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Abstract 

Background  Glaciers harbor diverse microorganisms adapted to extreme conditions with high radiation, fluctuat‑
ing temperature, and low nutrient availability. In glacial ecosystems, cryoconite granules are hotspots of microbial 
metabolic activity and could influences the biogeochemical cycle on glacier surface. Climate change could influ‑
ence glacier dynamics by changing regional meteorological factors (e.g., radiation, precipitation, temperature, wind, 
and evaporation). Moreover, meteorological factors not only influence glacier dynamics but also directly or indirectly 
influence cryoconite microbiomes. However, the relationship of the meteorological factors and cryoconite microbi‑
ome are poorly understood.

Results  Here, we collected 88 metagenomes from 26 glaciers distributed in the Northern Hemisphere with cor‑
responding public meteorological data to reveal the relationship between meteorological factors and variation 
of cryoconite microbiome. Our results showed significant differences in taxonomic and genomic characteristics 
between cryoconite generalists and specialists. Additionally, we found that the biogeography of both generalists 
and specialists was influenced by solar radiation. Specialists with smaller genome size and lower gene redundancy 
were more abundant under high radiation stress, implying that streamlined genomes are more adapted to high radia‑
tion conditions. Network analysis revealed that biofilm regulation is a ubiquitous function in response to radiation 
stress, and hub genes were associated with the formation and dispersion of biofilms.

Conclusion  These findings enhance our understanding of glacier cryoconite microbiome variation on a hemispheric 
scale and indicate the response mechanisms to radiation stress, which will support forecasts of the ecological conse‑
quences of future climate change.
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Background
Glaciers and ice sheets cover approximately 10% of the 
global surface and these icy ecosystems are dominated 
by microbes, which drive biogeochemical cycling [1]. 
The Northern Hemisphere contains over half the gla-
ciers on Earth, and the mass balance of these glaciers is 
greatly influenced by climate change. Climate change 
could influence glacier dynamic by changing regional 
meteorological factors (e.g., solar radiation, tempera-
ture, precipitation, wind, and evaporation). For instance, 
divergent summer insolation has been shown to be the 
major driver of long-term glacier evolution [2]. In addi-
tion, the microbial community on the glacier surface is 
directly or indirectly influenced by meteorological fac-
tors. Among meteorological factors, solar radiation is 
fundamental in glacial ecosystems because it supports 
phototrophic microorganisms and serves as a permanent 
driving force in glacier evolution. Recently, it has been 
reported that solar radiation (light) stimulates primary 
production in cryoconite and directly supplements the 
energy demand of aerobic anoxygenic phototrophs [3, 
4]. Moreover, microbial processes at the surface have the 
potential to amplify the impacts of meteorological factors 
on glaciers [5]. Therefore, understanding how microbial 
communities respond to meteorological factors is the key 
to making reasonable predictions of the microbiome and 
glacier dynamics, contributing to estimating the impacts 
of climate change.

Cryoconite is a granular sediment found on glacier sur-
faces comprising both mineral and biological materials 
from different sources, recognized as unique hot spots 
of microbial diversity and activity in glacial ecosystems 
[6]. The pioneers in cryoconite are cyanobacteria, which 
produce substantial amounts of organic material, includ-
ing extracellular polymeric substances (EPS), which hold 
minerals and other particles together, effectively increas-
ing the lifetime of cryoconite on the ice surface [7, 8]. 
Moreover, other microbes in cryoconite can also produce 
EPS that allow them to form biofilms and increase their 
survivability, such as cryoprotection, anti-desiccation, 
buffering against high salinity and pH, and trace metal 
uptake and binding [9–12]. Smith et  al. (2016) revealed 
that ~ 35% of the cryoconite sediment surfaces were cov-
ered by biofilm in Antarctica [13]. The accumulation of 
microbial biofilms will enlarge these aggregates, poten-
tially contributing to surface darkening and the reduc-
tion in glacial albedo [6]. Given that light could increase 
the excretion of cyanobacterial EPS [14], we propose the 
presence of a linkage between the biofilm of the cryoco-
nite microbiome and solar radiation.

In recent years, many studies have reported that cryoc-
onite ecosystems are usually dominated by endemic spe-
cies owing to geographic separation [15, 16], e.g., Millar 

et al. (2021) revealed that specialists dominated the cry-
oconite community on the hemispheric scale [17]. In 
general, the overwhelming majority of microbial ecosys-
tems are characterized by highly skewed abundance-rank 
distributions: a few taxa account for the majority, while 
most taxa are represented by only a few individuals [18]. 
According to the difference in taxon distributions among 
habitats, taxa with equal abundances in many habitats 
are divided into generalists, whereas taxa that are always 
found in only one habitat are divided into specialists [19]. 
Specialists are usually highly adapted to specific condi-
tions and are sensitive to environmental change, whereas 
generalists are recognized as adapting to a wide range of 
environments [20]. Moreover, generalist and specialist 
microbes differently impact the dynamics of microbial 
community structures [21]. Hence, distinguishing the 
roles of generalists and specialists, including their habitat 
range and metabolic potential, is meaningful to under-
standing the dynamics of cryoconite ecosystems.

Overall, understanding the relationship between mete-
orological factors and dynamic of cryoconite microbiome 
requires an in-depth analysis of the roles played by dif-
ferent species as well as their habitat ranges and meta-
bolic potential. Considering these factors, we seek to 
differentiate the roles of generalists and specialists, find 
their connection with meteorological factors, and indi-
cate the potential mechanisms. In this study, we collected 
88 metagenomes of the cryoconite microbiome from 
26 sampling sites across glaciers in the Northern Hemi-
sphere with corresponding meteorological data. Finally, 
we combined genome and gene-centric approaches that 
identify key species and functions of the community, as 
well as their connection with meteorological factors, to 
provide insights into the variation of cryoconite microbi-
omes under climate change.

Materials and methods
Metagenomic and meteorological data collection
We analyzed 88 metagenomes of the cryoconite micro-
biome from 26 glacier sampling sites distributed in 
the Northern Hemisphere with an average coverage of 
1.27 × 1010 (± 9.76 × 109) bases per metagenome (Addi-
tional file 1: Table S1). Owing to the sequence length of 
paired reads was below 100 bp, the metagenomic data of 
Rotmoosferner glacier was not include in this study [22]. 
All 88 samples were distributed among Northern Hemi-
sphere glaciers and divided into three groups (i.e., ALP, 
ARC, and TP) based on their geographic position, includ-
ing Alp (6 samples in Italy), Arctic (39 samples in Green-
land, 3 samples in Svalbard, and 2 samples in Alaska) and 
Tibetan plateau as well as its surroundings (25 samples 
in China, 6 samples in Pakistan, 5 samples in Nepal, one 
sample in Tajikistan and one in Kyrgyzstan) (Additional 
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file  2: Fig. S1). The 88 metagenomes of the cryoconite 
microbiome cover a broad range of temporal conditions 
from July to November from 2005 to 2020. Samples were 
taken, and DNA extraction from the cryoconite was per-
formed as described in the original research [3, 23–26].

In addition, we downloaded monthly averaged mete-
orological data of 26 sampling points from ERA5 dataset, 
which is a global atmospheric reanalysis product pro-
duced by the ECMWF (European Centre for Medium–
Range Weather Forecasts) [27]. Then we selected mainly 
meteorological data that could influence glacier as well 
as cryoconite microbiomes, including 2  m temperature 
(Kelvins, K), 10 m wind speed (meters per second, m/s), 
total sky direct solar radiation at the surface (joules per 
square meter, J/m2 ), total precipitation ( meter of water 
equivalent), and evaporation (meter of water equiva-
lent) data of each sampling site from 2005 to 2020. The 
NetCDF (Network Common Data Form) format dataset 
was download in the website [28] and transformed to 
table format based on geographic coordinate by R pack-
age raster (v3.5–15) [29]. Finally, these meteorological 
data were converted to a 15-year average value for each 
sampling point for downstream analysis.

Metagenome analysis
Raw reads of metagenomes were obtained from the 
National Center of Biotechnology Information (NCBI) 
Sequence Read Archive (SRA). Quality control of pair-
end reads was performed by Trim Galore wrapper 
(v0.6.6) [30]. Megahit (v1.1.3) [31] was used to assemble 
high-quality reads with the default setting, and only con-
tigs > 1000 bp were retained. A total of 32,787,657 assem-
bled contigs were used to predict open reading frames 
(ORFs) by Prodigal (v2.6.3) [32], and then ORFs were 
clustered by MMseqs2 (v13.45111) [33] with the parame-
ters: easy-linclust -e 0.001 -min-seq-id 0.95 and -c 0.80, as 
used in the human gut microbiome dataset construction 
except decrease 90% coverage to 80% for excluding the 
effect of shorter genes [34]. A total of 17,008,994 nonre-
dundant ORFs were generated, with an average length of 
665 bp. These ORFs were annotated against Kyoto Ency-
clopaedia of Genes and Genomes Orthology (KEGG) 
[35] databases using KofamScan [36] at an e value thresh-
old of 1e − 5. Clean reads were mapped to nonredundant 
ORFs by Salmon (v0.13.1) [37] with default parameters to 
obtain transcripts per million (TPM) abundance.

Genome binning and recruitment
Binning of the remaining assembly contigs and high-
quality reads was performed by the variational autoen-
coders for metagenomic binning (VAMB) (v2.0.1) [38] 
and metaWRAP (v1.3.2) [39] with self-implemented 
MetaBAT2 [40] and MaxBin2 [41] binning modules. 

A total of 11,813 bins were generated by three bin-
ning methods. Then, all these sets of bins were pooled 
together for bin dereplication and aggregation by DAS_
Tools (v1.1.4) with default settings [42]. A total of 2556 
bins (also called metagenome assembly genomes, MAGs) 
were further refined to remove heterogeneous contig 
potential contamination based on the genomic proper-
ties (i.e., tetranucleotide signatures, coverage, and GC 
content) by RefineM (v0.0.24) [43]. The completeness and 
contamination of each bin were assessed with CheckM 
(v.1.0.11) using the lineage_wf workflow [44].

The 2078 medium–high quality MAGs with com-
pleteness > 50% and contamination < 10% were clustered 
at the species level by dRep (v3.2.2) [45] with an aver-
age nucleotide identity (ANI) threshold of 95% [25, 46] 
and an aligned fraction threshold of 30%. The final 645 
dereplicated MAGs represented unique species that we 
called species-level genome bins (SGBs) as used in the 
human gut microbiome research [47] (Additional file  1: 
Table  S2). Taxonomic classification of SGBs was per-
formed by GTDB-tk (v0.3.2) [48, 49] with the Genome 
Taxonomy Database (GTDB) (R06-RS202). SGB abun-
dance was calculated by CoverM (v0.6.0) using the TPM 
method [50]. Protein sequences of SGBs were predicted 
with Prokka (v1.14.6) [51], and functional annotation 
was performed with the same pipeline used for ORFs. A 
phylogenetic tree for the dereplicated MAGs was recon-
structed using the protein sequences of 43 universal sin-
gle-copy genes by checkM. The iTOL website [52] was 
used to better visualize the phylogenetic tree.

Niche breadth analysis
Specialist-generalist classification of SGBs was based on 
Levins’ niche breadth index. To avoid sampling bias, the 
function spec.gen from the R package EcolUtils (v.0.1) 
[53] was used to calculate Levins’ index for 1000 random 
permutations of the metagenomic TPM table. Then, 645 
SGBs were categorized as generalists if Levins’ index was 
larger than its 95% confidence interval (CI) or special-
ists if Levins’ index was smaller than its 95% CI, and the 
SGBs were considered uncategorized if Levins’ index was 
within the 95% CI.

WGCNA network analysis
A weighted gene co-expression network analysis 
(WGCNA) was performed using the R package WGCNA 
(v1.70–3) [54]. The analysis was performed on 88 sam-
ples of the KEGG dataset to describe networks derived 
from their normalized TPM values for information on 
gene and function abundances.

A total of 17,347 KEGG orthologs (KOs) were detected 
across 88 samples and then filtered to 8272 KOs that were 
observed in at least 70% of samples. Filtered KOs were 
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transformed into centered log ratios (CLR) after replace-
ment of zeros via count zero multiplicative replacement 
by R package zCompositions (v1.4.0–1) and compositions 
(v2.0–4) [55]. Then transformed data was used to con-
struct the network based on the absolute values of Pear-
son correlation coefficients. To generate an approximate 
scale-free topology network, soft thresholding power 
was set at 7 by the function pickSoftThreshold. Network 
module identification was performed by a dynamic tree 
cut algorithm and the minimum module size was set at 
50 to generate medium to large modules. Highly similar 
(> 75%) network modules were merged by hierarchical 
clustering, which resulted in 10 network modules being 
retained. The KOs within same network module had high 
correlation that could perform similar or relevant func-
tion; hence, we also called these network modules as 
function modules. The module’s eigengene values, which 
are equivalent to the first principal component, were 
examined for correlations with radiation using a Pearson 
correlation.

To evaluate the importance of modules to radiation, 
linear regressions were used to fit each module’s eigen-
gene value and meteorological data. Before fitting, 
L1-regularized regression with the least absolute shrink-
age and selection operator (LASSO) [56] was used to 
select the variables and avoid overfitting. For LASSO, the 
final selected variables were depended on the choice of 
lambda value. Under the best lambda, final three mod-
ule (MEturquoise, MEblue, and MEgreenyellow) was 
selected using cross validation. Then, the eigengene value 
of selected modules was used to construct an optimiza-
tion model. The importance of modules to radiation was 
evaluated by the standardized regression coefficient of 
the final model. The resulting regression estimates were 
visualized as forest plots with 95% confidence intervals 
by R package forestmodel (v0.6.2) [57]. All regression 
methods were performed using the R package glmnet 
(v4.1–4) [58].

Each module significantly correlated with meteorologi-
cal factors was regarded as an environmentally respon-
sive functional group in the cryoconite microbiome. To 
determine the represented function of each module, 
KEGG pathway enrichment analysis was performed 
using the R package clusterProfiler (v3.18.1) [59]. To find 
radiation-related hub genes in module MEturquoise and 
MEblue, KOs were filtered based on threshold: module 
membership over 0.9 and absolute value of radiation cor-
relation over 0.8. Module membership value and radia-
tion correlation value that measured by signedKME and 
cor function of WGCNA R package. Then, we check the 
pathway of filtered KOs and select the pathway also iden-
tified in enrichment analysis. The selected pathways were 
bacterial motility proteins, biofilm formation, flagellar 

assembly, O-antigen nucleotide sugar biosynthesis, quo-
rum sensing, secretion system, and two-component 
system. Finally, the KOs of selected pathway were visual-
ized in cooccurrence networks by the open-source tool 
Cytoscape (v3.7.0) [60].

Statistical analysis
To verify the plausibility of biogeographical catego-
ries (i.e., ALP, ARC, and TP), clustering analysis was 
performed by factoextra (v1.0.7) and cluster (v2.1.3) R 
package. The CLR-transformed SGB abundances was 
explained by the meteorological factors using Redun-
dancy analysis (RDA) by the vegan (v2.6–2) package in 
R. [61]. To assess collinearity between meteorological 
factors, the variance inflation factor analysis (VIF) was 
performed to filter redundancy variable with the vif.
cca function. All meteorological factors with low vari-
ance inflation factor (VIF < 10) were kept. Then, we used 
the rdacca.hp (v1.0–8) package to distinguish the con-
tribution of each meteorological factor by the relative 
importance of each factor independently accounting for 
variation in community structure [62]. In addition, to 
determine the relative importance of meteorological fac-
tors in structuring cryoconite communities, we also con-
ducted a multiple regression analysis using the multiple 
regression on matrices (MRM) approach in the ecodist 
R package (v2.0.7) [63]. Linear regression between sum 
of KOs and unique KOs of each SGB was plotted using 
the stat_poly_eq function in the ggpmisc (v0.4.6) pack-
age in R, and then p values and R2 values were calculated 
and added to the graph [64]. The function diffslope in 
the R package simba (v0.3–5) was used to calculate the 
difference in slopes of regression lines. The correlation 
between 645 SGBs abundance (CLR transformed) and 
radiation was canulated by Spearman correlation test 
by rcorr function of R package correlation (v0.8.1). The 
significance of the SGB-based comparisons of predicted 
GC content, genome size, gene redundancy index, and 
radiation correlation among niche breadth groups was 
determined using the Wilcox rank sum test in the ggpubr 
(0.4.0) package in R [65]. All statistical analyses were per-
formed using R version 4.0.3.

Result
Taxonomic composition of the cryoconite microbiome 
in the Northern Hemisphere
After quality filtering and dereplication, 2556 MAGs were 
generated with an average mapping rate of 63.5% against 
8,697,020,884 clean reads. To uncover the diversity of 
cryoconite species, 645 SGBs were obtained from 2078 
medium–high quality MAGs by clustering at the species 
level based on an ANI threshold of 95% [25, 46]. These 
SGBs were affiliated with 27 phyla; 24 were bacteria, and 
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the other three were archaea (i.e., Halobacteriota, Ther-
moplasmatota, and Thermoproteota) (Fig.  1a). All eight 
archaeal SGBs were classified at the family level. Four SGBs 
belonged to sulfur-oxidizing archaea in the families Sul-
folobaceae and Thermoproteaceae. Three SGBs belonged 
to methanogenic archaea in the families Methanosphaeru-
laceae and Methanosarcinaceae and UBA472 in the order 
Methanomassiliicoccales. One SGB was classified to the 
ARK-15 family, which shared a common ancestor with 
the sulfur-reducing archaeon Aciduliprofundum [66]. At 
the genus level, six SGBs were classified, while at the spe-
cies level, only two SGBs were classified as Metallosphaera 
sedula and Methanosarcina sp001714685. The other 637 
bacterial SGBs were most frequently assigned to the phy-
lum Proteobacteria (28.8%), followed by Bacteroidota 
(14.7%) and Actinobacteriota (9.6%). At the family level, 
94% of bacterial SGBs could be annotated, and the most 
abundant family was Burkholderiaceae (8.3%), followed by 
Sphingomonadaceae (6.4%) and Chitinophagaceae (5.3%). 
At the genus level, 65% of bacterial SGBs could be anno-
tated, and the most abundant genus was Ferruginibacter 
(5.5%), followed by Rhizobacter (3.4%) and Polaromonas 
(2.8%). However, only eight bacterial SGBs could be classi-
fied at the species level (Additional file 1: Table S2).

Generalists and specialists in the cryoconite microbiome
We further divided 645 SGBs into two groups, generalist, 
and specialist, based on Levin’s niche breadth index [67]. 
In this study, only 12% of SGBs were identified as general-
ists, 55% of SGBs were specialists, and 33% of SGBs were 
uncategorized. The comparison of taxonomic composi-
tion between niche breadth groups showed that special-
ists exhibited higher diversity than generalists. Specialists 
were classified into 25 phyla and generalists into 13 phyla 
in this study. SGBs belonging to the phyla Proteobacteria, 
Bacteroidota, and Actinobacteriota were abundant in both 
the generalist and specialist groups. However, the number 
of the superphylum Patescibacteria (also known as candi-
date phyla radiation, CPR) was different between general-
ists and specialists, with only one in the generalist group 
and 30 in the specialist group. At the genus level, the SGBs 
in the generalist and specialist groups belonged to 34 and 
125 genera, respectively. SGBs belonging to the genera 
Ferruginibacter, Polaromonas, and BOG-908 were abun-
dant among the generalists and specialists. Sixteen genera 
were found only among generalists, and 107 genera were 
found only among specialists. In addition, uncategorized 

SGBs also showed highly diverse taxonomic composition. 
A total of 216 uncategorized SGBs were distributed among 
20 phyla, most of which belonged to Proteobacteria (27%), 
followed by Bacteroidota (14%) and Actinobacteriota 
(10%). The phylum UBA15 was found only in an uncatego-
rized group. At the genus level, SGBs were classified into 
86 genera, and the genera Rhizobacter, Ferruginibacter 
and UKL13-2 were abundant. Additionally, there was no 
generalist archaeal SGBs. Five archaeal SGBs were special-
ist group and belong to three phyla, that is Halobacteriota, 
Thermoplasmatota, and Thermoproteota. While other 
three archaeal SGBs were uncategorized group and belong 
to Thermoproteota and Thermoplasmatota, two classified 
archaeal species (i.e., Metallosphaera sedula and Methano-
sarcina sp001714685) were specialist group.

Generalists and specialists exhibited obviously different 
genomic features. The average estimated genome size for 
generalists was significantly larger than that for special-
ists (Wilcox rank sum test; p value < 0.001), which were 
4.58 (± 1.56) and 4.20 (± 1.50) Mbp, respectively (Fig. 1b). 
Similarly, the average GC of generalists (0.61 ± 0.08) was 
significantly higher than that of specialists (0.53 ± 0.11) 
(Wilcox rank sum test; p value < 0.0001) (Fig.  1c). For 
uncategorized SGBs, the average estimated genome size 
and GC content were intermediate to those of general-
ists and specialists. Given that more unique taxonomy 
was found in specialist SGBs, we also compared aver-
age estimated genome size and GC content of generalist 
and specialist in each phylum. Our result showed that, 
among various phyla, only the generalist SGBs from the 
Proteobacteria and Actinobacteriota exhibited a signifi-
cant larger average estimated genome size than special-
ist SGBs (Wilcox rank sum test; both p value < 0.01), and 
only the generalist SGBs from Proteobacteria and Bdello-
vibrionota showed significant high GC content than spe-
cialist SGBs (Wilcox rank sum test; both p value < 0.01) 
(Additional file  2: Fig. S2). When removed the unique 
phyla that only found in specialist SGBs, we found gen-
eralist SGBs still had significant high larger average esti-
mated genome size than specialist SGBs (Wilcox rank 
sum test; both p value < 0.01) (Additional file 2: Fig. S3).

Various metabolic potentials of generalists and specialists 
in the cryoconite microbiome
Generalists and specialists have various potential func-
tions. There were 115 and 1532 unique KEGG-annotated 
genes among the generalists and specialists, respectively 

(See figure on next page.)
Fig. 1  Phylogenetic tree of SGBs and genome characteristics of cryoconite microbiome. a Phylogenetic tree was generated using 645 SGBs. Bar 
plot shows the completeness (blue) and contamination (red) of SGBs. Color strip in the outer ring represents the niche breadth groups divided 
by Levin’s niche breadth, black for generalist, red for specialist, and gray for uncategorized. Bootstraps are shown in the pink triangle and are based 
on 1000 replicated trees. b, c Comparison of estimated genomes size and GC content between different niche breadth groups (Wilcox rank sum 
test). Significance level: **** (p ≤ 0.0001); *** (p ≤ 0.001); ** (p ≤ 0.01); * (p < 0.05)
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Fig. 1  (See legend on previous page.)
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(Fig.  2a). These genes could be classified into multiple 
functions or pathways based on the KEGG pathway cat-
egorization level. The top five functions (i.e., KEGG path-
way level 2) of generalists belong to three pathways (i.e., 
KEGG pathway level 1), that is, environmental informa-
tion processing, metabolism, and cellular process. A total 
of 15.6% of unique genes in generalist group were clas-
sified into metabolic pathways, including 8.7% involving 
xenobiotic biodegradation and metabolic functions and 
6.8% involving terpenoid and polyketide metabolism 
functions. For the cellular process pathway, 7.3% of genes 
were associated with cell growth and death functions, 
and 6.8% were associated with transport and catabolism 
functions. The top five functions of specialists belong 
to two pathways, that is, metabolism and environmen-
tal information processing. A total of 25.9% of genes 
were classified into the metabolism pathway, including 
11.5% involving carbohydrate metabolism, 7.9% involv-
ing energy metabolism and 6.5% involving amino acid 
metabolism. Another function in the environmental 
information processing pathway was membrane trans-
port, which was associated with 6.5% of specialist unique 
genes. Signal transduction of environmental information 
processing was the most abundant function among both 
generalists and specialists, accounting for 21.5% of gen-
eralist and 13.8% of specialist unique genes, respectively.

Linear regression between unique KO number and 
sum of KO number showed that slope value in general-
ists was significantly larger than that in specialists (diff-
slope: p value < 0.001), which indicated that generalists 
had more duplicated genes than specialists (Fig. 2b). To 
avoid genomic completeness bias, we also assessed the 
linear regression in different genome completeness cat-
egories. Generalists consistently exhibited higher slope 
values among different completeness categories (Addi-
tional file 2: Fig. S4). Furthermore, the ratio of unique KO 
numbers and the sum of KO numbers was used to quan-
tify the degree of gene duplication of each SGB, which 
we named as the gene redundancy index. Our results 
showed that the gene redundancy index was significantly 
higher in generalists than specialists (Wilcox rank sum 
test; p value < 0.0001) (Fig. 2b).

Biogeography of generalists and specialists 
across the Northern Hemisphere glacier cryoconite
The number of generalists was smaller than that of spe-
cialists in all three biogeographical categories (i.e., ALP, 
ARC, and TP) across the Northern Hemisphere, but the 
differences were not the same (Fig.  3a). Although the 
number of SGBs in TP was twice as high as that in ARC 
and four times as high as that in ALP, the number of gen-
eralists was only one-fifth of the number of specialists in 

TP and one-half of that in ALP and ARC. For genome 
features, generalists had significantly larger genomes, GC 
contents, and gene redundancy index values than spe-
cialists in all three biogeographical categories (p value 
both < 0.05).

Generalists and specialists have similar dominant phyla 
in three biogeographical categories, that is, the phyla Pro-
teobacteria, Bacteroidota, Actinobacteriota, and Arma-
timonadota. However, several groups showed different 
frequencies among biogeographical categories. For gen-
eralists, the frequency of the group Gammaproteobacte-
ria in ALP was higher than that in other regions, and the 
groups Cyanobacteria and Patescibacteria were detected 
only in ARC and TP. For specialists, the frequency of the 
phylum Bacteroidetes was the highest in ALP, and those 
of the groups Firmicutes and Gammaproteobacteria were 
the highest in TP (Fig. 3a).

Clustering analysis showed optimum number of clus-
ters was 10 according to k-mediod algorithm (Addi-
tional file  2: Fig. S5). Of these 10 clusters, samples of 
ALP were close to samples of Yala and Parlung No. 4 
glacier in TP. Moreover, samples of ALP, ARC, and TP 
could approximately group into three more larger clus-
ters in line with their geographic location. RDA results 
revealed that the whole, generalist, and specialist com-
munities in ALP and ARC clustered together according 
to their geographical locations and were associated with 
meteorological factors (Fig.  3b). The whole, generalist, 
and specialist communities were all positively corre-
lated with precipitation in ALP and wind speed in ARC 
(whole: F = 15.456, p value = 0.001; generalist: F = 35.198, 
p value = 0.001; specialist: F = 10.87, p value = 0.001). 
Most of the samples in the TP were positively correlated 
with radiation. In particular, nine samples from the Yala 
and Parlung No. 4 glacier was positively correlated with 
precipitation and closer to the ALP samples (Fig.  3b). 
In the whole community, the RDA results revealed that 
five meteorological factors, radiation, precipitation, tem-
perature, windspeed, and evaporation, explained 45.4% 
of the variation in whole-community structure, whereas 
these factors explained 66.3% and 36.2% of the variation 
in the generalist and specialist communities, respectively. 
Among the five meteorological factors, the RDA and 
MRM analysis showed that radiation had a greater influ-
ence on the community structures than the other mete-
orological factors (Table 1). The contribution of radiation 
was the highest, accounting for 41.85% of the total differ-
ential contributions in the whole community, 44.60% in 
generalists and 39.77% in specialists. The standard partial 
regression coefficient of radiation was also the highest 
among meteorological factors, 0.80 in generalists, 0.78 in 
the whole community, and 0.75 in specialists (Table  1). 
Compared with geographic distance, radiation difference 
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Fig. 2  Unique function and gene redundancy in niche breath groups. a Quantification of genes annotated against KEGG database that were 
only found in generalists or specialists. b Linear regression fit between unique KO number and the sum of KO number, and the comparison of gene 
redundancy index among niche breadth groups in the sketch
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of each samples showed higher explanation (linear fitting: 
radiation difference, R2 = 0.59, p value < 0.001; geographic 
distance, R2 = 0.49, p value < 0.001) (Additional file 2: Fig. 
S6). MRM analysis also showed radiation had a greater 
influence on the whole community structures than geo-
graphic distance (standard partial regression coefficient: 
radiation difference = 0.82; geographic distance =  − 0.06) 
(Additional file 1: Table S3).

Generalists and specialists showed contrasting cor-
relations with radiation, as indicated by linear corre-
lation analysis (Fig.  3c). The accumulative abundance 
of generalists and specialists significantly declined 
(R2 = 0.77, p < 0.001) and increased (R2 = 0.42, p < 0.001) 
with increasing radiation, respectively. In addition, the 
diversity of generalists and specialists indicated by the 
cumulative number of SGBs was negatively and positively 
correlated with radiation (R2 = 0.77, p < 0.001; R2 = 0.43, 
p < 0.001), respectively (Additional file  2: Fig. S7). How-
ever, not all generalists were negatively correlated with 
radiation, nor were all specialists positively correlated 
with radiation. Spearman’s test showed that 536 SGBs 
were significantly correlated with radiation, including 
70 generalists and 282 specialists (both p value < 0.05). 
A total of 72% of generalists and 50% of specialists were 
negatively correlated with radiation (Fig. 3d). Moreover, 
the absolute value of Spearman’s correlation coefficient of 
generalists was significantly higher than that of special-
ists (Wilcox rank sum test; p value < 0.0001) (Additional 
file 2: Fig. S8), indicating that generalists were more sen-
sitive to radiation than specialists.

The linkage between ubiquitous functions of community 
and niche breadth groups
Owing to the gap in genome functions and community 
functions, we further analyzed the ubiquitous function of 
the community in response to radiation stress by a gene-
centric approach. A total of 8272 KOs were found in at 
least 70% of samples, which could be prevalent functions 
of the cryoconite microbiome, and these KOs clustered 
into 10 function modules in network analysis (Fig.  4a). 
Among these modules, the gene number of MEturquoise 
(2858 KOs) was highest, followed by that of MEblue 

(2210 KOs). Moreover, over half of the 10 modules were 
significantly correlated with radiation (Pearson’s corre-
lation test; both p value < 0.05), except for MEmagenta, 
MElightgreen, MEgreenyellow, and MEgrey. Three mod-
ules were negatively correlated with radiation, and the 
MEblue module exhibited the highest Pearson’s correla-
tion coefficient (− 0.77; p value = 7e − 18). In contrast, 
three modules were positively correlated with radiation, 
and the MEturquoise module exhibited the highest Pear-
son’s correlation coefficient (0.83; p value = 1e − 23).

LASSO regression analysis showed that three mod-
ules correlated with radiation under the best penalty 
(best lambda). MEblue had the highest negative cor-
relation coefficient, and MEturquoise had the highest 
positive correlation coefficient (Fig.  4b). These three 
modules explained almost 79% of the variation in radia-
tion (Radj = 0.785, p value < 0.001) based on the stand-
ardized regression coefficient approach. Among these 
three modules, the MEblue and MEturquoise modules 
explained the greatest amounts of variation in radiation 
(Fig. 4c).

We further identified representative pathways of each 
function module by the clusterProfiler enrichment 
approach (Additional file 1: Table S4). Given that MEblue 
and MEturquoise modules had strongest correlation than 
other modules, we selected these two modules to find 
hub genes accented with radiation variation. In mod-
ule MEblue, most of the genes (91 KOs) were enriched 
in the two-component system pathway, followed by the 
function unknown pathway (70 KOs), bacterial motility 
protein pathway (52 KOs) and quorum sensing (52 KOs) 
(Additional file 1: Table S4; Additional file 2: Fig. S9a). In 
module MEturquoise, most of the genes (222 KOs) were 
in two-component system pathways, followed by ABC 
transporters (116 KOs) and unknown function pathways 
(100 KOs) (Additional file 1: Table S4; Additional file 2: 
Fig. S9b). The biofilm formation pathway was enriched in 
module MEturquoise and bacterial motility pathway was 
enriched in module MEblue. Radiation-related hub genes 
were also associated with bacterial motility proteins, bio-
film formation, flagellar assembly, O-antigen nucleotide 
sugar biosynthesis, quorum sensing, secretion system, 

(See figure on next page.)
Fig. 3  Biogeography of niche breadth groups and their relationship with meteorological factors. a Number of generalists, specialists, 
and uncategorized in Tibetan plateau (TP), Arcitc (ARC), and Alpine (ALP). The adjacent box plots show the difference in estimated genome size, 
GC content, and gene redundancy index within each subcategory. Adjacent stacked bar plots indicate their taxonomic composition at the phylum 
level (Proteobacteria phylum was at class level). b Relationship between community compositions and meteorological factors in all SGBs, generalist, 
and specialist based on redundancy analysis (RDA). All meteorological factors were tested in RDA analysis using the envfit function with 999 
permutations. Significance level: **** (p ≤ 0.0001); *** (p ≤ 0.001); ** (p ≤ 0.01); * (p < 0.05). c Linear fit between the abundance of SGBs and radiation 
(MJ/m2 ) across niche breadth groups. d Correlation of each SGB between radiation and distribution of SGBs based on their logged mean read 
recruitments across cryoconite samples (X axis) and Levin’s Index (i.e., niche breadth, Y axis). The color gradient depicts Spearman’s correlation 
coefficient with radiation of each SGB and point shape indicates niche breadth groups
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Fig. 3  (See legend on previous page.)
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and two-component system (Additional file 1: Table S4). 
Genes of these pathways were connected by five hub 
genes based on network analysis (Fig.  4d–e): two hub 
genes (K21000 pslG; K02650 pilA) in MEblue and three 
hub genes (K11689 dctQ; K08083 algR; K07793 tctA) in 
MEturquoise. Further analysis showed that all five hub 
genes were significantly correlated with radiation (linear 
model fitting, R = 0.59 ~ 0.68, p value < 0.001) (Fig. 5a–b). 
The pslG (K21000) gene had the strongest negative corre-
lation with radiation among the hub genes and explained 
68% of the radiation variation; in contrast, the tctA 
(K07793) gene had the strongest positive correlation with 
radiation among the hub genes and explained 68% of the 
radiation variation.

Given that the accumulative abundance of general-
ists and module’s eigengene values of MEblue had similar 
negative correlations with radiation, in contrast, specialists 
and MEturquoise had similar positive correlations with 
radiation (Figs. 3c and 4a), we queried the sequences of five 
hub genes from 645 SGBs to link cryoconite taxa and the 
ubiquitous function that related to radiation of the com-
munity (Fig. 5c). In total, over half of the SGBs (54%) con-
tained at least one type of hub gene sequence. These SGBs 
distributed into majority of bacterial phyla, except for 
phyla Aquificota, Caldisericota, UBP15 and UBP7. Most 
of these SGBs were most frequently assigned to the phy-
lum Proteobacteria (30%), followed by the Patescibacteria 
(9%) and Armatimonadota (8%). However, these hub genes 
were not detected in any archaeal SGBs. Hub genes from 
different modules could be found simultaneously in one 
SGB. For instance, four hub genes were simultaneously 
detected in 12 SGBs belonging to the Gammaproteobac-
teria class. The genera Rhodoferax and Rhizobacter (mem-
bers of the family Burkholderiaceae), which are associated 
with biofilms in other ecosystems [68, 69], accounted for 
approximately 42% of these SGBs. When compared to 
SGBs without hub genes, our results showed that specialist 

SGBs with hub genes had significantly lower absolute val-
ues of Spearman’s correlation coefficient with radiation 
(Wilcox rank sum test; p value < 0.05) (Fig. 5d).

Discussion
Radiation influences specialists and generalists
Low temperature and oligotrophy are common features 
of glacial ecosystems, and the presence of radiation gra-
dients may greatly influence the cryoconite microbiome. 
In this study, we investigated the relationship between 
five meteorological factors (i.e., solar radiation, tem-
perature, precipitation, wind, and evaporation) and the 
cryoconite microbiome and highlighted the influences of 
radiation on generalists and specialists in cryoconite. Our 
results showed that the accumulative abundance and spe-
cies number of generalists in the community decreased 
with increasing radiation, while the opposite trend was 
observed in specialists (Fig. 3c; Additional file 2: Fig. S7). 
This result suggested that radiation could influence com-
munity turnover and composition. Generalists are often 
adapted to various habitats [70], while specialists are 
highly adapted to a single environment [19]. In a previ-
ous study in coastal Antarctic lakes, abundance of habi-
tat specialists was also found to increase along salinity 
gradients [71]. Therefore, it is likely that environmental 
stress reduced proportion of generalists in community by 
influencing their dispersal strategy [72]. In general, the 
environmental stress causes species to cluster, whereas 
interspecific competition makes them disperse [73], 
probably due to cooperative communities have advantage 
in stress resistance. Indeed, cooperation among commu-
nities has significant biological advantages for individual 
members (e.g., maintaining complex community struc-
tures, increasing community productivity, and improving 
stress resistance) [74].

The differences between generalists and specialists in 
genome features and functions provide complementary 

Table 1  Relative importance of each meteorological factor for community variation based on multiple regression analysis on matrices 
analysis (MRM) and redundancy analysis (RDA)

All SGBs Generalists Specialists

MRM RDA MRM RDA MRM RDA

Standard 
partial 
regression 
coefficient

p value Independent 
contribution 
(%)

Standard 
partial 
regression 
coefficient

p value Independent 
contribution 
(%)

Standard 
partial 
regression 
coefficient

p value Independent 
contribution 
(%)

Radiation 0.78 0.0001 41.85 0.80 0.0001 44.60 0.75 0.0001 39.77

Evaporation 0.05 0.0024 23.11  − 0.02 0.2337 25.67 0.08 0.0002 21.82

Windspeed 0.06 0.0007 14.03 0.03 0.0997 12.64 0.09 0.0001 15.01

Precipitation  − 0.04 0.0247 8.28  − 0.02 0.2010 5.08  − 0.03 0.1385 10.61

Temperature 0.10 0.0002 12.65 0.14 0.0001 11.98 0.08 0.0013 12.77
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evidence to explain their adaptation under radiation 
stress. Generalists had significantly larger genomes, GC 
contents, and gene redundancy index values than spe-
cialists in our study (Figs. 1 and 2). In each phylum, gen-
eralists exhibited larger genomes, higher GC contents, 
and greater gene redundancy index values compared to 
specialists. However, a statistically significant difference 
of these features between generalists and specialists was 

only observed in the phyla Proteobacteria, Bdellovibri-
onota, and Actinobacteriota (Additional file  2: Fig. S2). 
This result suggested that taxonomic differences between 
generalists and specialists should be considered when 
comparing genomic features and gene redundancy index. 
Nevertheless, after excluding specialist unique phyla, 
it was observed that generalists also had significantly 
larger genomes, GC contents, and gene redundancy 

Fig. 4  Co-occurrence networks of metagenomic KEGG Orthologs. a Correlation heatmap between the network modules and radiation. The colors 
correspond to the correlation values, red is positively correlated, and blue is negatively correlated. The values in each of the squares correspond 
to the assigned Pearson correlation coefficient value on top and p-value in brackets below. Adjacent barplots indicate KEGG Orthologs (KOs) 
numbers of each module. b Relative importance of network modules for predicting radiation variation based on L1-regularized regression that least 
absolute shrinkage and selection operator (LASSO). c Results of multiple regressions after selection process of LASSO on all modules. Each variable 
was standardized before comparing effect sizes (squares) to determine differences in the strength of predictor variables. The error bars represent 
95% confidence intervals (CI) and indicate a significant (p < 0.05) effect when not overlapping with 0. d Co-occurrence network of selected genes 
involving biofilm formation in module MEblue. e Co-occurrence network of selected genes involving biofilm formation in module MEturquoise. 
Node size represents betweenness centrality, and high betweenness centrality nodes are labeled their KOs
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index values than specialists (Additional file  2: Fig. S3). 
Genome sizes are usually positively correlated with cell 
sizes, which determine the surface-to-volume ratio, 
with smaller cells benefitting nutrient acquisition due 
to the increased surface-to-volume ratio [75]. On the 
other hand, species with large genome sizes could have 
more genes and a larger proportion of redundant genes 
[76]. Gene redundancy contributes to genomic robust-
ness [77], which allows genes loss or mutation, and helps 
maintain stability after environmental perturbation [78]. 
Generalists with higher gene redundancy are likely to 

have higher metabolic flexibility in order to fit broader 
habitats. Specialists with lower gene redundancy are 
likely to adapt to extreme conditions by improving energy 
utilization efficiency. The difference in gene redundancy 
between generalists and specialists suggested that the 
species could adapt specific habitat by avoiding gene 
redundancy through redundant gene loss and evolution. 
Redundant gene evolution could contribute to product 
new function in environment adaption [79]. Gene loss 
is a general evolutionary mechanism that maintain rea-
sonable genome size and improves energy utilization 

Fig. 5  The hub genes related to radiation in MEblue and MEturquoise and their distribution across niche breadth groups. a Linear regression fit 
between each hub gene and radiation (MJ/m2 ) in MEblue. b Linear regression fit between each hub gene and radiation (MJ/m2 ) in MEturquoise. 
c Distribution of hub genes among niche breadth groups. d Comparing the correlation of species to radiation in the presence or absence of hub 
genes (Wilcox rank sum test). Significance level: **** (p ≤ 0.0001); *** (p ≤ 0.001); ** (p ≤ 0.01); * (p < 0.05)
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efficiency [80]. This is consistent with the “black queen” 
hypothesis [81] that free-living organisms in the com-
munity adapt to the environment through gene loss and 
the use of common resources in the community [82]. In 
addition, generalists had significantly higher GC con-
tents than specialists (Fig. 1b). Given that Bourquin et al. 
(2022) revealed that cryospheric genera had higher GC 
contents than other genera [83], it seems that cryoconite 
generalists are more likely to adapt to cold environments, 
whereas specialists could be restricted by other envi-
ronmental factors, such as thermoacidophilic archaea 
(Metallosphaera sedula), which are found only in the spe-
cialist group [84].

In addition to different cryoconite species, community 
structure was also influenced by radiation (Fig. 3b). Radi-
ation as a primary energy source not only supports pho-
totrophic microorganisms but also, as an environmental 
stressor, causes clear selection pressure [85, 86]. Previous 
studies have also shown that radiation impacts commu-
nity structure in natural ecosystems, such as the ocean 
[87] and meadows [88]. Indeed, RDA revealed that TP 
samples were more related to radiation (Fig. 3b) because 
the TP region is exposed to more radiation than the Arc-
tic owing to its higher altitude and lower latitude. Within 
the TP region, major samples were more related to radia-
tion, but samples from the Yala and Parlung No. 4 gla-
ciers were more related to precipitation. Murakami et al. 
also reported that Yala glacier samples were separated 
from central Asian glaciers when comparing community 
structure [89]. The Yala glacier is located on the south-
ern slope of the Himalayan Mountains, and the Parlung 
No. 4 glacier is located southeast of the Tibetan Plateau. 
Moreover, the Yala and Parlung No. 4 glaciers are influ-
enced by monsoons, which may bring more precipitation 
than received by other glaciers in the TP region [90]. This 
result suggests that community structure is influenced 
by regional climate. Nevertheless, radiation showed a 
more significant influence on community similarity than 
other meteorological factors (Table 1). One plausible rea-
son is that radiation is more stable than other meteoro-
logical factors and persistently impacts the dynamics of 
Northern Hemisphere glacier cryoconite. Furthermore, 
meteorological factors had greater influences on general-
ist community variation than specialist and whole com-
munity variation (Fig. 3b), suggesting that the presence of 
specialists could enhance community stability by increas-
ing functional redundancy and microbial interactions. 
This phenomenon was comparable to that described 
for the endosymbiotic coral system, where generalists 
showed greater susceptibility to environmental stress 
than specialists [91]. Hence, distinguishing the role of 
species in communities is meaningful for predicting the 
dynamics of ecosystems under environmental change.

Radiation influences microbial biofilm formation 
in cryoconite
Unlike gene redundancy in single taxa (i.e., multicopy 
gene in a genome), distinct taxa also perform the same 
function, known as functional redundancy [92]. These 
same functions represent the prevalent functional groups 
of the community adapted to a given environment. Net-
work analysis based on the prevalent function of com-
munity identified two distinct network modules (i.e., 
identical functional groups) that had strong relation-
ships (positive and negative correlations) with radiation 
(Fig. 4). Both modules were associated with biofilm for-
mation, which could be a ubiquitous function in response 
to radiation stress. Biofilms have been found in diverse 
environments and have proven to be ecologically advan-
tageous for survival [93]. Moreover, biofilms in glacier 
ecosystems contribute to microbe colonies and act as 
physical barriers against extreme environmental condi-
tions (e.g., high UV radiation and low temperature) [10, 
94, 95]. Previous studies on cryoconite microorganisms 
identified EPS of cyanobacteria as one of the driving 
forces for cryoconite biofilm and aggregation forma-
tion, which contributes to adaptation to low tempera-
ture, strong radiation, and oligotrophic environments 
[7, 8]. Under light conditions, increased excretion of EPS 
was observed in an incubated unicyanobacterial biofilm 
[14]. However, at the community level, the relationship 
between cryoconite microbes and biofilms has not been 
revealed under various radiation stress conditions. Our 
results showed that specialists with any hub genes had 
weaker correlations with radiation than those without 
hub genes, suggesting that biofilm regulation could alle-
viate the effects of radiation (Fig. 5d). Hence, understand-
ing the microbial biofilm lifestyle at the community level 
is meaningful for investigating the survival strategy of 
communities under radiation stress.

The network and clustering analyses showed that the 
cryoconite microbial community had two opposing 
biofilm patterns (formation and dispersion) that corre-
sponded to various radiation intensities, and each of the 
patterns was controlled by different hub genes. Specifi-
cally, hub genes (i.e., dctQ, algR and tctA) related to bio-
film formation were positively correlated with radiation 
(Fig. 5b), while genes (i.e., pslG and pilA) related to bio-
film dispersion were negatively correlated with radiation 
(Fig.  5a). It is suggested that cryoconite microbes may 
follow a “stay or escape” survival strategy in response 
to radiation stress variation (Fig.  6). Under high radia-
tion stress, microbes tend to stay in the biofilm matrix to 
avoid radiation damage. Three hub genes of MEturquoise 
were all related to biofilm formation: dctQ, algR [96], 
and tctA. The dctQ, dctM, and dctP genes encode the C4‐
dicarboxylate tripartite ATP‐independent periplasmic 
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(TRAP) transporter large permease protein and trans-
port C4‐dicarboxylate into the cytoplasm and be used 
as a carbon and energy source in bacteria [97, 98]. The 
dctP gene was reported to regulate the colonization, 
adhesion, and pathogenicity of Vibrio alginolyticus strain 
HY9901 [99]. The algR gene regulates the production of 
the polysaccharide alginate and type IV pilus-mediated 
twitching motility [100], which is important for EPS 
and biofilm formation. The tctA gene encodes tricarbo-
xylate transport protein, associated with the two regula-
tory components tctD and tctE that regulate the uptake 
of tricarboxylic acids and influence biofilm development 
[101, 102]. Under low radiation stress, microbes tend to 
escape from biofilms to acquire more nutrients and har-
bor dispersal-related genes, such as the pslG [103]. The 
pslG gene had the strongest negative correlation with 

radiation, and it can disrupt the Psl extracellular poly-
saccharide matrix to prevent biofilm formation [103]. 
In general, pilA gene is associated with pili formation, 
which contributes to cell motility [104]. A pervious study 
in Pseudomonas aeruginosa biofilms had reported that 
higher lower expression level of pilA gene in planktonic 
and dispersed cells [105]. However, the relationship 
between radiation and cryoconite ecosystem could be 
more complex than this hypothesized model. In addi-
tion, in model strains (e.g., Deinococcus swuensis Strain 
DY59T and Sphingomonas sp. strain UV9) studies [106, 
107], DNA repair gene expression was the main way to 
cope with radiation stress [108]; however, in our study, no 
clear correlation between DNA repair genes and radia-
tion was found, probably due to biofilm formation largely 
preventing radiation damage to DNA.

Fig. 6  Hypothesized “stay or escape” survival strategy of cryoconite microbiomes in response to radiation stress. Biofilm regulations under high 
radiation are in orange, while biofilm regulations under low radiation stress are in blue
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These hub genes were detected in the majority of SGBs 
(Fig. 5c), further supporting that biofilm-related functions 
widely exist in the cryoconite community. Given that 
hub genes have multiple functions and may be involved 
in other fundamental pathways, such as cell motility and 
nutrient transport, the number of species engaged in bio-
film regulation might be overestimated. Indeed, a study 
of Antarctic cryoconite found that nearly 35% of the 
cryoconite sediment surfaces were covered by biofilm as 
revealed by confocal laser scanning microscopy [13]. Our 
results showed the great biofilm regulation potential of 
cryoconite species, but we need to confirm this result in 
future research. On the other hand, it is not possible from 
the present results to establish a linkage between biofilm 
lifestyles and niche breadth groups (Fig.  5c). Although 
hub genes and niche breadth groups were correlated with 
radiation, horizontal gene transfer and genome complete-
ness bias inevitably interfere with the connection between 
hub genes and niche breadth groups. Nevertheless, SGBs 
without hub genes were more sensitive to radiation varia-
tion, supporting that biofilm-associated functional regu-
lation is important for cryoconite species adaptation to 
radiation stress (Fig. 5d). Furthermore, there was a likely 
linkage between biofilm lifestyle and microbial interac-
tions in the cryoconite (Fig.  6). Under high radiation 
stress, the proportion of generalists is lower, and micro-
bial cooperation could increase. Microbes stay in the bio-
film matrix to improve resource use efficiency (use public 
goods and mutualism). Under low radiation stress, the 
proportion of generalists is higher, and microbial com-
petition could increase. Microbes tend to escape from 
the biofilm matrix to seek diverse nutrients. In general, 
microbial interactions may be stronger in mature biofilms 
and contribute to more frequent nonspecific DNA uptake, 
preserving the possibility of new functional acquisition via 
horizontal gene transfer [109–111]. In summary, biofilms, 
as an emergent form of microbial life, are an efficient sys-
tem for investigating cooperation, resource capture and 
survival strategies of the community in cryoconite.

Conclusion
With the development of sequencing and bioinformat-
ics, the study of microbial functional variation in cryo-
conite is currently available. In this study, we recovered 
2078 medium–high quality genomic bins and built a 
nonredundant gene set within 17,008,994 nonredundant 
open reading frames. These data collectively constitute 
a large fraction of the cryoconite microbial diversity 
detected by metagenomics. We investigated cryoconite 
dynamics by distinguishing the roles of specialists and 
generalists and detected their connection with solar 
radiation. Our results highlight the gene redundancy of 
cryoconite species and biofilm formation regulation as 

key in the response to radiation stress. Collectively, our 
findings provide new insight into the cryoconite micro-
biome survival strategy in response to radiation stress 
and serve as a baseline for future monitoring of the state 
of cryoconite ecosystems.
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