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Abstract 

Background The increasing prevalence of neurocognitive disorders (NCDs) in the aging population worldwide 
has become a significant concern due to subjectivity of evaluations and the lack of precise diagnostic methods 
and specific indicators. Developing personalized diagnostic strategies for NCDs has therefore become a priority.

Results Multimodal electroencephalography (EEG) data of a matched cohort of normal aging (NA) and NCDs sen-
iors were recorded, and their faecal samples and urine exosomes were collected to identify multi-omics signatures 
and metabolic pathways in NCDs by integrating metagenomics, proteomics, and metabolomics analysis. Additionally, 
experimental verification of multi-omics signatures was carried out in aged mice using faecal microbiota transplanta-
tion (FMT). We found that NCDs seniors had low EEG power spectral density and identified specific microbiota, includ-
ing Ruminococcus gnavus, Enterocloster bolteae, Lachnoclostridium sp. YL 32, and metabolites, including L-tryptophan, 
L-glutamic acid, gamma-aminobutyric acid (GABA), and fatty acid esters of hydroxy fatty acids (FAHFAs), as well as dis-
turbed biosynthesis of aromatic amino acids and TCA cycle dysfunction, validated in aged mice. Finally, we employed 
a support vector machine (SVM) algorithm to construct a machine learning model to classify NA and NCDs groups 
based on the fusion of EEG data and multi-omics profiles and the model demonstrated 92.69% accuracy in classifying 
NA and NCDs groups.

Conclusions Our study highlights the potential of multi-omics profiling and EEG data fusion in personalized diagno-
sis of NCDs, with the potential to improve diagnostic precision and provide insights into the underlying mechanisms 
of NCDs.
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Background
Neurocognitive disorders (NCDs) encompass a group of 
conditions, impairing cognitive functions and affecting 
quality of daily life [1]. NCDs have a substantial negative 
societal impact due to their prevalence and associated 
costs [2]. Approximately 50 million people worldwide 
suffer from NCDs, but this number is expected to tri-
ple by 2050 due to the aging population [3]. Moreover, 
it is difficult to give personalized diagnosis for NCDs, 
because the pathology of NCDs is complicated and the 
symptoms are diverse. Regular diagnostic methods for 
NCDs, including neuropsychological examination, brain 
imaging, and laboratory detections, lack of definitive 
biomarkers or convincing examinations [4]. The devel-
opment of personalized diagnostic strategies for NCDs, 
regardless of the overlap in symptoms with other medical 
and psychiatric conditions, and the heterogeneity in cog-
nitive decline among individuals, is becoming a priority.

Recent multi-omics studies have offered insights into 
NCDs. Metagenomic studies have revealed alterations 
in the composition and function of gut microbiota in 
patients with Alzheimer’s disease (AD), while metabo-
lomics identify altered metabolic pathways, like bile 
acids and short chain fatty acids (SCFAs) in AD, which 
are associated with neuroinflammation and cognitive 
decline [5–7]. Proteomic studies highlight different pro-
teins expression in cerebrospinal fluid, including immune 
markers, phospholipids, and angiogenic proteins [8]. 
These findings suggest the potential of multi-omics pro-
filing for investigating NCDs and identifying potential 
biomarkers [9]. Additionally, multimodal electroencepha-
lography (EEG) can provide information about the timing 
and sequence of brain activity and has been increasingly 
employed in the diagnosis of cognitive disorders in recent 
years, which allows a more comprehensive understand-
ing of brain function and connectivity [10, 11]. In view of 
these advantages, the fusion of multi-omics profiles and 
multimodal EEG data has the potential to improve the 
accuracy of diagnosis for NCDs.

In our previous study, the multi-omics approaches were 
employed to identify gut microbiota, faecal metabolites, 
and urine exosomes from seniors with normal cognitive 
function, as potential predictors of NCDs [12]. How-
ever, when the seniors progress to NCDs, their multi-
omics profile changes, and the characteristics are still 
unknown. In this study, to identify specific biomarkers of 
NCDs, we compared seniors with NCDs to normal aging 
seniors by rigorous matched cohort and conducted fae-
cal microbiota transplantation (FMT) in aged C57 mice 
for validation. Meanwhile, we applied machine learning 
algorithms to integrate multi-omics profile and multi-
modal EEG data for the development of novel predictive 
models. It suggests that predictive models can accurately 

distinguish NCDs patients from the participates contrib-
uting to the personalized diagnosis for NCDs.

Methods
Ethics statement
The study adheres to the Declaration of Helsinki and was 
approved by the Ethics Committee of the University of 
Macau (No. BSERE21-APP012-ICMS).

Study design and subjects
Trial recruitment started in September 2019 and 400 
seniors were randomly selected from three seniors health 
centers in Macao Special Administrative Region (Penin-
sula, Coloane, and Taipa), China. Fifty-seven participants 
were excluded due to incomplete information. The inclu-
sion criteria for the study were as follows: Chinese resi-
dents who have lived in Macao for more than 20 years; 
no intellectual and language communication barriers, 
able to understand and answer the questions in Canton-
ese; and no suffering from major diseases of heart and/
or lung in the past year. Exclusion criteria were age less 
than 65 years old; live in Macao less than 20 years; sleep 
duration less than six and a half hours, irregular exercise, 
irregular diet, smoking, and/or drinking; and antibiotics 
administration within 2 weeks. The study also excluded 
seniors who suffered from tumor, organ failure, mental 
illness, and other serious systemic diseases and individu-
als that failed to complete the questionnaire even with 
assistance (Fig.  1). The seniors were divided into two 
groups according to their cognitive function from various 
domains evaluated by the Hong Kong version of Mon-
treal Cognitive Assessment (MoCA-HK). At the same 
time, percentile ranking was applied in the interpretation 
of MoCA-HK scores. If an individual’s MoCA-HK score 
is lower than 16th percentile compared to their age and 
education-matched peers, the senior will be classified in 
the “NCDs group” and vice versa in “normal aging” group 
[13–15].

EEG recording and preprocessing
During the EEG recording sessions, all the participants 
were required to sit comfortably in chair with their 
eyes opened and were instructed to remain still, avoid-
ing active thought. All participants underwent a twice 
5-min session of resting state EEG recording, sepa-
rated by a 40-min interval. Continuous EEG data were 
recorded by a 64-channel Biosemi Active Two EEG 
amplifier system (Biosemi, Amsterdam, Netherlands) 
with Ag/AgCl scalp electrodes placed based on the 
international 10–20 system on an elastic cap. Before 
the EEG recording, the input impedance of all channels 
was kept below 5 kΩ to ensure the quality. Online EEG 
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recording employed a bandpass filter ranging from 0.01 
to 200 Hz, with a sampling rate of 2048 Hz.

The recorded EEG data was preprocessed by MAT-
LAB R2016a (MathWorks, Natick, USA) and EEGLAB. 
Data were re-referenced to the whole brain and down-
sampled to 500 Hz. Offline EEG signal processing in 
EEGLAB included applying a bandpass filter from 1 to 
30 Hz. All EEG data were visually inspected to identify 
and exclude segments with excessive noise, and noisy 
channels were interpolated using spherical spline inter-
polation. Additionally, eye movement artifacts (eye 
blinks and eye movements), muscle artifacts, and heart 

artifacts were corrected with independent component 
analysis impeded in EEGLAB.

EEG power spectral density and EEG microstate analysis
For subsequent EEG power spectral density (PSD) 
analysis, clean continuous EEG data were segmented 
into 2-s epochs. Multitaper spectral analysis was used 
to calculate PSD of each electrode. The absolute power 
of each channel was then averaged to obtain values for 
six frequency bands: delta (1–4 Hz), theta (4–8 Hz), 
alpha1 (8–11.5 Hz), alpha2 (11.5–13 Hz), beta1 (13–21 
Hz), beta2 (21–30 Hz). Relative power was obtained by 

Fig. 1 Flowchart of study inclusion/exclusion criteria
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normalizing the power in each frequency band with 
the overall power in 1–30 Hz range within each chan-
nel at the sensor level. This approach allowed us to 
assess alterations in the frequency distribution of EEG 
power, capturing a general shift in power from higher 
to lower frequencies that has been previously reported 
in individuals with NCDs. Meanwhile, in order to 
explore the topological distribution of the frequency 
bands across brain regions, a two-way ANOVA was 
conducted to investigate hemisphere differences and 
group differences. Brain regions were categorized as 
incorporating electrodes (FP1, AF7, AF3, F1, F3, F5, 
FPZ, FP2, AF8, AF4, AFZ, FZ, F2, F4, F6), central (FC5, 
FC3, FC1, C1, C3, C5, CP5, CP3, CP1, FC6, FC4, FC2, 
C2, C4, C6, CP6, CP4, CP2, CPZ), posterior (PO7, 
PO3, O1, IZ, PZ, POZ, PZ, PO8, PO4, O2), and tem-
poral (F7, FT7, T7, TP7, P1, P3, P5, P7, P9, F8, FT8, 
T8, TP8, P2, P4, P6, P8) regions in both left and right 
hemispheres.

EEG microstate analysis was performed using the 
Microstate toolbox, based on EEGLAB [16]. The 
cleaned continuous EEG was segmented based on 
the global field power (GFP) and classified into differ-
ent classes according to their topography similarity, 
subsequently. Specifically, to extract GFP peak maps, 
1000 GFP peaks were identified into regimentation per 
participant, with a minimum peak distance of 10 ms. 
Cluster maps were then calculated based on the newly 
generated EEG dataset from all participants together. 
The optimal number of cluster maps was selected from 
a range of 2 to 8 prototype topography clusters through 
cross-validation criterion, global explained variance, 
dispersion, and the Krzanowski-Lai (KL) criterion. For 
segmentation procedure, the topographic atomize and 
agglomerate hierarchical clustering (TAAHC) algo-
rithm was chosen as the clustering method, allowing 
for automatic determination of cluster numbers and 
polarity. TAAHC started out with all clusters and itera-
tively removed the “worst” cluster, defined as the one 
with the lowest sum of correlations to other prototypes. 
This process continued until a preset minimum num-
ber of clusters remained. Once the number of micro-
state prototypes was selected, the prototypes were 
backfitted to all the participants using a global map 
dissimilarity index. To reduce the noise of resting state 
EEG, unstable EEG topographies within 30 ms were fil-
tered out. After the back-fitting procedure, parameters 
including microstate duration (average time a micro-
state remained stable), occurrences (number of times a 
microstate occurred per second), coverage (proportion 
of time covered by each microstate), global field power, 
and transitional probabilities were extracted for further 
statistical analysis.

Samples collection from seniors
The faecal and urine sample collection and processing 
have been described previously [12]. Briefly, the faecal 
and urine samples were processed within 4h after col-
lection in the laboratory and stored at minus 80°C until 
analysis. A protease inhibitor cocktail and antibiotics 
were added to avoid proteolysis and bacterial prolifera-
tion in the urine samples. Total DNA was extracted from 
frozen stools using the QIAamp PowerFecal Pro DNA 
Kit (QIAGEN, 51,804). Urine exosome isolation was 
performed through differential ultracentrifugation. The 
transmission electron microscope (TEM), nanoparticle 
tracking analysis (NTA), and exosome surface marker 
proteins ALIX, HSP70, and TSG101 were selected for 
identification.

Metagenomic sequencing of intestinal microbiota
The DNA metagenomic shotgun sequencing of the fae-
cal samples was performed as previously described [17]. 
In brief, for sequencing libraries, VAHTS Universal DNA 
library preparation kit for Illumina (Vazyme, Nanjing, 
China) was used, and for qPCR quantification, KAPA 
SYBR FAST qPCR Kit (Kapa Biosystems, Wilmington, 
MA, USA) was used. Paired-end on the NovaSeq 6000 
instrument (Illumina, San Diego, CA, USA) 2 × 150-bp 
sequencing was carried out. Following FastQC (v0.12.0) 
quality control, the sequence reads were pre-processed 
by HiSAT2 (v2.2.1) and DeconSeq (v0.4.3) to remove 
human reads and provide clean non-human sequences 
[18–20]. The ratio of all mapped reads for each spe-
cies, normalized by all mapped microbial reads and the 
genome size within each sample, served as a measure of 
relative abundance. The abundance of microbial BioCyc 
pathways was examined using the HMP Unified Meta-
bolic Analysis Network (HUMAnN2). Utilizing α diver-
sity and β diversity, respectively, it was determined how 
different the bacterial communities between the normal 
aging and NCDs group Chao 1, Simpson and Shannon 
indexes, and principal coordinate analysis (PCoA) were 
used to evaluate the diversity. The linear discriminant 
analysis effective size (LEfSe) was employed to find the 
significant distinct species.

Proteomic analysis of urine exosomes
Proteomic analyses were performed using the label-
free proteomics method as previously described [21]. 
In brief, 100 μg of protein were digested for each sam-
ple, and the peptide was subsequently desalted using 
a Phenomenex Strata X C18 SPE column. An Agilent 
300 Extend C18 column was used for high pH reverse-
phase HPLC to fractionate the sample after that. Peptides 
were submitted to tandem mass spectrometry (MS/MS) 
in a Q Exactive™ linked online to the UPLC after being 
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subjected to an NSI source. A total of 2300 V of electro-
spray voltage were used. At a resolution of 60,000, the 
orbitrap found whole peptides. Ion fragments were found 
in the orbitrap at a resolution of 15,000 after peptides 
were chosen for MS/MS analysis with an NCE setting of 
28. The m/z scan range for MS scans was 400–1200. The 
100 m/z fixed initial mass was chosen. Proteins that were 
differentially expressed were found using fold change ≥ 2 
or FC ≤ 0.5 and P < 0.05. The SwissProt Human database 
was searched against tandem mass spectra. The UniPort-
GOA database, InterProScan, and GO annotation were 
employed to classify all detected proteins into cell com-
ponents, molecular function, and biological process.

Non‑targeted metabolomics of faecal samples
For a non-targeted metabolomics analysis, faecal metab-
olites were extracted with methanol and analyzed using 
ultra-high-performance liquid chromatography-tandem 
mass spectrometry (UHPLC-MS/MS). For each metab-
olite, peak alignment, peak selecting, and quantitation 
were carried out using the Compound Discoverer 3.1. 
According to matching peaks with the mzCloud, mzVault, 
and Mass List databases, the precise qualitative and rela-
tive quantitative results were achieved. Both positive and 
negative electrospray modes were used to acquire the 
data. The capillary voltage was 3500 V, and the scan rate 
was one time per second. The materials’ molecular char-
acteristics were discovered using the Mass Hunter Quali-
tative Analysis Software (Agilent Technologies) [22]. The 
metabolites were annotated using the KEGG, HMDB, 
and LIPID Maps databases. Principal components anal-
ysis (PCA) and partial least squares discriminant analy-
sis (PLS-DA) carried out at metaX (v1.2.0) were used to 
determine the differential metabolites [23]. These metab-
olites were defined as those with variable importance in 
the projection (VIP) > 1 and P < 0.05 and fold change ≥ 2 
or FC ≤ 0.5 [23].

Faecal microbiota transplantation experiment in mice
Twelve-month-old female C57BL/6J mice were pur-
chased from Vital River Laboratories (Charles River, 
China) and raised under specific pathogen-free (SPF) 
conditions. They were acclimatized to a temperature- 
and humidity-controlled environment (22 ± 2°C, 50 ± 5% 
humidity) with a 12-h light/dark cycle and given food and 
water ad libitum for a week before experiments. The mice 
were randomly divided into three groups (n = 10/group): 
control, NA-FMT (normal aging faecal microbiota trans-
plantation), and NCDs-FMT (neurocognitive disor-
ders faecal microbiota transplantation). To establish the 
pseudo-germ-free mice model, broad-spectrum antibiot-
ics (ampicillin 1 g/L, neomycin sulfate 1 g/L, and metro-
nidazole 1 g/L) were administered ad libitum in drinking 

water for 14 consecutive days, with the drinking solution 
refreshed every 2 days. Faecal microbiota was prepared 
by diluting 1 g of faeces from seniors with NCDs or nor-
mal aging in 10 mL of sterile PBS. Each mouse recipient 
received 0.2 mL of the suspension via gavage for 10 days 
after a week of antibiotic solution withdrawal [24]. Fol-
lowing treatment, the mice underwent behavioral experi-
ments, including Y-maze test, novel object recognition 
test, and Morris water maze test according to previous 
protocols [25, 26]. After the behavioral experiments, 
the mice were sacrificed for subsequent metagenomic 
and metabolomic analyses. Metagenomic analyses was 
performed as described above and derivatization-liquid 
chromatography-mass spectrometry was performed for 
carboxylic acid metabolomics analysis in serum and hip-
pocampus samples [27].

Machine learning algorithm
The multi-omics data, including gut microbiota, EEG 
features, metabolomic and clinic data, were utilized 
to train machine learning models to classify individu-
als into the normal aging and NCDs group. Initially, all 
data were normalized to a range between 0 and 1 based 
on their minimum and maximum values. Given the rela-
tively small sample size and a large number of features, 
Fisher scores were employed to select one hundred fea-
tures with highest fisher scores for discriminating the 
two groups. Fisher score is a univariate feature selection 
algorithm that is independent of the class distribution 
and is commonly used to assess the discriminatory power 
of individual features between two classes of equal prob-
ability [28]. After the feature selection stage, the well-
established supervised machine learning methods were 
used to construct the classifier. The supervised machine 
learning algorithm used in this study was the linear sup-
port vector machine (SVM), which determines a linear 
maximum-margin hyperplane to maximize separation 
between groups. The machine learning algorithms were 
implemented in MATLAB (The Math Works, Natwick, 
MA) and SVM was conducted by LIBSVM (http:// www. 
csie. ntu. edu. tw/ ~cjlin/ libsvm/).

Considering the relatively small sample size, we 
employed a cross-validation strategy to enhance the 
model’s generalization ability. One commonly used 
method in such situations is leave-one-out cross-valida-
tion (LOOCV). LOOCV is repeated N times (N is the 
number of all subjects, here is 41) and in every iteration 
one sample is left out to test the classifier and remaining 
subjects are fed to classifier for training. This procedure is 
repeated until each subject has been used once as the test 
sample. Finally, the result for every repetition is averaged 
to produce the final classification accuracy. To address 
potential confounding factors related to cross-validation, 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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we also employed tenfold and fivefold cross-validation, 
which results are presented in the appendix. Four perfor-
mance metrics including accuracy, sensitivity, specific-
ity, and F1 score were used to assess the performance of 
the classifier in discriminating normal aging and NCDs 
group.

In the separate single omics models, the models were 
constructed as the following specific steps: (1) one hun-
dred features were input into classifier with default SVM 
settings; (2) then, the top ten highest contributing fea-
tures were identified within linear SVM model; (3) next, 
these identified ten features were used for hyperparam-
eter tuning with LOOIC and the hyperparameter tun-
ing were achieved by additional loop flow; (4) based on 
the results of hyperparameter tunning, we selected the 
optimal parameters for the linear SVM model with the 
selected ten features to get the performance of the model, 
including calculating accuracy, sensitivity, specificity, F1 
score, AUC curve and P-R curve. For double omics mod-
els, we initially considered 20 features by combining the 
top ten features from each individual omics analysis. 
Similarly, for three omics models, we began with 30 fea-
tures, comprising the ten highest-contributing features 
from each omics analysis. However, during the model 
development, including hyperparameter tuning, we con-
sistently worked with a set of ten highest-contributing 
features to ensure fairness and uniformity across all mod-
els, regardless of the number of omics sources involved.

Statistical analysis
For statistical analysis, the GraphPad Prism 8 and R 
software 3.7 were utilized. For EEG data, EEG power 
spectral density was compared by two-way ANOVA to 
explore two hemisphere difference and group differ-
ence. The EEG microstate properties were compared by 
independent sample t-tests. Correlations between six 
EEG power metrics (delta power, theta power, alpha-1 
power, alpha-2 power, beta-1 power, and beta-2 power) 
and gut microbiota, as well as metabolomic data, 
were assessed using the Spearman correlation coef-
ficient. Specifically, we included gut microbiota and 
metabolomic variables which were identified as signifi-
cantly different in the correlation analysis. Addition-
ally, we explored correlations between gut microbiota 
diversity at the phylum/genus/species levels and EEG 
power using Spearman correlation. To account for the 
potential influence of age, which exhibited significant 
differences, we controlled for age as a covariate in all 
comparisons and correlation analyses. The two-sided 
Wilcoxon’s rank-sum test was employed to compare 
the diversity and composition of the gut microbiota 
between the normal aging and NCD group. For all box-
plots, the horizontal line represented the median and 

the box edges the first and third quartiles. The whisk-
ers extended up to 1.5 times the interquartile range. 
The Kruskal–Wallis (KW) rank sum test and the LEfSe 
method were used to determine the characteristics of 
significant differences. LDA > 2.5 and P < 0.05 were both 
accepted as statistically significant values. P values, VIP 
values, and fold change were employed to analyze the 
expression of different proteins and metabolites. The 
Benjamini–Hochberg method was applied to manage 
the false discovery rate (FDR) and the threshold value 
set to 0.05, used for multiple hypothesis correction 
for the study of proteomics and metabolomics data. 
Based on  log2 (fold change) and − log10 (P-value) of the 
metabolites by ggplot2 in the R language, volcano plots 
were used to filter the proteins and metabolites of inter-
est. For multiple comparisons in the behavioral experi-
ments, data were analyzed using one-way analysis of 
variance (ANOVA) followed by the Students-Newman-
Keuls (SNK) test. A value of P < 0.05 was considered as 
significant difference.

Results
Sociodemographic features and neurocognitive scores 
of subjects
The study samples consisted of 50 seniors more than 65 
years of age screened by living habits, clinical history, no 
major diseases of heart and/or lung, and no intellectual 
and communication barriers. Matched samples included 
21 subjects in the normal aging group and 29 subjects in 
NCDs group (Fig. 1). NCDs group can be further divided 
into three stages, mild NCD, MCI, and major NCD based 
on their neurocognitive scores. The ratio of sex, age, edu-
cation level, and neurocognitive scores of the two groups 
is shown in Table 1. Apart from age and neurocognitive 
scores, there were no differences between the two groups.

Table 1 Sociodemographic features and neurocognitive scores 
of the study subjects (n = 50)

Notes: Data are expressed as mean ± SD except where frequencies are used for 
categorical data. *Fisher’s exact test Chi-squared test for categorical variables; 
t-test for continuous variables

Variable Normal aging NCDs group P‑value*

 Sex – no. (%)
  Male 3 (14.3) 2 (7.0) 0.638

  Female 18 (85.7) 27 (93.0)

 Age—year 72.62 ± 3.64 80.31 ± 8.11 0.0002

 Education level – no. (%)
  Primary schools 
and below

19 (90.5) 27 (93.0)  > 0.999

  Middle school and above 2 (9.5) 2 (7.0)

  Neurocognitive scores 23.71 ± 3.64 12.66 ± 4.28  < 0.0001
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EEG power spectral density and EEG microstate analysis
The study found significantly decreased relative PSD of 
alpha and beta frequency bands in NCDs group (Fig. 2). 
No difference of the relative PSD in left and right hemi-
spheres had been found and no difference of interactions 
between hemisphere and group had been found, either. 
In NCDs group, the decreased relative PSD of alpha2 
frequency bands in temporal ROI  (meanNCD = 0.016, 
 meanNA = 0.021, Z = 6.377, P = 0.014,  pcontrolled = 0.048) 
were identified. The beta1 exhibited significantly 
reduced PSDs in frontal regions  (meanNCD = 0.009, 
 meanNA = 0.012, Z = 7.065, P = 0.009,  pcontrolled = 0.0011), 
temporal regions  (meanNCD = 0.013,  meanNA = 0.010, 
Z = 6.958, P = 0.010,  pcontrolled = 0.022), and posterior 
regions  (meanNCD = 0.010,  meanNA = 0.012, Z = 6.009, 
P = 0.0165,  pcontrolled = 0.025). Interestingly, in the two 
groups, it initially displayed significant differences in the 
relative PSD of alpha2  (meanNCD = 0.016,  meanNA = 0.020, 
Z = 4.851, P = 0.030) and beta1  (meanNCD = 0.014, 
 meanNA = 0.012, Z = 5.448, P = 0.022) frequency bands 
in the central ROI. However, upon controlling for age as 
a covariate, the significance of these differences dimin-
ished, suggesting that age-related variations may contrib-
ute to these EEG patterns. This observation underscores 
the importance of considering age as a covariate in our 
analysis to distinguish between age-related changes and 
those specific to NCDs.

In our studies, we have found significantly differ-
ent microstate properties between normal aging and 

NCDs groups (Table  2). In NCDs group, it exhib-
ited the decreased coverage property in microstate 
A  (meanNCD = 0.264,  meanNA = 0.326, T =  − 2.724, 
P = 0.012,  pcontrolled = 0.033) when compared with normal 
aging group (Fig.  3A). Similarly, compared with normal 
aging group, in NCDs group, it presented the reduced 
microstate durations in microstate A  (meanNCD = 76.749, 
 meanNA = 85.054, T =  − 2.533, P = 0.017,  pcontrolled = 0.045, 
Fig. 3B). While for GFP property, only microstate C was 
found significant different with increased GFP in NCDs 
group  (meanNCD = 7.234,  meanNA = 5.988, T = 2.046, 
P = 0.048,  pcontrolled = 0.023, Fig.  3C). Meanwhile, when 
age is controlled as a covariate, no difference has been 
found in occurrence or in altered microstate D prop-
erty coverage  (meanNCD = 0.206,  meanNA = 0.164, 
T = 2.041, P = 0.040,  pcontrolled = 0.13, Fig.  3A) or dura-
tion  (meanNCD = 70.846,  meanNA = 65.219, T = 2.35, 
P = 0.024,  pcontrolled = 0.13, Fig.  3D), either. EEG micro-
states exhibited stable configurations for brief periods 
before transitioning into other microstates, then we can 
get their transitional probabilities. For the transitional 
probabilities (Fig. 3, F), in the NCDs group, we observed 
a lower probability of transitioning from microstate 
B  (meanNCD = 0.3715,  meanNA = 0.4549, T =  − 3.292, 
P = 0.002,  pcontrolled = 0.148). However, when controlling 
for age as a covariate, no significant difference in transi-
tional probabilities was found for microstate C to micro-
state A  (meanNCD = 0.366,  meanNA = 0.4234, T =  − 2.568, 
P = 0.014,  pcontrolled = 0.07). Additionally, we noted a 

Fig. 2 EEG power spectral density and EEG microstate analysis in normal aging (NA) and NCDs group. A–D The significantly different mean 
relative PSD of frequency between NA and NCDs group from cortical region of interest (ROI). E The relative PSD of frequency across all channels 
between NA and NCDs groups, column represent the 64 channels and rows represent the frequency bands. F The T maps of PSD difference 
topography in delta, theta, alpha 1, alpha 2, beta 1, beta 2 frequency bands, *P < 0.05, vs. NA group (EEG power spectral density was compared 
by two-way ANOVA, and EEG microstate properties were compared by independent sample t-tests)
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higher probability of transitioning from microstate B 
to microstate D  (meanNCD = 0.287,  meanNA = 0.234, 
T = 2.211, P = 0.033,  pcontrolled = 0.078).

Differential gut microbiota compositions and pathway 
prediction
At the phylum taxonomic rank, the predominant taxa 
detected in the gut microbiota of both cohorts were 
Bacteroidetes, Firmicutes, Actinobacteria, and Pro-
teobacteria, collectively representing up to 98% of the 
overall relative abundance (Fig.  4A). The heatmap of 
the top 20 phyla, based on their relative abundances, 
revealed a significant reduction in the prevalence of 
Kiritimatiellaeota and Lentisphaerae in the NCDs 
group when compared to the normal aging cohort 
(Fig. 4B). The assessment of α diversity was conducted 
using Chao1, Shannon, and Simpson indices to evalu-
ate the richness and diversity of the microbiota, as pre-
sented in Fig.  4C. The analysis revealed a significant 
decrease in diversity indices at the phylum and species 

levels among the NCDs group, with statistically sig-
nificant differences observed in the Chao1 index at the 
phylum level, as well as the Shannon and Simpson indi-
ces at the species level. At the genus level, we observed 
a notable trend towards a decrease in alpha-diversity. 
The assessment of β diversity was performed using 
Bray–Curtis dissimilarities to evaluate the differences 
in diversity between two groups. The analysis revealed a 
statistically significant increase in Bray–Curtis dissimi-
larities within the group with normal aging, as com-
pared to the group with NCDs. In addition, this change 
became more pronounced as the degree of NCDs pro-
gressed (Supplementary Fig. S1). Despite observing an 
increase in the Firmicutes/Bacteroidetes (F/B) ratio in 
NCDs group as compared to the group with normal 
aging, this change did not reach statistical significance 
(Fig. 4D). The results of the principal component analy-
sis (PCA) and principal coordinates analysis (PCoA) 
of species composition indicated an observable clus-
tering and discernible trends between the group with 

Fig. 3 The statistics of microstate A-D property in normal aging and NCDs groups. A The coverages of microstate A-D. B The durations 
of microstate A-D. C The global field power of microstate A-D. D The occurrence of microstate A-D. E The prototype topography of microstate A-D. 
F The transitional probabilities among microstates A-D. In Fig. 3F, transitional probabilities among microstates A-D are represented using different 
line thicknesses. Thin lines indicate no significant difference, medium-thick lines represent a significant difference (P < 0.05), and thick lines denote 
a highly significant difference (P < 0.01) in transitional probabilities between normal aging and NCDs groups, as determined by independent sample 
t-tests. *P < 0.05, vs. NA group (independent sample t-tests)
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normal aging and the group with NCDs, implying that 
the dysbiosis of gut microbiome was linked with NCDs 
(Fig. 4E).

Furthermore, the Venn diagram was utilized to illus-
trate the unique and share the species of gut microbiota 
for a better understanding of their richness. The analy-
sis showed that a total of 1039 operational taxonomic 
units (OTUs) were common to all samples, while 215 
OTUs and 371 OTUs were specific to normal aging and 
NCDs groups, respectively (Fig. 5A). To depict the con-
nections and relative abundances of the top ten enriched 
gut microbiota species between the two groups, a Chord 
diagram was generated. The arcs in the diagram repre-
sented connections that were proportional to the size 
of each arc, while node segments along a circle repre-
sented the genus and the node size reflected the abun-
dance of the contributing genus (Fig. 5B). LEfSe analysis 

was performed to identify differential microbiota spe-
cies between normal aging and NCDs groups. A clad-
ogram obtained from the LEfSe analysis showed the 
phylogenetic distribution of the microbiota (Fig.  5C). 
The analysis revealed 17 bacterial taxa enriched in nor-
mal aging and 10 bacterial taxa enriched in the NCDs 
group. Additionally, LEfSe analysis identified 7 species-
level bacterial signatures specific for NCDs, including 
Ruminococcus gnavus, Enterocloster bolteae, Enterobac-
ter cloacae, Enterococcus avium, Porphyromonas asac-
charolytica, Blautia sp. N6H1-15, and Lachnoclostridium 
sp. YL 32 (Fig.  5D). In this study, PICRUSt was utilized 
to predict the functional content of the metagenome by 
leveraging metagenomic shotgun sequencing and BioCyc 
pathway analysis. The BioCyc pathways represent a col-
lection of coordinated biological processes constructed 
based on the information present in the BioCyc database. 

Fig. 4 Gut microbiota analysis in normal aging and NCDs groups. A Stacked bar chart showed the relative and average relative abundance of gut 
microbiota at the phylum level between the two groups. B Heatmap analysis on the relative abundance of gut microbiota at the phylum level. C 
Alpha diversity analysis, as measured by Chao1 index, Shannon index, and Simpson index, at the phylum, genus, and species levels. D Beta diversity 
analysis, measured by Bray–Curtis dissimilarity, with P values computed using a two-sided Wilcoxon test. Additionally, the Firmicutes/Bacteroidetes 
(F/B) ratio between the normal aging and NCDs groups was presented. E Principal coordinate analysis (PCoA) and principal component analysis 
(PCA) of the gut microbiota at the species level showed the separation between the two groups. *P < 0.05, vs. NA group (two-sided Wilcoxon’s 
rank-sum test)
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The results of STAMP analysis indicated that the abun-
dance of pathways related to the biosynthesis of aro-
matic amino acids, namely PWY-6163, ARO-PWY, and 

COMPLETE-ARO-PWY, as well as those associated 
with the tricarboxylic acid cycle (TCA cycle), specifically 
PWY-7219, PWY-6897, PWY-7383, and PWY66-399, 

Fig. 5 Significant shifts in gut microbial compositions at the species level and related predictive bacterial functional profiles. A Venn diagram 
illustrated the overlap of gut microbiota species between the normal aging and NCDs groups. B The chord diagram showed the abundance 
of gut microbiota at the genus level and their relationships between the normal aging and NCDs groups. C Cladogram representation of the linear 
discriminant analysis (LDA) effect size (LEfSe) analyses of gut microbiota, with an LDA score > 2.5. D Distinctive gut microbiota composition 
associated with the NCDs group was revealed by the LEfSe analysis. E Comparative analysis of the relative abundances of BioCyc pathways 
between the normal aging and NCDs groups. The STAMP analysis was applied to identify significant differential abundant BioCyc pathways. The 
Kruskal–Wallis (KW) rank sum test and the LEfSe method were used to determine the characteristics of significant differences
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exhibited a significant decrease in the NCD group when 
compared to the normal aging (Fig. 5E).

Differential urine exosomes proteins
To investigate the differences in protein expression 
between normal aging and NCDs groups, and to vali-
date metagenomics predicted pathways, we utilized urine 
samples, a commonly used non-invasive examination 
method, to isolate exosomes through ultracentrifuga-
tion and further purified them (Supplementary Fig. S2). 
Proteins were then extracted and analyzed through mass 
spectrometry resulting in 2,448,944 secondary spectro-
grams, 388,572 of which were analyzed to identify 23,147 
peptide segments with 22,165 specific segments. Of these 
segments, 3306 proteins were identified, with 2712 quan-
tifiable (Fig. 6A). These proteins were localized in various 
subcellular regions such as the cytoplasm, extracellular 
space, nucleus, and mitochondria as determined by Gene 
Ontology (GO) annotation (Fig.  6B). PLS-DA analysis 
indicated the differences in protein distribution between 
the NCDs and normal aging groups (Fig. 6C). Differential 
abundance of proteins was evaluated using a fold-change 
criterion of > 1.5 (upregulated) or < 1.5 (downregulated) 
and a P-value of < 0.05. The volcano map suggested that 
red represented significantly upregulated differential 
proteins and blue indicated significantly downregulated 
differential proteins in the NCD group compared to 
the control group, with 57 and 30 proteins, respectively 
(Fig.  6D). Metabolic function analysis through Clusters 
of Orthologous Groups (COG)/eukaryotic orthologous 
groups (KOG) revealed that differentially expressed 
proteins were predominantly involved in amino acid 
transport and metabolism, and energy production and 
conversion, in agreement with the predicted results of 
the metagenomics analysis (Fig. 6E). Furthermore, KEGG 
pathway enrichment analysis confirmed these find-
ings. Pathways enrichment analysis of downregulated 
urine exosome proteins showed that tyrosine metabo-
lism, tryptophan metabolism, and pyruvate metabolism 
were reduced in the NCDs group (Fig.  6F). Conversely, 
pathways associated with diseases such as inflammatory 
bowel disease, bladder cancer, type I diabetes mellitus, 
and long-term depression were enriched in the upregu-
lated proteins of the NCDs group (Fig. 6G).

Differential faecal metabolites
After validation of the proteomics data, the subsequent 
step involves conducting metabolomics analysis to fur-
ther corroborate and elucidate the observed differences 
in protein expression between the normal aging and 
NCDs groups, as well as to gain a more comprehensive 
understanding of the underlying molecular mechanisms 
involved in age-related diseases. A PLS-DA score plot 

of primary metabolites detected in positive and nega-
tive ion modes indicated a clear separation between 
the normal aging and NCDs groups (Fig.  7A). PCA of 
the primary metabolites detected in positive and nega-
tive ion modes confirmed the discrimination between 
the two groups (Fig.  7B). A total of 54 and 54 metabo-
lites were significantly upregulated and downregulated, 
respectively, in the positive ion model compared with 
the normal aging, while 12 and 63 metabolites were 
significantly upregulated and downregulated, respec-
tively, in the negative ion model (Fig.  7C). The top 20 
upregulated and downregulated differential metabolites 
were screened, and the hierarchical clustering analysis 
classified the metabolites based on their characteris-
tics between the two groups, as visualized in a heatmap 
(Fig. 7D). The top 20 metabolites were further delineated 
based on VIP values, and variable importance plots were 
constructed. The results showed that NAD + , L-trypto-
phan, ursodeoxycholic acid, L-kynurenine, L-glutamic 
acid, nicotinic acid, γ-aminobutyric acid (GABA), and 
nervonic acid were downregulated in the NCDs group. 
A significant decrease in fatty acid esters of hydroxy 
fatty acids (FAHFAs) in faecal metabolites were also 
observed in seniors with NCDs (Fig.  7E). KEGG anno-
tation analysis was conducted to identify all pathways 
of differential metabolites, and the results showed that 
nicotinate and nicotinamide metabolism, L-trypto-
phan biosynthesis, pantothenate and CoA biosynthe-
sis, folate biosynthesis, biosynthesis of unsaturated fatty 
acids, citrate cycle, pyruvate metabolism, and thiamine 
metabolism were associated with NCDs (Fig. 7F).

Experimental verification in FMT mice
To investigate the potential impact of gut microbiota 
alterations on cognitive function, we conducted a FMT 
experiment in a pseudo-germ-free mouse model, fol-
lowed by behavioral tests including the Y-maze test, 
novel object recognition (NOR) test, and Morris water 
maze (MWM) test. To further validate the metabolic 
pathways, targeted metabolomics analyses of hip-
pocampal and serum samples were performed (Fig. 8A). 
In the MWM test, mice were trained to locate a hidden 
platform, and the escape latency to reach the platform 
gradually decreased during the training process. Com-
pared to the normal aging (NA)-FMT mice, NCDs-
FMT mice exhibited a significantly longer escape 
latency on day 5 (P < 0.05) and impaired memory in the 
probe trial, as evidenced by a significant decrease in the 
number of times crossing the target quadrant (P < 0.05, 
Fig.  8B–D). In the NOR test, NCDs-FMT mice spent 
significantly less time exploring the novel object com-
pared to the total object exploration time than the con-
trol group (P < 0.05, Fig.  8E). The Y-maze test results 
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suggested that NCDs-FMT mice were less likely than 
NA-FMT mice to explore novel and alternate arms, 
reflecting impaired immediate spatial working memory 

performance (P < 0.01 and P < 0.05, respectively, Fig. 8F, 
G). Taken together, the behavioral experimental results 
suggest that FMT of seniors with NCDs impaired spa-
tial learning and memory in aged mice.

Fig. 6 Quantitative proteomics analysis on urine exosomes using label-free method. A Overview of protein identification and the number 
of identified spectra, peptides, and proteins after data filtering for search library results. B Gene Ontology (GO) annotation of the subcellular 
locations of the identified proteins. C Scores plot obtained from partial least squares discriminant analysis (PLS-DA) of identified proteins. D 
Volcano plot of differentially expressed proteins between the normal aging and NCDs groups, where red indicated upregulated proteins and blue 
indicated downregulated proteins. E Clusters of Orthologous Groups (COG)/eukaryotic orthologous groups (KOG) analysis of metabolic functions 
of differentially expressed proteins. Comparing the bubble plot of the significantly enriched KEGG pathways of downregulated proteins (F) 
and upregulated proteins (G) between the normal aging and NCDs groups. Proteins that were differentially expressed were found using fold 
change ≥ 2 or FC ≤ 0.5. The Benjamini–Hochberg method was applied to manage the false discovery rate (FDR) and the threshold value set to 0.05. 
Proteins with a corrected P-value < 0.05 were considered significant
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Fig. 7 Metabolomic profiling of faecal samples in normal aging and NCDs groups. A PLS-DA score plot of primary metabolites detected in positive 
and negative ion modes, indicating a clear separation between the two groups. B PCA of the primary metabolites detected in positive and negative 
ion modes, confirming the discrimination between the two groups. C Volcano plot of differentially expressed metabolites in positive and negative 
ion modes between the normal aging and NCDs groups, with blue dots representing downregulated metabolites and red dots representing 
upregulated metabolites. D Heatmap of significantly differentially expressed metabolites based on adjusted P-values and fold changes. E Variable 
importance plot from random forest model of significantly differentially expressed metabolites based on VIP values, showing the most influential 
metabolites for group classification. F Bubble plot of the top 20 significantly enriched KEGG pathways between the normal aging and NCDs 
groups in negative and positive ion modes, revealing the metabolic pathways that were most affected by NCDs. The metabolites with variable 
importance in the projection (VIP) > 1 and P < 0.05 and fold change ≥ 2 or FC ≤ 0.5 were differential metabolites. Volcano plots were used to filter 
metabolites of interest which based on  log2(FoldChange) and −  log10(p-value) of metabolites by ggplot2 in R language. When P-value of metabolic 
pathway < 0.05, metabolic pathway was considered as statistically significant enrichment
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In this study, the impact of FMT on the gut micro-
biota was evaluated through the collection and analysis 
of faecal pellets at different time points. Prior to FMT, 
baseline faecal samples were collected (T1), followed by 
antibiotic administration at days 14, 21, and 38 (T2, T3, 
and T4). The abundance of two major bacterial phyla, 
Firmicutes and Bacteroidetes, decreased significantly 
within 2 weeks of antibiotic treatment, indicating a 
substantial depletion of the gut microbiota (Fig.  9A). 
The gut microbiota composition was analyzed through 
principal component analysis (PCA), which showed a 
clear separation between samples obtained before and 
after antibiotic intervention (Fig. 9B). Furthermore, the 
diversity of the bacterial community at the species level 
was assessed using the Chao1, Shannon, and Simpson 
indices. The analysis revealed a significant decrease 
in the α-diversity index in NCDs-FMT mice (P < 0.05, 
Fig.  9C). A Venn diagram showed that a total of 149 

operational taxonomic units (OTUs) were common to 
all samples, while 32 OTUs and 8 OTUs were specific 
to NA-FMT mice and NCDs-FMT mice, respectively 
(Fig.  9D). The identification of bacterial biomarkers 
for NCDs revealed that Ruminococcus gnavus, Entero-
closter bolteae, and Lachnoclostridium sp. YL 32 were 
three of the seven species-level bacterial biomarkers 
identified by LEfSe analysis. The relative abundance 
of Ruminococcus gnavus and Lachnoclostridium sp. 
YL 32 increased significantly in mice, consistent with 
the population samples. The metabolic pathways ini-
tially predicted by metagenome sequencing, including 
the biosynthesis of aromatic amino acids and the TCA 
cycle, were validated against the results of serum and 
hippocampal metabolomics of mice. The relative con-
tent of citric acid, fumaric acid, succinic acid, oxog-
lutaric acid, pyruvic acid, and tryptophan all changed 
significantly (Fig. 9F, G). Notably, the relative content of 

Fig. 8 Evaluation of spatial learning and memory performance in FMT mice using the Y-maze test, novel object recognition test, and Morris water 
maze test (n = 8–10). A The diagram for the experimental design. B The escape latency time to reach the hidden platform during training days. C 
The representative track plots of 3 groups. D The number of entries in the platform zone during the probe trial in the MWM test. D The percentage 
of time spent with the object in the novel place to the total object exploration time in NOR test. F The number of novel arm entries and (G) 
percentage of spontaneous alternations in the Y-maze test. Data are presented as means ± SEM (n = 8–10). *P < 0.05, **P < 0.01 vs. the NCDs-FMT 
group (one-way ANOVA followed by Student–Newman–Keuls test)
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Fig. 9 Evaluation of metagenomic analysis of gut microbiota and metabolomic analysis of serum and hippocampus in faecal microbiota 
transplantation (FMT) mice. A Stacked bar chart illustrated the relative and average relative abundance of gut microbiota at the phylum level 
at different time points: days 0, 14, 21, and 38 (T1, T2, T3, and T4). B Principal component analysis (PCA) of gut microbiota composition suggested 
the distances at T1, T2, T3, and T4. C Alpha diversity analysis of gut microbiota at the species level, as determined by Chao1 index, Shannon index, 
and Simpson index. D Venn diagram showed the gut microbiota species present. E The changes in relative abundance of signature gut microbiota 
species of seniors with NCDs in FMT mice. F Heat maps and variable importance plots of serum metabolites. G Heat maps and variable importance 
plots of hippocampus metabolites. The row dendrograms were generated using hierarchical clustering with the Euclidean distance metric
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citric acid was significantly increased in serum but sig-
nificantly decreased in the hippocampus.

Machine learning classification
The SVM was used to construct the machine learning 
model to classify the normal aging and NCDs groups, 
based on the feature gained from three omics-EEG, 
metabolomic and gut microbiota (Table 3 and Fig. 10). In 
single omics, the SVM achieved the accuracy of 78.05%, 

85.71% of precise rate, 63.16% recall rate, and 0.8182 
AUC value based on EEG (Fig. 10A), reaching the accu-
racy of 75.61%, 66.67% of precise rate, 89.47% recall 
rate, and 0.7895 AUC value based on gut microbiota 
(Fig.  10B), obtaining the accuracy of 82.96%, 87.50% of 
precise rate, 73.68% recall rate, and 0.8780 AUC value 
based on metabolomic (Fig.  10C). While in two omics, 
the SVM achieved the accuracy of 87.81%, 88.89% of pre-
cise rate, 84.21% recall rate, and 0.8947 AUC value based 

Table 3 The machine learning performance of different omics

Modality ACC Precise Recall F1 score AUC PR‑AUC Optimal operating point

EEG 78.05% 85.71% 63.16% 0.7273 0.8182 0.7328 (0.2273, 0.7368)

Gut microbiota 75.61% 66.67% 89.47% 0.7826 0.7895 0.6577 (0. 4091, 0.9474)

Metabolomic 82.93% 87.50% 73.68% 0.8000 0.8780 0.8490 (0.0455, 0.7368)

EEG + metabolomic 87.81% 88.89% 84.21% 0.8649 0.8947 0.8364 (0.0909, 0.8421)

EEG + gut microbiota 78.05% 72.73% 84.21% 0.7805 0.8014 0.7252 (0.1346, 0.6842)

Metabolomic + gut microbiota 85.37% 93.33% 73.68% 0.8235 0.8852 0.8388 (0.0455, 0.7368)

EEG + metabolomic + gut microbiota 92.69% 94.44% 89.47% 0.9198 0.9641 0.9136 (0.0455, 0.9474)

Fig. 10 Machine learning performance of different omics. In each panel, the left is the ROC curve, and middle is P-R curve, while the matrix 
represented the difference between predicted label and true label. A–C The single omics discriminated the NA and NCDs group in blue. D–F The 
double omics discriminated the NA and NCDs group in green. G The classification of multi-omics. Meta Metabolomic, GM Gut microbiota
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on EEG combining metabolomic (Fig. 10D), reaching the 
accuracy of 78.05%, 72.73% of precise rate, 84.21% recall 
rate, and 0.8014 AUC value based on EEG combining gut 
microbiota (Fig. 10E), obtaining the accuracy of 85.37%, 
93.33% of precise rate, 73.68% recall rate, and 0.8852 
AUC value based on gut microbiota combining metabo-
lomic (Fig.  10F). Eventually, the multi-omics approach 
reached an accuracy of 92.69%, 94.44% of precise rate, 
89.47% recall rate, and 0.9641 AUC (Fig. 10G). With the 
source of omics increasing, the performance of the model 
rose gradually using the same number of features.

Discussion
Due to the worldwide aging population, the prevalence 
of NCDs is rising. Diagnosis of NCDs requires the medi-
cal history, symptoms, neuropsychological testing, and 
appropriate objective assessments, using standard cri-
teria such as DSM-5 depending on the type of NCDs 
[29]. However, the traditional diagnostic approaches for 
NCDs, such as clinical and neuropsychological assess-
ments, have limitations in terms of accuracy and reliabil-
ity [30, 31]. Furthermore, previous studies have proposed 
artificial intelligence model via utilizing biological or 
neuroimaging biomarkers [32, 33]. However, individuals 
diagnosed with NCDs usually show a high level of het-
erogeneity in clinical trajectory, symptoms, as well as 
neurodegenerative biomarkers [34]. Such heterogeneity 
is highly associated with the etiology of disease, and the 
previous models were constructed by single omics, which 
fails to address the heterogeneity problems [33]. There-
fore, the development of novel approaches that utilize 
multi-omics data, such as gut microbiota, metabolomics, 
and EEG, can provide valuable insights into the patho-
physiological characteristics of NCDs and assist in devel-
oping accurate models for personalized diagnosis.

The present study found that seniors with NCDs exhib-
ited significantly decreased relative PSD in the alpha and 
beta frequency bands during resting state EEG, as well 
as altered microstate properties compared to healthy 
controls. These findings are consistent with previous 
research demonstrating that individuals with cogni-
tive impairment or dementia exhibit lower alpha and 
beta power compared to healthy controls [35, 36]. Spe-
cifically, reductions in alpha and beta power have been 
linked to deficits in attention, memory, executive func-
tion, and rhythmic behaviors [37, 38], while alterations 
in microstate properties have been associated with dis-
rupted neural synchronization and impaired cognitive 
processing [39, 40]. The present results suggest that the 
observed changes in EEG activity may reflect underlying 
neural dysfunction in individuals with NCDs. It is pos-
sible that the decreased relative power in the alpha and 
beta frequency bands reflects reduced neuronal activity 

or impaired neural communication in these regions, 
which could contribute to cognitive deficits observed in 
this population [41]. Similarly, alterations in microstate 
properties may reflect disruptions in the neural networks 
that support cognitive processing, which could further 
exacerbate cognitive impairment [42]. These findings 
highlight the potential utility of EEG as a non-invasive 
biomarker for early detection and monitoring of NCDs.

In the present study, we observed that individuals with 
NCDs have a significant dysbiosis in their gut microbiota, 
characterized by a reduction in the prevalence of Kiriti-
matiellaeota and Lentisphaerae, and a decline in micro-
bial diversity at the phylum, genus, and species levels. 
These findings are in line with previous research report-
ing alterations in the gut microbiota of individuals with 
neurological disorders, such as AD and PD [43, 44]. For 
instance, previous studies have reported that AD patients 
have a significantly lower abundance of Firmicutes and 
higher abundance of Bacteroidetes compared to healthy 
controls [45, 46]. In our own investigation, we observed a 
similar trend in the NCDs group, with a lower F/B ratio. 
While this trend was consistent with prior research, this 
difference did not reach statistical significance. This may 
be attributed to the specific characteristics of our study 
population or other factors influencing the gut micro-
biota composition. Moreover, the decrease in microbiota 
diversity indices observed in our study aligns with simi-
lar reductions reported in individuals with AD [47]. Our 
study further revealed a significant decrease in the abun-
dance of predicted pathways related to the biosynthesis 
of aromatic amino acids and the TCA cycle in individuals 
with NCDs, suggesting that alterations in gut microbial 
composition may disrupt key metabolic pathways that 
are important for maintaining cognitive function. Nota-
bly, several bacterial taxa identified by LEfSe analysis as 
specific for NCDs have been previously reported to be 
associated with AD, including Porphyromonas asaccha-
rolytica and Ruminococcus gnavus [47, 48]. As for the 
different characteristic species, it is important to con-
sider the impact of environmental factors, such as diet, 
medication use, and geographical location, which can 
influence the composition of gut microbiota and may 
contribute to variations in results across different studies.

In line with prior research, our study has demonstrated 
that modifications in protein expression may exert an 
influence on the metabolism of amino acids and the pro-
duction of energy, thereby potentially exacerbating the 
onset and progression of NCDs [49, 50]. Previous stud-
ies provide evidence of a correlation between cognitive 
decline and abnormal proteins expression, suggesting 
a potential role for these changes in the pathogenesis of 
NCDs [51, 52]. Perturbations in protein expression pat-
terns can lead to imbalances in the levels of amino acids, 
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including glutamate, which has been linked to neurotox-
icity and cognitive dysfunction. Additionally, alterations 
in protein expression may impair energy production 
pathways, such as mitochondrial function, which are 
frequently compromised in the context of NCDs. Pro-
teomics analysis has emerged as a powerful tool for 
investigating proteins expression changes in NCDs, with 
several studies using this approach to identify potential 
biomarkers for early diagnosis and therapeutic targets 
for cognitive impairment [53]. In particular, proteomics 
analysis of cerebrospinal fluid (CSF) has been employed 
to identify differentially expressed proteins in Alzhei-
mer’s disease (AD) and HIV-associated neurocogni-
tive disorders (HAND) [54, 55]. However, our study 
revealed unique findings in addition to those reported 
in prior studies. For example, we identified several 
KEGG pathways associated with inflammatory bowel 
disease, bladder cancer, type I diabetes mellitus, and 
long-term depression in the upregulated proteins of the 
NCDs group. Although these pathways have not been 
extensively studied in NCDs, some studies have sug-
gested potential links between them [56, 57]. Therefore, 
the identification of these pathways may provide new 
insights into the pathogenesis of NCDs and could be use-
ful for developing new therapeutic strategies. It is worth 
noting that the significance of a pathway represented by 
a single protein may not necessarily reflect its true func-
tional relevance within the broader biological context. 
Therefore, the potential functional importance of these 
pathways should be further validated through additional 
experimental and functional studies.

This study presents additional evidence for the complex 
interplay between metabolites and NCDs. Specifically, 
numerous metabolites have been identified as playing 
crucial roles in the development of NCDs, including 
NAD + , L-tryptophan, ursodeoxycholic acid, L-kynure-
nine, L-glutamic acid, nicotinic acid, GABA, and ner-
vonic acid. For example, a decrease in NAD + levels, an 
essential coenzyme in cellular metabolism, has been 
associated with aging and neurodegenerative diseases 
[58]. Similarly, L-tryptophan, a precursor to serotonin, 
has been linked to mood disorders such as depression 
and anxiety [59]. In addition, ursodeoxycholic acid, a 
kind of bile acid, has been demonstrated to have potential 
therapeutic effects in Alzheimer’s disease (AD) by cor-
recting mitochondrial morphology and membrane struc-
ture through its impact on dynamin-related protein 1 
[60]. L-Kynurenine, a metabolite of tryptophan, has been 
implicated in neuroinflammation and neurodegeneration 
[61], while dysregulation of L-glutamic acid, a crucial 
neurotransmitter in the central nervous system, has been 
linked to the development of neurodegenerative diseases 
[62]. Moreover, nicotinic acid, a form of vitamin B3, has 

shown neuroprotective properties and is associated with 
cognitive function [63]. GABA, another crucial neuro-
transmitter, has been linked to various physiological pro-
cesses in the brain, including mood disorders [64], while 
nervonic acid, an omega-9 fatty acid, has been associated 
with cognitive function [65]. Although there is a consid-
erable body of evidence in the literature supporting the 
role of these metabolites in neurocognitive disorders, the 
underlying mechanisms require further investigation. 
Furthermore, a more extensive examination of the roles 
of L-kynurenine, L-glutamic acid, nicotinic acid, GABA, 
and nervonic acid in neurocognitive disorders is needed 
to provide a comprehensive understanding of the com-
plex interplay between metabolites and NCDs. Remark-
ably, FAHFAs represent a newly discovered class of lipids 
that have implicated in various physiological processes, 
including metabolism, inflammation, and insulin sensi-
tivity. Studies have suggested that alterations in FAHFA 
levels may be associated with neurocognitive disorders. 
For example, a decline in FAHFAs in adipose tissue of 
individuals with obesity and insulin resistance indicates 
a potential action on metabolic dysfunction [66]. Simi-
larly, the correlation between decreased FAHFAs and 
inflammation has been found in patients with acute 
coronary syndrome. Furthermore, the identification of 
specific metabolic pathways associated with neurocog-
nitive disorders, such as nicotinate and nicotinamide 
metabolism, suggests a potential link between FAHFAs 
and NAD + metabolism, which has been shown to play a 
role in cognitive function [67]. The association between 
FAHFAs and cognitive function warrants further investi-
gation and may provide new insights into the underlying 
mechanisms of NCDs.

The present study also assessed the impact of FMT on 
the gut microbiota and associated metabolites. Bacterial 
biomarkers for NCDs were identified, and the relative 
abundance of Ruminococcus gnavus and Lachnoclostrid-
ium sp. YL 32 increased significantly in mice, consistent 
with population-level changes. Metabolic pathways pre-
dicted by metagenome sequencing, including the biosyn-
thesis of aromatic amino acids and the TCA cycle, were 
validated through analysis of serum and hippocampal 
metabolomics. Significant changes in the relative con-
tent of citric acid, fumaric acid, succinic acid, oxoglu-
taric acid, pyruvic acid, and tryptophan were observed. 
The biosynthesis of aromatic amino acids is a vital meta-
bolic process that generates three essential amino acids, 
including tryptophan, which is necessary for protein syn-
thesis, neurotransmitter synthesis, and immune regula-
tion [68]. Previous studies have reported the alterations 
in biosynthesis of aromatic amino acids in cognitive 
impairment, with significant decreases in tryptophan 
concentration observed in patients with AD and MCI 
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[69, 70]. The present study found significant changes in 
the relative content of tryptophan in both hippocam-
pal and serum samples of NCD-FMT mice, suggesting 
a potential link between alterations in the biosynthesis 
of aromatic amino acids and cognitive impairment in 
NCDs. The TCA cycle is a central metabolic pathway that 
plays a crucial role in cellular energy production through 
the oxidation of acetyl-CoA derived from carbohydrates, 
fatty acids, and amino acids. The TCA cycle generates 
ATP, which is necessary for various cellular processes, 
including neurotransmitter synthesis, ion channel trans-
port, and axonal growth [71–73]. The dysregulation of 
these pathways has been implicated in the pathogenesis 
and progression of NCDs, with previous studies report-
ing impaired TCA cycle activity in patients with AD and 
the 5xFAD mouse model of AD [74, 75].

From the correlation analysis, we have found that 
EEG oscillation was correlated with the diversity of gut 
microbiota and metabolomics. Here, the EEG, recording 
electrical activity of the brain, has been used to investi-
gate the potential relationship between gut microbiota 
and brain function. There is growing evidence to sug-
gest that the gut microbiota, which is the collection of 
microorganisms that live in the digestive tract, may have 
an impact on brain function and behavior [76]. The gut 
and brain communicate bidirectionally through several 
pathways, including the vagus nerve, immune system, 
and production of neurotransmitters and hormones [76]. 
Several studies have suggested that the composition and 
diversity of gut microbiota may influence EEG activity. 
For example, one study found that mice with a disrupted 
microbiome had altered EEG patterns compared to con-
trol mice, suggesting that the gut microbiota may play a 
role in regulating brain activity [77]. Another study found 
that individuals with higher levels of diversity in their gut 
microbiota had a more stable and balanced EEG pattern, 
while those with lower diversity had a more erratic EEG 
pattern [78]. Research has also suggested that specific 
strains of bacteria may have an impact on brain function 
and EEG activity. For example, Lactobacillus rhamnosus 
has been shown to improve anxiety- and depression-
like behaviors in mice, and to increase GABA receptor 
expression in the brain, which is associated with calm-
ing effects [79]. GABA receptor expression has also been 
linked to EEG activity, suggesting a potential mecha-
nism by which gut bacteria may influence brain function 
[80]. Notably, both glutamate and GABA exert effects on 
microglial cells, impacting their activation, inflammatory 
responses, and clearance of Aβ [81]. In AD, microglia 
express various glutamate and GABA receptors, includ-
ing NMDA, AMPA, KA, mGluR2-8, and GABAA/B [82]. 
Aβ further disrupts glutamatergic signaling, activating 
microglial cells through multiple receptors, leading to 

neuroinflammation and oxidative stress [83]. Overall, 
while more research is needed to fully understand the 
relationship between gut microbiota and EEG activ-
ity, there is growing evidence to suggest that the two are 
linked. This could have important implications for the 
development of therapies targeting the gut-brain axis for 
neurological and psychiatric disorders.

Limitation and clinical perspectives
One of the primary limitations of this study is the rela-
tively small sample size. The analysis and machine learn-
ing model development were conducted on a matched 
cohort of NA and NCDs. While the results are promising, 
the small sample size may limit the generalizability of the 
findings to larger and more diverse populations. Another 
limitation is the absence of an external validation dataset. 
The machine learning model’s performance was evalu-
ated using cross-validation techniques, which are valua-
ble for assessing internal consistency. However, external 
validation on an independent dataset from a different 
source or population is essential to confirm the model’s 
real-world applicability and generalizability. Omics data 
often involve the simultaneous testing of thousands or 
even millions of variables (e.g., genes, metabolites, pro-
teins). This mass testing can result in an increased like-
lihood of false positives purely due to the large number 
of comparisons made, leading to an elevated type I error 
rate. It is crucial to consider the practical significance and 
effect size in addition to statistical significance.

In spite of these limitations, this study presents sub-
stantial clinical prospects. It offers the potential for a 
more personalized and precise diagnostic strategy, ena-
bling more effective longitudinal treatment evaluation 
and the exploration of innovative neuromodulation tech-
niques. These advancements hold promise for enhancing 
our understanding and management of NCDs.

Conclusions
In this study, we conducted an integrated analysis of 
EEG, microbial, proteomic, and metabolomic data from 
both normal aging seniors and those with NCDs. Our 
analysis revealed several key findings. First, we observed 
decreased EEG power spectral density (PSD). Second, we 
identified disturbances in the biosynthesis of aromatic 
amino acids and the tricarboxylic acid cycle. These distur-
bances were associated with increased levels of specific 
microbes, including Ruminococcus gnavus, Enterocloster 
bolteae, and Lachnoclostridium sp. YL 32. Addition-
ally, we found decreased levels of specific metabolites, 
such as L-tryptophan, L-glutamic acid, γ-aminobutyric 
acid (GABA), and FAHFAs. These findings collectively 
provide insights into potential features of NCDs patho-
physiology. Moreover, it suggests that the application of 
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the machine learning model greatly improve the distin-
guishing degree of NCDs in the participants. Therefore, 
the fusion of multi-omics profiles and EEG data holds 
particular promise for personalized diagnostics in NCDs 
patients.
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right is a bee swarm plot in which each point represents a participant (n 
= 41). Panel B) Feature category contribution calculated by summing the 
weight in EEG, metabolomic and gut microbiota model. Panel C and panel 
D represented the gut microbiota and metabolomics respectively. In bar 
plot, blue bar represented higher value of the feature for association with 
NCDs while the red bar presented higher association with normal aging. 
In bee swarm plot, color indicates the value of the feature, with red higher 
and blue lower. Negative contribution indicates the feature attribution 
for prediction of NCDs while Positive contribution indicates the feature 
attribution of normal aging. Meta, metabolomic; GM, gut microbiota. 

Acknowledgements
The authors would like to thank the staff of the Seniors health centers for their 
help related to this work.

Authors’ contributions
YHZ and ZY designed the study. YH, XPQ, and MFZ performed experiments 
and analyses of the multi-omics data. XLZ and LH performed data acquisition, 
organization, and all bioinformatic analysis of the multimodal EEG data. YC, YL, 
and SPW interpreted results. YCC cared for seniors and provided donor faecal 
samples. YH and XLZ wrote the manuscript. XS and LW revised the manuscript. 
All authors read and commented on the manuscript.

Funding
This work was supported by the Science and Technology Develop-
ment Fund, Macau SAR (File nos. 0106/2019/A2, 0045/2021/A1, SKL-
QRCM(UM)-2023–2025), Key-Area Research and Development Program of 
Guangdong Province, China (2020B1111110003), and Fund of University of 
Macau (EF013/ICMS-WYT/2020/GDSTC).

Availability of data and materials
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Declarations

Ethics approval and consent to participate
The study adheres to the Declaration of Helsinki and was approved by the Eth-
ics Committee of the University of Macau (No. BSERE21-APP012-ICMS).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 State Key Laboratory of Quality Research in Chinese Medicine, Institute 
of Chinese Medical Sciences, University of Macau, Avenida da Universidade, 
Taipa 999078, Macau SAR, China. 2 Centre for Cognitive and Brain Sciences, 
University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR, 
China. 3 School of Health Economics and Management, Nanjing University 
of Chinese Medicine, Nanjing 210023, Jiangsu, China. 4 Kiang Wu Nursing 
College of Macau, Macau 999078, China. 5 Department of Gastrointestinal Sur-
gery, Second Clinical Medical College of Jinan University, Shenzhen People’s 
Hospital, Shenzhen 518020, China. 6 Jiangsu Key Laboratory of Drug Target 
and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, 
Nanjing 210023, China. 7 School of Pharmaceutical Science, Southern Medi-
cal University, Guangzhou 510515, China. 8 Department of Pharmaceutical 
Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 
999078, China. 

Received: 24 May 2023   Accepted: 7 November 2023

References
 1. Sachdev PS, Blacker D, Blazer DG, Ganguli M, Jeste DV, Paulsen JS, 

Petersen RC. Classifying neurocognitive disorders: the DSM-5 approach. 
Nat Rev Neurol. 2014;10:634–42.

 2. Blazer DG, Yaffe K, Karlawish J. Cognitive aging: a report from the Institute 
of Medicine. JAMA. 2015;313:2121–2.

 3. Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allah F, 
Abdoli A, Abualhasan A, Abu-Gharbieh E, Akram TT, et al. Estimation of 
the global prevalence of dementia in 2019 and forecasted prevalence 
in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet 
Public Health. 2022;7:e105–25.

 4. Tatulian SA. Challenges and hopes for Alzheimer’s disease. Drug Discov 
Today. 2022;27:1027–43.

 5. Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, 
gut microbial composition, and probiotic intervention in Alzheimer’s 
disease. Life Sci. 2021;264:118627.

 6. MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, Louie 
G, Kueider-Paisley A, Moseley MA, Thompson JW, et al. Altered bile acid 
profile associates with cognitive impairment in Alzheimer’s disease-an 
emerging role for gut microbiome. Alzheimers Dement. 2019;15:76–92.

 7. Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-
ketogenic diet modulates gut microbiome and short-chain fatty acids 
in association with Alzheimer’s disease markers in subjects with mild 
cognitive impairment. EBioMedicine. 2019;47:529–42.

 8. Whelan CD, Mattsson N, Nagle MW, Vijayaraghavan S, Hyde C, Janelidze 
S, Stomrud E, Lee J, Fitz L, Samad TA, et al. Multiplex proteomics identifies 
novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta 
Neuropathol Commun. 2019;7:169.

 9. Shigemizu D, Akiyama S, Higaki S, Sugimoto T, Sakurai T, Boroevich KA, 
Sharma A, Tsunoda T, Ochiya T, Niida S, Ozaki K. Prognosis prediction 
model for conversion from mild cognitive impairment to Alzheimer’s 
disease created by integrative analysis of multi-omics data. Alzheimers 
Res Ther. 2020;12:145.

 10. Alberdi A, Aztiria A, Basarab A. On the early diagnosis of Alzheimer’s 
disease from multimodal signals: a survey. Artif Intell Med. 2016;71:1–29.

 11. Jennings JL, Peraza LR, Baker M, Alter K, Taylor JP, Bauer R. Investigat-
ing the power of eyes open resting state EEG for assisting in dementia 
diagnosis. Alzheimers Res Ther. 2022;14:109.

 12. Han Y, Quan X, Chuang Y, Liang Q, Li Y, Yuan Z, Bian Y, Wei L, Wang J, Zhao 
Y. A multi-omics analysis for the prediction of neurocognitive disorders 
risk among the elderly in Macao. Clin Transl Med. 2022;12:e909.

 13. Wong A, Xiong YY, Kwan PW, Chan AY, Lam WW, Wang K, Chu WC, 
Nyenhuis DL, Nasreddine Z, Wong LK, Mok VC. The validity, reliability 
and clinical utility of the Hong Kong Montreal Cognitive Assessment 
(HK-MoCA) in patients with cerebral small vessel disease. Dement Geriatr 
Cogn Disord. 2009;28:81–7.

 14. Pan IMY, Lau MS, Mak SC, Hariman KW, Hon SKH, Ching WK, Cheng KM, 
Chan CF. Staging of dementia severity with the Hong Kong version of the 
Montreal Cognitive Assessment (HK-MoCA)’s. Alzheimer Dis Assoc Disord. 
2020;34:333–8.

 15. Yeung PY, Wong LL, Chan CC, Leung JL, Yung CY. A validation study of 
the Hong Kong version of Montreal Cognitive Assessment (HK-MoCA) in 
Chinese older adults in Hong Kong. Hong Kong Med J. 2014;20:504–10.

 16. Poulsen AT, Pedroni A, Langer N, Hansen LK. Microstate EEGlab toolbox: 
an introductory guide. BioRxiv. 2018;289850.

 17. Liang Q, Li J, Zhang S, Liao Y, Guo S, Liang J, Deng X, Liu Y, Zou B, Wen X. 
Characterization of conjunctival microbiome dysbiosis associated with 
allergic conjunctivitis. Allergy. 2021;76(2):596–600.

 18 Wingett SW, Andrews S. FastQ Screen: a tool for multi-genome mapping 
and quality control. F1000Res. 2018;7:1338.

 19. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low 
memory requirements. Nat Methods. 2015;12:357–60.

 20. Schmieder R, Edwards R. Fast identification and removal of sequence 
contamination from genomic and metagenomic datasets. PLoS ONE. 
2011;6:e17288.

 21. Chen CY, Rao SS, Ren L, Hu XK, Tan YJ, Hu Y, Luo J, Liu YW, Yin H, Huang J, 
et al. Exosomal DMBT1 from human urine-derived stem cells facili-
tates diabetic wound repair by promoting angiogenesis. Theranostics. 
2018;8:1607–23.



Page 23 of 24Han et al. Microbiome           (2024) 12:12  

 22. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, 
Shockcor J, Loftus N, Holmes E, Nicholson JK. Global metabolic profiling 
of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8:17–32.

 23. Wen B, Mei Z, Zeng C, Liu S. metaX: a flexible and comprehensive soft-
ware for processing metabolomics data. BMC Bioinformatics. 2017;18:183.

 24. Angoa-Perez M, Zagorac B, Francescutti DM, Theis KR, Kuhn DM. Effects of 
gut microbiota remodeling on the dysbiosis induced by high fat diet in a 
mouse model of Gulf war illness. Life Sci. 2021;279:119675.

 25. Miedel CJ, Patton JM, Miedel AN, Miedel ES, Levenson JM. Assessment of 
spontaneous alternation, novel object recognition and limb clasping in 
transgenic mouse models of amyloid-beta and tau neuropathology. J Vis 
Exp. 2017;123:e55523.

 26. Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning 
and memory deficits in Alzheimer’s disease model mice. J Vis Exp. 
2011;53:e2920.

 27. Bian X, Qian Y, Tan B, Li K, Hong X, Wong CC, Fu L, Zhang J, Li N, Wu JL. 
In-depth mapping carboxylic acid metabolome reveals the potential 
biomarkers in colorectal cancer through characteristic fragment ions and 
metabolic flux. Anal Chim Acta. 2020;1128:62–71.

 28. Duda RO, Hart PE. Pattern classification. New York: John Wiley & Sons; 
2006.

 29. Hugo J, Ganguli M. Dementia and cognitive impairment: epidemiology, 
diagnosis, and treatment. Clin Geriatr Med. 2014;30:421–42.

 30. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical 
diagnosis of Alzheimer disease at National Institute on Aging Alzheimer 
Disease Centers, 2005–2010. J Neuropathol Exp Neurol. 2012;71:266–73.

 31. Martorelli M, Hartle L, Coutinho G, Mograbi DC, Chaves D, Silberman C, 
Charchat-Fichman H. Diagnostic accuracy of early cognitive indicators in 
mild cognitive impairment. Dement Neuropsychol. 2020;14:358–65.

 32. Chang CH, Lin CH, Lane HY. Machine learning and novel biomarkers for 
the diagnosis of Alzheimer’s disease. Int J Mol Sci. 2021;22(5):2761.

 33. Li Z, Jiang X, Wang Y, Kim Y. Applied machine learning in Alzheimer’s 
disease research: omics, imaging, and clinical data. Emerg Top Life Sci. 
2021;5:765–77.

 34. Badhwar A, McFall GP, Sapkota S, Black SE, Chertkow H, Duchesne S, 
Masellis M, Li L, Dixon RA, Bellec P. A multiomics approach to hetero-
geneity in Alzheimer’s disease: focused review and roadmap. Brain. 
2020;143:1315–31.

 35. Jafari Z, Kolb BE, Mohajerani MH. Neural oscillations and brain stimulation 
in Alzheimer’s disease. Prog Neurobiol. 2020;194:101878.

 36. Musaeus CS, Nielsen MS, Østerbye NN, Høgh P. Decreased parietal beta 
power as a sign of disease progression in patients with mild cognitive 
impairment. J Alzheimers Dis. 2018;65:475–87.

 37. Klimesch W. EEG alpha and theta oscillations reflect cognitive and 
memory performance: a review and analysis. Brain Res Brain Res Rev. 
1999;29:169–95.

 38. Miller EK, Lundqvist M, Bastos AM. Working memory 2.0. Neuron. 
2018;100:463–75.

 39. Milz P, Faber PL, Lehmann D, Koenig T, Kochi K, Pascual-Marqui RD. The 
functional significance of EEG microstates—associations with modalities 
of thinking. Neuroimage. 2016;125:643–56.

 40. Santarnecchi E, Khanna AR, Musaeus CS, Benwell CSY, Davila P, Farzan F, 
Matham S, Pascual-Leone A, Shafi MM, Connor A, et al. EEG microstate 
correlates of fluid intelligence and response to cognitive training. Brain 
Topogr. 2017;30:502–20.

 41. van der Hiele K, Vein AA, Reijntjes RH, Westendorp RG, Bollen EL, van 
Buchem MA, van Dijk JG, Middelkoop HA. EEG correlates in the spectrum 
of cognitive decline. Clin Neurophysiol. 2007;118:1931–9.

 42. Lian H, Li Y, Li Y. Altered EEG microstate dynamics in mild cognitive 
impairment and Alzheimer’s disease. Clin Neurophysiol. 2021;132:2861–9.

 43. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis 
C, Schretter CE, Rocha S, Gradinaru V, et al. Gut microbiota regulate motor 
deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 
2016;167:1469-1480 e1412.

 44. Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F, Bork 
P, Wullner U. Functional implications of microbial and viral gut metage-
nome changes in early stage L-DOPA-naive Parkinson’s disease patients. 
Genome Med. 2017;9:39.

 45. Hill JM, Clement C, Pogue AI, Bhattacharjee S, Zhao Y, Lukiw WJ. Patho-
genic microbes, the microbiome, and Alzheimer’s disease (AD). Front 
Aging Neurosci. 2014;6:127.

 46. Cui C, Han Y, Li H, Yu H, Zhang B, Li G. Curcumin-driven reprogramming 
of the gut microbiota and metabolome ameliorates motor deficits and 
neuroinflammation in a mouse model of Parkinson’s disease. Front Cell 
Infect Microbiol. 2022;12:887407.

 47. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson 
SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB, Rey FE. 
Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;7:13537.

 48. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, Lu Y, Cai M, Zhu C, Tan 
YL, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J 
Alzheimers Dis. 2018;63:1337–46.

 49. Erdmann NB, Whitney NP, Zheng J. Potentiation of excitotoxicity in HIV-1 
associated dementia and the significance of glutaminase. Clin Neurosci 
Res. 2006;6:315–28.

 50. van Horssen J, van Schaik P, Witte M. Inflammation and mitochondrial 
dysfunction: a vicious circle in neurodegenerative disorders? Neurosci 
Lett. 2019;710:132931.

 51. Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers HL, 
Hooper C, Rijsdijk F, Tabrizi SJ, Banner S, et al. Proteome-based plasma 
biomarkers for Alzheimer’s disease. Brain. 2006;129:3042–50.

 52. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology 
and treatment strategies. Cell. 2019;179:312–39.

 53. Haytural H, Benfeitas R, Schedin-Weiss S, Bereczki E, Rezeli M, Unwin RD, 
Wang X, Dammer EB, Johnson ECB, Seyfried NT, et al. Insights into the 
changes in the proteome of Alzheimer disease elucidated by a meta-
analysis. Sci Data. 2021;8:312.

 54. Heywood WE, Galimberti D, Bliss E, Sirka E, Paterson RW, Magdalinou NK, 
Carecchio M, Reid E, Heslegrave A, Fenoglio C, et al. Identification of novel 
CSF biomarkers for neurodegeneration and their validation by a high-
throughput multiplexed targeted proteomic assay. Mol Neurodegener. 
2015;10:64.

 55. Guha D, Lorenz DR, Misra V, Chettimada S, Morgello S, Gabuzda D. Prot-
eomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic 
injury, inflammation, and stress response markers in HIV patients with 
cognitive impairment. J Neuroinflammation. 2019;16:254.

 56. Chatterjee S, Mudher A. Alzheimer’s disease and type 2 diabetes: a critical 
assessment of the shared pathological traits. Front Neurosci. 2018;12:383.

 57. Lv H, Tang L, Guo C, Jiang Y, Gao C, Wang Y, Jian C. Intranasal insulin 
administration may be highly effective in improving cognitive function 
in mice with cognitive dysfunction by reversing brain insulin resistance. 
Cogn Neurodyn. 2020;14:323–38.

 58. Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. 
Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol 
Cell Biol. 2016;17:308–21.

 59. Badawy AA. Tryptophan metabolism: a versatile area providing multiple 
targets for pharmacological intervention. Egypt J Basic Clin Pharmacol. 
2019;9:10–32527.

 60. Bell SM, Barnes K, Clemmens H, Al-Rafiah AR, Al-Ofi EA, Leech V, Band-
mann O, Shaw PJ, Blackburn DJ, Ferraiuolo L, Mortiboys H. Ursodeoxy-
cholic Acid improves mitochondrial function and redistributes Drp1 
in fibroblasts from patients with either sporadic or familial alzheimer’s 
Disease. J Mol Biol. 2018;430:3942–53.

 61. Guillemin GJ, Smith DG, Kerr SJ, Smythe GA, Kapoor V, Armati PJ, Brew BJ. 
Characterisation of kynurenine pathway metabolism in human astrocytes 
and implications in neuropathogenesis. Redox Rep. 2000;5:108–11.

 62. Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen 
HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the 
excitatory synapse in health and neurodegeneration. Neuropharmacol-
ogy. 2021;196:108719.

 63. Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. 
Therapeutic application of quercetin in aging-related diseases: SIRT1 as a 
potential mechanism. Front Immunol. 2022;13:943321.

 64. Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: 
disease and healthy States. Int J Tryptophan Res. 2009;2:1–19.

 65. El-Ansary A, Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to 
excessive neuroinflammation in autism spectrum disorders. J Neuroin-
flammation. 2014;11:189.

 66. Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: role 
of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 
2016;280:465–75.

 67. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau DL, Zavala E, Zhang 
Y, Moritoh K, O’Connell JF, Baptiste BA, et al. NAD(+) supplementation 



Page 24 of 24Han et al. Microbiome           (2024) 12:12 

normalizes key Alzheimer’s features and DNA damage responses in a 
new AD mouse model with introduced DNA repair deficiency. Proc Natl 
Acad Sci USA. 2018;115:E1876–85.

 68. Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut microbial metabolites of aro-
matic amino acids as signals in host-microbe interplay. Trends Endocrinol 
Metab. 2020;31:818–34.

 69. Wu L, Han Y, Zheng Z, Peng G, Liu P, Yue S, Zhu S, Chen J, Lv H, Shao 
L, et al. Altered gut microbial metabolites in amnestic mild cognitive 
impairment and Alzheimer’s disease: signals in host-microbe interplay. 
Nutrients. 2021;13(1):228.

 70. Huang YL, Lin CH, Tsai TH, Huang CH, Li JL, Chen LK, Li CH, Tsai TF, Wang 
PN. Discovery of a metabolic signature predisposing high risk patients 
with mild cognitive impairment to converting to Alzheimer’s disease. Int 
J Mol Sci. 2021;22(20):10903.

 71. Burnstock G. Historical review: ATP as a neurotransmitter. Trends Pharma-
col Sci. 2006;27(3):166-176.

 72. Yahil S, Wozniak DF, Yan Z, Mennerick S, Remedi MS. Cognitive deficits 
and impaired hippocampal long-term potentiation in K(ATP)-induced 
DEND syndrome. Proc Natl Acad Sci USA. 2021;118.

 73. Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial 
maintenance and bioenergetics in neurodegeneration and regeneration. 
Neuron. 2022;110:1899–923.

 74. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial 
abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol. 
2005;57:695–703.

 75. Andersen JV, Skotte NH, Christensen SK, Polli FS, Shabani M, Markussen 
KH, Haukedal H, Westi EW, Diaz-delCastillo M, Sun RC, et al. Hippocampal 
disruptions of synaptic and astrocyte metabolism are primary events 
of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s 
disease. Cell Death Dis. 2021;12:954.

 76. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interac-
tions between enteric microbiota, central and enteric nervous systems. 
Ann Gastroenterol. 2015;28:203–9.

 77. Ogawa Y, Miyoshi C, Obana N, Yajima K, Hotta-Hirashima N, Ikkyu A, 
Kanno S, Soga T, Fukuda S, Yanagisawa M. Gut microbiota depletion by 
chronic antibiotic treatment alters the sleep/wake architecture and sleep 
EEG power spectra in mice. Sci Rep. 2020;10:19554.

 78. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, 
Legrain-Raspaud S, Trotin B, Naliboff B, Mayer EA. Consumption of fer-
mented milk product with probiotic modulates brain activity. Gastroen-
terology. 2013;144:1394–401.

 79. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, 
Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emo-
tional behavior and central GABA receptor expression in a mouse via the 
vagus nerve. Proc Natl Acad Sci USA. 2011;108:16050–5.

 80. Fu Y, Li L, Wang Y, Chu G, Kong X, Wang J. Role of GABAA receptors in EEG 
activity and spatial recognition memory in aged APP and PS1 double 
transgenic mice. Neurochem Int. 2019;131:104542.

 81. Czapski GA, Strosznajder JB. Glutamate and GABA in Microglia-Neuron 
Cross-Talk in Alzheimer’s Disease. 2021;22(21):11677.

 82. Kwakowsky A, Calvo-Flores Guzmán B, Pandya M, Turner C, Waldvogel 
HJ, Faull RL. GABA(A) receptor subunit expression changes in the human 
Alzheimer’s disease hippocampus, subiculum, entorhinal cortex and 
superior temporal gyrus. J Neurochem. 2018;145:374–92.

 83. Mangalmurti A, Lukens JR. How neurons die in Alzheimer’s disease: impli-
cations for neuroinflammation. Curr Opin Neurobiol. 2022;75:102575.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	The fusion of multi-omics profile and multimodal EEG data contributes to the personalized diagnostic strategy for neurocognitive disorders
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Ethics statement
	Study design and subjects
	EEG recording and preprocessing
	EEG power spectral density and EEG microstate analysis
	Samples collection from seniors
	Metagenomic sequencing of intestinal microbiota
	Proteomic analysis of urine exosomes
	Non-targeted metabolomics of faecal samples
	Faecal microbiota transplantation experiment in mice
	Machine learning algorithm
	Statistical analysis

	Results
	Sociodemographic features and neurocognitive scores of subjects
	EEG power spectral density and EEG microstate analysis
	Differential gut microbiota compositions and pathway prediction
	Differential urine exosomes proteins
	Differential faecal metabolites
	Experimental verification in FMT mice
	Machine learning classification

	Discussion
	Limitation and clinical perspectives

	Conclusions
	Acknowledgements
	References


