protocol.

16S rRNA gene libraries targeting the V4 region of the 
16S rRNA gene were prepared by first using qPCR to nor-
malize template concentrations and determine optimal 
cycle number. Library construction was performed in 
quadruplicate with the primers 515F (5′-AAT​GAT​ACG​
GCG​ACC​ACC​GAG​ATC​TAC​ACT​ATG​GTA​ATT​GTG​
TGC​CAG​CMGCC​GCG​GTAA-3′) and unique reverse 
barcode primers from the Golay primer set [33]. After 
amplification, sample replicates were pooled and cleaned 
via Agencourt AMPure XP-PCR purification system. 
Prior to final pooling, purified libraries were normalized 
via qPCR in two 25-uL reactions, 2× iQ SYBR SUPERMix 
(Bio-Rad, REF: 1708880) with Read 1 (5′-TAT​GGT​AATT 
GT GTG​YCA​GCMGCC​GCG​GTAA-3′), Read 2 (5′-AGT​
CAG​TCAG CC GGA​CTA​CNVGGG​TWT​CTAAT-3′) 
primers. Pools were quantified by Qubit (Life Technolo-
gies, Inc.) and sequenced on an Illumina MiSeq 300 using 
custom index 5′-ATT​AGA​WACCCBDGTA​GTC​C GG 
CTG​ACT​GACT-3′ and custom Read 1 and Read 2 prim-
ers mentioned above. Raw sequencing data can be found 
on NCBI BioProject PRJNA730851.

16S rRNA gene sequencing analysis
Microbial communities were analyzed using QIIME2 
version 2020.11.1 [34]. The DADA2 algorithm [35] was 
used for quality filtering and merging sequences with 
greater than 99% similarity. Alignment was done by use 
of “qiime feature-classifier fit-classifier-naive-bayes.” A 
total of 1088 samples were collected. Samples that did not 
pass the sequencing process had a total frequency of less 
than 3000 reads, or those with an unclear diagnosis were 
dropped. In addition to the DADA2 filtering process, fea-
tures represented in only one sample or with a maximal 
relative abundance of < 0.03 were also removed. A total 
of 954 samples remained for analysis. Relative abundance 
data were normalized with QIIME2’s tools. A reference 
Greengenes database version 13.5 [36] was used to assign 
taxonomy features.

OTUs that were unclassified on a certain taxonomic 
level were assigned to be an “unclassified taxa” from the 
level above. For example, some OTUs that were not clas-
sified on a family level got an “unclassified” assignment 
on the order level. For one of these sets that had signifi-
cant results in our data, we attempted to manually iden-
tify a better classification. We used blast-2.10.0+ to map 
the OTU sequences against the NCBI nt database (down-
loaded on May 16, 2017). Our results suggest that the 
unknown genus of the Enterobacteriaceae family is most 
likely representing sequences from the Escherichia genus.

Statistical analysis
All analyses were performed in RStudio (Version 
1.3.1093) run with R (version 4.0.2). Data editing was 
done with dplyr. Graphs were created using R packages 
ggplot2 and ggpubr. Alpha diversity was calculated using 
the fossil package. Multivariate regression analysis was 
performed using the MaAsLin2 R package. Mixed-effects 
linear models using a variance-stabilizing arcsin square 
root transform (AST) on relative abundances are then 
used to determine the significance of putative associa-
tions from among this reduced set. The AST function is 
defined as follows:

It is a monotonic function that, in our case, maps val-
ues from [0,  1] to [0, 1.57], such that zero remains at 
zero, AST(0) = 0, and then spreads the rest. Its intui-
tion is similar to a log transformation which is com-
monly used to spread the data, only in the AST zero 
values are maintained, unlike in the log transformation 
where log(0) is not defined. It was originally described 
to deal with proportional data, such as microbiome 
relative abundance [37]. Nominal p-values across all 

AST (x) := sign(x) · arcsin |x|
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associations were then adjusted using the Benjamini–
Hochberg FDR method. An FDR < 0.25 is the standard 
default using MaAsLin2. Any taxon-level association 
with an FDR-corrected q-value < 0.25 is commonly 
considered statistically significant in microbiome stud-
ies where further investigation and validation of results 
are necessary [38–40]. We elected to use a more strict 
threshold and report here only associations with an FDR 
< 0.2. p-values that did not originate from the MaAsLin 
analysis were generated using the rstatix R package.

All boxplots were generated using ggplot2: The lower 
and upper hinges correspond to the first and third quar-
tiles (the 25th and 75th percentiles), and the upper and 
lower whiskers roughly represent the 1.5 × IQR from the 
hinge (default geom_boxplot function).

The model coefficient values (named also effect size) 
indicate the amplitude of the change between one cat-
egory values to the reference category value. A positive 
coefficient indicates a positive correlation, and a negative 
value indicates a negative correlation between the inde-
pendent and the dependent variables.

Composition and richness analysis
The infant gut microbiome richness greatly increases dur-
ing the first year of life [41, 42]; thus, we performed the 
richness analysis per age group. We split the 954 samples 
to eight time points (0, 0.5, 1, 2, 4, 6, 9, 12) and labeled 
each sample with its closest time point. Some subjects 
had multiple samples that were mapped to the same age 
group; thus, we kept only a single sample per subject in 
each group (we chose the sample with the closest time to 
the age group). Following this step, we were left with 808 
samples, divided into eight age groups. Richness was cal-
culated with the chao1 function in the fossil R package.

For the stability analysis, we used the same subset of 
808 samples (described above) and calculated microbial 
composition stability in all pairs of consecutive samples. 
We used the Bray-Curtis and Jaccard function to calcu-
late this measure.

For the composition analysis, we calculated the average 
relative abundance of each microbial feature in each age 
group and then normalized this distribution to sum up to 
1 (Fig. 2A, Supplemental Fig. 1A).

Multivariate models definition
To find a linear correlation between FPIAP and micro-
bial features, we used three different models: (1) com-
paring samples from FPIAP cases to controls; (2) 
comparing samples based on their FPIAP disease state 
(pre-symptomatic, symptomatic, and resolved) to con-
trols; and (3) as in (2) but comparing the samples to the 
symptomatic group as a reference. Each model contains 

the following fixed effects variables: (a) case/control 
or symptoms, (b) mode of delivery, (c) age at visit, (d) 
diet, and (e) probiotics use in the first year of life. As we 
have multiple samples from each child, all models also 
include the child ID as a random effect variable.

In general, we ran the models on six different subsets 
of samples, either subsetting by age or by disease status:

Age subgroups are as follows:

a.	 All samples — This group includes all samples (n = 954).
b.	 Zero to two months — All samples with age visit < 3 

months (n = 473)
c.	 Six-plus months — All samples with age visit in the 

range 6.1–13.3 months (n = 315)

Disease status subgroups (these subsets always con-
tain a single sample per subject) are as follows:

d.	 Last pre-symptomatic — For each FPIAP case, we 
chose the last sample collected prior to symptom 
onset and identified a matched control sample (n = 
114).

e.	 First symptomatic — For each FPIAP case, we chose 
the first sample when the child was symptomatic and 
identified a matched control sample (n = 144).

f.	 First resolved — For each FPIAP case, we chose the 
first sample when the child was asymptomatic and 
identified a matched control sample (n = 148).

For the disease status subgroups analyses, we used the 
Hungarian algorithm to randomly select the set of control 
samples that were closest in age to the FPIAP samples in 
those subsets. These selections are shown in Supplemen-
tary Fig. 3. Matched control samples were chosen by find-
ing an optimal match between the FPIAP sample times 
and all the control samples, making sure to include at 
most a single sample from each control subject in each 
subset. We found the optimal match by defining it as a 
linear sum assignment problem (LSAP) using the clue R 
package to solve it with the Hungarian method.

Using the EasyMap tool
To run and compare the 1–3 models across the different 
subgroups, we used the EasyMap tool we developed in 
our lab [43], which enables rapid interactive multivariate 
linear regression analysis on microbiome data such as in 
here. The tool itself is available at https://​yasso​ur.​rcs.​huji.​
ac.​il/​EasyM​ap.

Random forest analysis
Each sample was assigned a label based on the dis-
ease state: control, pre-symptomatic, symptomatic, or 
resolved. We constructed a random forest model with 

https://yassour.rcs.huji.ac.il/EasyMap
https://yassour.rcs.huji.ac.il/EasyMap
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78 microbial features and the sample age as an additional 
feature. We ran the model 100 times, wherein each itera-
tion we randomly divided our data to 80% train and 20% 
test sets (763 and 190 samples, respectively).

To get the optimal random forest model, we ran a ran-
dom search on multiple parameters, and we used the model 
that yielded the best result on a test set. The model has 
1800 estimators, a max depth of 100, a minimum leaf size 
of 2, and a minimum split size of 5. Our dataset contains 
43% control samples, 10% pre-symptomatic samples, 21% 
symptomatic samples, and 25% resolved samples. To solve 
the imbalance in our data, we added class weights where 
we assigned: control, pre-symptomatic, symptomatic, and 
resolved classes of the weights 0.111, 0.444, 0.222, and 
0.222, respectively. We have found that adding the age of 
the infant as a feature to the random forest improves the 
test accuracy by ~15%, and the age feature received the 
highest importance score over all other features.

Then, using the 6+ months subset, we selected only 
samples from age 6 months or older, and either a con-
trol or had resolved FPIAP. We ran a random search and 
chose the model with 1065 estimators, max depth of 5, a 
minimum leaf size of 2, and a minimum split size of 20. 
We have assigned the control and resolved classes the 
weights 1 and 0.9, respectively, to overcome the small 
imbalance in the data. Sample size was too small to strat-
ify the random forest analysis by probiotic use.

We use the scikit-learn package in python to run the 
random forest models and calculate accuracy and impor-
tance for the trained models [44]. The importance score 
was calculated using the “Gini importance” which is 
defined as the sum over the number of splits that include 
the feature, proportional to the number of samples it 
split, and then summed and averaged across all trees. We 
present the normalized score for the top 15 features.
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Additional file 1: Supplemental Figure 1. Overall longitudinal microbi-
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abundance (arcsine transformed, AST) of key taxonomic differences 
mediated by important environmental factors: Bacteroides by delivery 
mode, Bifidobacterium by infant diet, and Lactobacillus by probiotic use. 
FDR-corrected q-values and coefficients are calculated from the multivari-
ate analysis across all samples. Supplemental Figure 2. Community 
stability analysis calculated by Bray-Curtis beta diversity method for all 
consecutive sample pairs from the same subject. Each dot represents a 
sample pair, and is colored by the disease state of the first sample in the 
pair (p-values were calculated using a two sided t-test). Supplemental 
Figure 3. Sample subsets. (A) Flow diagram showing sample subsets used 
for analyses with their corresponding sample sizes and rationale. (B) A 
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Differential trajectory of Lactobacillus across disease states in infants with 
FPIAP compared to controls, stratified by probiotic use. Box plots of the 
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(from pre-symptomatic to symptomatic to resolved) compared to con-
trols, stratified by (largely LGG-containing) probiotic use across all samples 
(p-values calculated using t-test).

Additional file 2: Supplemental Table 1. Demographics. Demographics 
of the infants from the GMAP cohort selected for this nested case-control 
microbiome study.

Additional file 3: Supplemental Table 2. Summary table of all significant 
MaAsLin results. All MaAsLin results from 16S rRNA gene sequencing with 
q-values for significant taxa which met our predetermined threshold for 
significance (q<0.20). Mixed effects linear models using arcsine transform 
on relative abundances were used to determine significance. p-values 
were adjusted for multiple comparisons using the Benjamini-Hochberg 
false discovery rate (FDR) method with FDR set at <0.20. (XLS 224 kb)

Acknowledgements
We thank Tiffany Poon and Luke Besse for project management, Dr. Michael 
Elkort and Dr. Susan Reuter along with the full staff at Pediatrics at Newton 
Wellesley for patient enrollment and sample collection, GMAP participants 
and their families, and the Broad Institute Microbial “Omics Core and Genom-
ics Platform” for sample processing and 16S rRNA gene sequencing data 
generation.

Authors’ contributions
VMM, YVV, RX, WGS, QY, and MY designed the study; VMM, WGS, and QY par-
ticipated in patient recruitment, diagnosis, sample collection, and metadata 
collection; VMM and YVV curated and analyzed the metadata; HV and MY 
processed samples and generated and processed raw sequencing data; ED, DI, 
VMM, YVV, HS, and MY performed data analysis, interpretation, and figure gen-
eration; MY supervised the data analysis; ED developed the online visualiza-
tion tool; DI performed the machine learning analysis; VMM, HS, and MY wrote 
the paper; and the authors read and approved the final manuscript.

Funding
The GMAP cohort was supported by the Gerber Foundation (1685–3680), the 
Demarest Lloyd Jr Foundation (230465), and the Food Allergy Science Initia-
tive (229711). VMM and YVV were supported by grants from the National Insti-
tute of Allergy and Infectious Diseases of the US National Institutes of Health 
(1K23AI151555-01A1 and K23AI130408, respectively). MY is the Rosalind, 
Paul and Robin Berlin Faculty Development Chair in Perinatal Research, was 
supported by the National Institute of Diabetes and Digestive and Kidney 
Diseases of the National Institutes of Health (1K99DK11322401) and the Azrieli 
Foundation.

Availability of data and materials
Raw sequencing data can be found on NCBI BioProject PRJNA730851.

Declarations

Ethics approval and consent to participate
The GMAP study is approved by the Massachusetts General Brigham Institu-
tional Review Board (2013P002374; active, closed to enrollment). A parent of 
all enrolled infants gave written informed consent, and participants who are 7 
or older have given assent.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s40168-022-01322-y
https://doi.org/10.1186/s40168-022-01322-y


Page 12 of 13Martin et al. Microbiome          (2022) 10:154 

Author details
1 Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA. 
2 Division of Pediatric Gastroenterology, Hepatology and Nutrition, Massachu-
setts General Hospital, Boston, MA, USA. 3 Department of Pediatrics, Harvard 
Medical School, Boston, MA, USA. 4 Food Allergy Science Initiative of the Broad 
Institute, Cambridge, MA, USA. 5 Division of Pediatric Allergy and Immunol-
ogy, Massachusetts General Hospital, Boston, MA, USA. 6 The Rachel and Selim 
Benin School of Computer Science and Engineering, The Hebrew University 
of Jerusalem, Jerusalem, Israel. 7 Microbiome and Infectious Diseases, The 
Broad Institute of MIT and Harvard University, Cambridge, MA, USA. 8 Center 
for Computational and Integrative Biology, Massachusetts General Hospital, 
Boston, MA, USA. 9 Department of Molecular Biology, Massachusetts General 
Hospital, Boston, MA, USA. 10 Klarman Cell Observatory, Broad Institute of MIT 
and Harvard, Cambridge, MA, USA. 11 Pediatrics at Newton Wellesley, P.C, 
Newton, MA, USA. 12 Microbiology & Molecular Genetics Department, Faculty 
of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. 

Received: 10 March 2022   Accepted: 2 July 2022

References
	1.	 Martin VM, Virkud YV, Seay H, Hickey A, Ndahayo R, Rosow R, et al. 

Prospective assessment of pediatrician-diagnosed food protein-induced 
allergic proctocolitis by gross or occult blood. J Allergy Clin Immunol 
Pract. 2020;8:1692–9.e1.

	2.	 Mennini M, Fiocchi AG, Cafarotti A, Montesano M, Mauro A, Villa MP, 
et al. Food protein-induced allergic proctocolitis in infants: literature 
review and proposal of a management protocol. World Allergy Organ J. 
2020;13:100471.

	3.	 Martin VM, Virkud YV, Phadke NA, Su K-W, Seay H, Atkins MR, et al. Increased 
IgE-mediated food allergy with food protein-induced allergic proctocolitis. 
Pediatrics. 2020;146. https://​doi.​org/​10.​1542/​peds.​2020-​0202.

	4.	 Radano MC, Yuan Q, Katz A, Fleming JT, Kubala S, Shreffler W, et al. Cesar-
ean section and antibiotic use found to be associated with eosinophilic 
esophagitis. J Allergy Clin Immunol Pract. 2014;2:475–7.e1.

	5.	 Ege MJ, Mayer M, Normand A-C, Genuneit J, Cookson WOCM, Braun-
Fahrländer C, et al. Exposure to environmental microorganisms and 
childhood asthma. N Engl J Med. 2011;364:701–9.

	6.	 Prince BT, Mandel MJ, Nadeau K, Singh AM. Gut microbiome and the 
development of food allergy and allergic disease. Pediatr Clin N Am. 
2015;62:1479–92.

	7.	 Hooper LV, Littman DR, Macpherson AJ. Interactions between the micro-
biota and the immune system. Science. 2012;336:1268–73.

	8.	 Berni Canani R, De Filippis F, Nocerino R, Paparo L, Di Scala C, Cosenza L, 
et al. Gut microbiota composition and butyrate production in children 
affected by non-IgE-mediated cow’s milk allergy. Sci Rep. 2018;8:12500.

	9.	 Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, et al. Altered fecal microbiota 
composition associated with food allergy in infants. Appl Environ Micro-
biol. 2014;80:2546–54.

	10.	 Nevoral J, Rada V, Vlková E, Bláhová K, Bronský J, Bubáková D, et al. 
Intestinal microbiota in exclusively breast-fed infants with blood-streaked 
stools. Folia Microbiol. 2009;54:167–71.

	11.	 Kumagai H, Maisawa S-I, Tanaka M, Takahashi M, Takasago Y, Nishijima 
A, et al. Intestinal microbiota and secretory immunoglobulin A in feces 
of exclusively breast-fed infants with blood-streaked stools. Microbiol 
Immunol. 2012;56:657–63.

	12.	 Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, et al. 
Lactobacillus rhamnosus GG-supplemented formula expands butyrate-
producing bacterial strains in food allergic infants. ISME J. 2016;10:742–50.

	13.	 Dong P, Feng J-J, Yan D-Y, Lyu Y-J, Xu X. Early-life gut microbiome and 
cow’s milk allergy- a prospective case - control 6-month follow-up study. 
Saudi J Biol Sci. 2018;25:875–80.

	14.	 Okada H, Kuhn C, Feillet H, Bach J-F. The “hygiene hypothesis” for autoim-
mune and allergic diseases: an update. Clin Exp Immunol. 2010;160:1–9.

	15.	 Bach J-F. The effect of infections on susceptibility to autoimmune and 
allergic diseases. N Engl J Med. 2002;347:911–20.

	16.	 Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, et al. Early-
life gut microbiome composition and milk allergy resolution. J Allergy 
Clin Immunol. 2016;138:1122–30.

	17.	 Guadamuro L, Diaz M, Jiménez S, Molinos-Norniella C, Pérez-Solis D, 
Rodríguez JM, et al. Fecal changes following introduction of milk in 
infants with outgrowing non-IgE cow’s milk protein allergy are influ-
enced by previous consumption of the probiotic LGG. Front Immunol. 
2019;10:1819.

	18.	 Díaz M, Guadamuro L, Espinosa-Martos I, Mancabelli L, Jiménez S, 
Molinos-Norniella C, et al. Microbiota and derived parameters in fecal 
samples of infants with non-ige cow’s milk protein allergy under a 
restricted diet. Nutrients. 2018;10. https://​doi.​org/​10.​3390/​nu101​01481.

	19.	 Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. 
Dynamics and stabilization of the human gut microbiome during the first 
year of life. Cell Host Microbe. 2015;17:690–703.

	20.	 Yassour M, Vatanen T, Siljander H, Hämäläinen A-M, Härkönen T, Ryhänen 
SJ, et al. Natural history of the infant gut microbiome and impact of anti-
biotic treatment on bacterial strain diversity and stability. Sci Transl Med. 
2016;8:343ra81.

	21.	 Cher A, Yassour M. The compositional development of the microbiome 
in early life. In: The Human Microbiome in Early Life: Elsevier; 2021. p. 
177–95.

	22.	 Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors 
influencing the composition of the intestinal microbiota in early infancy. 
Pediatrics. 2006;118:511–21.

	23.	 Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contre-
ras M, et al. Human gut microbiome viewed across age and geography. 
Nature. 2012;486:222–7.

	24.	 Mitchell CM, Mazzoni C, Hogstrom L, Bryant A, Bergerat A, Cher A, et al. 
Delivery mode affects stability of early infant gut microbiota. Cell Rep 
Med. 2020;1:100156.

	25.	 Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diver-
sity and colonization pattern of the gut microbiota during the first year of 
infants’ life: a systematic review. BMC Gastroenterol. 2016;16:86.

	26.	 Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven 
bacterial dysbiosis in the gut. Mucosal Immunol. 2017;10:18–26.

	27.	 Azad MB, Konya T, Guttman DS, Field CJ, Sears MR, HayGlass KT, et al. 
Infant gut microbiota and food sensitization: associations in the first year 
of life. Clin Exp Allergy. 2015;45:632–43.

	28.	 Kourosh A, Luna RA, Balderas M, Nance C, Anagnostou A, Devaraj S, 
et al. Fecal microbiome signatures are different in food-allergic children 
compared to siblings and healthy children. Pediatr Allergy Immunol. 
2018;29:545–54.

	29.	 Feehley T, Plunkett CH, Bao R, Choi Hong SM, Culleen E, Belda-Ferre P, 
et al. Healthy infants harbor intestinal bacteria that protect against food 
allergy. Nat Med. 2019;25:448–53.

	30.	 Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, et al. 
Indoleacrylic acid produced by commensal Peptostreptococcus species 
suppresses inflammation. Cell Host Microbe. 2017;22:25–37.e6.

	31.	 Liu S-X, Li Y-H, Dai W-K, Li X-S, Qiu C-Z, Ruan M-L, et al. Fecal micro-
biota transplantation induces remission of infantile allergic colitis 
through gut microbiota re-establishment. World J Gastroenterol. 
2017;23:8570–81.

	32.	 Hua X, Goedert JJ, Pu A, Yu G, Shi J. Allergy associations with the adult 
fecal microbiota: analysis of the American Gut Project. EBioMedicine. 
2016;3:172–9.

	33.	 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turn-
baugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a 
depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011 
Mar 15;108 Suppl 1(Suppl 1):4516-22.

	34.	 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, 
et al. Reproducible, interactive, scalable and extensible microbiome data 
science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

	35.	 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 
DADA2: high-resolution sample inference from Illumina amplicon data. 
Nat Methods. 2016;13:581–3.

	36.	 McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst 
A, et al. An improved Greengenes taxonomy with explicit ranks for 
ecological and evolutionary analyses of bacteria and archaea. ISME J. 
2012;6:610–8.

	37.	 Lin L, Xu C. Arcsine-based transformations for meta-analysis of propor-
tions: pros, cons, and alternatives. Health Sci Rep. 2020;3:e178.

https://doi.org/10.1542/peds.2020-0202
https://doi.org/10.3390/nu10101481


Page 13 of 13Martin et al. Microbiome          (2022) 10:154 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	38.	 Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. 
Temporal development of the gut microbiome in early childhood from 
the TEDDY study. Nature. 2018;562:583–8.

	39.	 Stražar M, Temba GS, Vlamakis H, Kullaya VI, Lyamuya F, Mmbaga BT, et al. 
Gut microbiome-mediated metabolism effects on immunity in rural and 
urban African populations. Nat Commun. 2021;12:4845.

	40.	 Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, et al. The gut microbiome 
modulates the protective association between a Mediterranean diet and 
cardiometabolic disease risk. Nat Med. 2021;27:333–43.

	41.	 Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli V, 
Simon M-C, et al. Developmental trajectory of the healthy human gut 
microbiota during the first 5 years of life. Cell Host Microbe. 2021;29:765–
76.e3.

	42.	 Coker MO, Laue HE, Hoen AG, Hilliard M, Dade E, Li Z, et al. Infant feeding 
alters the longitudinal impact of birth mode on the development of the 
gut microbiota in the first year of life. Front Microbiol. 2021;12:642197.

	43.	 Dahan E, Martin VM, Yassour M. EasyMap - an interactive web tool for 
evaluating and comparing associations of clinical variables and micro-
biome composition. Front Cell Infect Microbiol. 2022;12 Available from: 
https://​www.​front​iersin.​org/​artic​le/​10.​3389/​fcimb.​2022.​854164.

	44.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 
2011;12:2825–30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.frontiersin.org/article/10.3389/fcimb.2022.854164

	Longitudinal disease-associated gut microbiome differences in infants with food protein-induced allergic proctocolitis
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Results
	Participant profiles
	Overall microbiome composition
	Taxonomic differences between FPIAP cases and controls
	Taxonomic differences between FPIAP disease states and controls
	Machine learning approach for predicting disease state from microbial community

	Discussion
	Conclusions
	Methods
	Patient characteristics
	Sample collection
	DNA extraction and sequencing
	16S rRNA gene sequencing analysis
	Statistical analysis
	Composition and richness analysis
	Multivariate models definition
	Using the EasyMap tool
	Random forest analysis

	Acknowledgements
	References


