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Abstract 

Background The widespread availability of antiretroviral therapy (ART) has dramatically reduced mortality 
and improved life expectancy for people living with HIV (PLWH). However, even with HIV-1 suppression, chronic 
immune activation and elevated inflammation persist and have been linked to a pro-inflammatory gut microbi-
ome composition and compromised intestinal barrier integrity. PLWH in urban versus rural areas of sub-Saharan 
Africa experience differences in environmental factors that may impact the gut microbiome and immune system, 
in response to ART, yet this has not previously been investigated in these groups. To address this, we measured T cell 
activation/exhaustion/trafficking markers, plasma inflammatory markers, and fecal microbiome composition in PLWH 
and healthy participants recruited from an urban clinic in the city of Harare, Zimbabwe, and a district hospital that ser-
vices surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of first-line 
ART and the antibiotic cotrimoxazole or were ART-experienced at both timepoints.

Results Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were 
observed with ART-induced viral suppression, these changes were much more pronounced in the urban ver-
sus the rural area. Gut microbiome composition was the most highly altered from healthy controls in ART experi-
enced PLWH, and characterized by both reduced alpha diversity and altered composition. However, gut microbiome 
composition showed a pronounced relationship with T cell activation and exhaustion in ART-naïve PLWH, suggest-
ing a particularly significant role for the gut microbiome in disease progression in uncontrolled infection. Elevated 
immune exhaustion after 24 weeks of ART did correlate with both living in the rural location and a more Prevotella-
rich/Bacteroides-poor microbiome type, suggesting a potential role for rural-associated microbiome differences 
or their co-variates in the muted improvements in immune exhaustion in the rural area.

†Angela Sofia Burkhart Colorado and Alessandro Lazzaro contributed equally 
to this work.

*Correspondence:
Brent E. Palmer
BRENT.PALMER@CUANSCHUTZ.EDU
Catherine Lozupone
Catherine.lozupone@cuanschutz.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-023-01718-4&domain=pdf


Page 2 of 20Burkhart Colorado et al. Microbiome           (2024) 12:18 

Conclusion Successful ART was less effective at reducing gut microbiome-associated inflammation and T cell activa-
tion in PLWH in rural versus urban Zimbabwe, suggesting that individuals on ART in rural areas of Zimbabwe may be 
more vulnerable to co-morbidity related to sustained immune dysfunction in treated infection.

Keywords HIV, Intestinal microbiome, ART response, Immune activation and exhaustion, Inflammation, Urban, Rural

Introduction 
Human immunodeficiency virus 1 (HIV-1) infection is 
characterized by progressive infection and depletion of 
CD4 + T cells, chronic immune activation, and immune 
exhaustion that predisposes the infected individual to 
opportunistic infections and cancers defining acquired 
immunodeficiency syndrome (AIDS). Antiretroviral ther-
apy (ART) has dramatically improved health outcomes 
in PLWH. However, ART coverage remains suboptimal 
in many parts of the developing world, including in sub-
Saharan Africa (SSA) where about 70% of the global HIV 
epidemic is concentrated [1], and is particularly challeng-
ing in rural areas [2]. Even with successful ART, PLWH 
often have chronic immune activation and elevated 
inflammation [3] that has been linked with poor CD4 + T 
cell recovery [4] and the premature onset of HIV-related 
non-AIDS-defining comorbidities [5]. Understanding 
factors related to chronic immune activation with ART 
is essential for devising strategies to protect the health of 
PLWH.

Factors that can drive chronic immune activation in 
PLWH on effective ART include co-infections, persis-
tent antigen stimulation from residual viremia and the 
intestinal microbiome [5]. This complex community of 
microbes has been of intense interest in HIV-infected 
populations, in part because HIV-1 disrupts gut associ-
ated lymphoid tissue (GALT) causing gut mucosa damage 
that allows for the translocation of inflammatory bacte-
rial components, which is strongly tied to disease pro-
gression [6]. Studies conducted in the USA and Europe 
have found gut microbiome differences in HIV-infected 
populations that could be a result of HIV-driven immune 
dysfunction, ART drugs, or lifestyle factors [7–9]. These 
altered microbiomes have been shown to correlate with 
chronic T cell activation in vivo and to drive higher T cell 
activation in vitro [10] and cytokine production ex vivo 
[11]. Relatively few studies have investigated effects of 
HIV-1 or ART on the gut microbiome in SSA [12–15], 
and yet knowledge from the developed world may not be 
generalizable for several reasons. First, there are dramatic 
differences in gut microbiome composition in healthy 
individuals in the developing versus the developed world 
that are associated with differences in diet and environ-
mental factors [16]. Second, the predominant mode of 
HIV-1 transmission differs in SSA compared to other 
regions, leading to related differences in demographic 

factors and behaviors that can influence gut microbiome 
composition [17]. Finally, concomitant use of the antibi-
otic cotrimoxazole to prevent opportunistic infections 
with ART regardless of CD4 + T cell count is more com-
mon in SSA compared to developed countries [18].

Individuals living near urban centers versus in rural 
areas of SSA have differences in environmental expo-
sures such as water source or diet that may impact their 
gut microbiome composition and immune response to 
microbes [19, 20]. There may also be different responses 
to ART in rural areas, although studies generally have 
focused on measuring rates of treatment failure rather 
than on differences in immune response following viro-
logic control [2, 21]. To gain a further understanding  
of effects of HIV treatment on the gut microbiome and 
immune activation and inflammation in PLWH in SSA, 
and whether living in a rural versus urban area can influ-
ence the effects ART, we designed a prospective longitu-
dinal observational study of participants from rural and 
urban hospitals in Zimbabwe. We examined T cell activa-
tion, exhaustion and trafficking markers, and inflamma-
tory plasma cytokines and gut microbiome composition 
among ART-naïve and ART-experienced PLWH and 
healthy controls and assessed effects of 24 weeks of ART 
and cotrimoxazole using longitudinal analysis.

Results
Demographic and clinical characteristics of study cohort
We recruited 162 individuals with approximately equal 
numbers from the urban Mabvuku Polyclinic in the city 
of Harare and the Mutoko District Hospital, located in 
a district of around 161,000 people [22] 146  km from 
Harare that services surrounding rural villages. Blood-
immune profile and fecal microbiome composition 
were evaluated in samples collected at two timepoints 
24 weeks apart in (1) PLWH who were not on ART at the 
first timepoint but who subsequently commenced first-
line ART with efavirenz/lamivudine/tenofovir disoproxil 
fumarate (EFV/3TC/TDF) and the prophylactic antibi-
otic cotrimoxazole (ART Naïve); (2) PLWH who were on 
this same ART regimen and cotrimoxazole at both time-
points (ART experienced); and (3) people without HIV, 
hereafter referred to as healthy controls (HC). Of the 162 
enrolled individuals, 14 from the ART naïve cohort were 
excluded because they had HIV viral load below 20 cop-
ies/mL at the baseline visit, which is inconsistent with 
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their declared treatment status (Figure S1). Because we 
wanted to evaluate the effects of successful ART, we also 
excluded 6 individuals in the ART experienced cohort 
who had a viral load > 200 copies/mL at baseline (Figure 
S1). Baseline values of 142 individuals were analyzed with 
67 individuals in the ART naïve cohort, 33 in the ART 
experienced cohort, and 42 HC (Table  1). Furthermore, 
for longitudinal (intra-cohort) and microbiome analysis, 
additional individuals were excluded because they either 
(1) were lost to follow-up at the 24  week visit (n = 14), 
or (2) were in the ART-naïve cohort and did not have a 
viral load < 200 at the second timepoint (n = 15), indicat-
ing a lack of response to ART. Longitudinal (intra-cohort) 
analyses thus included 226 samples from 113 total indi-
viduals (Figure S1).

Cohorts had similar proportions of females versus 
males. ART-naïve PLWH and HC had a similar median 

age of 35 and 35.5 respectively while ART-experienced 
PLWH were significantly older (median age of 46) 
(Table 1). Median body mass index (BMI) was in the nor-
mal range for the overall population (BMI = 22) and ART-
experienced PLWH had lower BMI compared to both 
ART-naïve PLWH and HC (Table  1); this pattern was 
significant in males and not females in stratified analy-
sis (Table S1) and women had a significantly higher BMI 
than men. Notably, 43.8% of ART-experienced men and 
0% of ART-experienced women were in the underweight 
categories (Table S1). The median duration of ART and 
cotrimoxazole treatment among the ART experienced 
cohort at baseline was 7  years. The median duration of 
cotrimoxazole treatment at baseline was 0 months in the 
ART naïve cohort (Table  1), but significantly longer in 
the rural (median of 0.2 months) compared to the urban 
(median of 0 months) location (Table S2).

Table 1 Summary of demographics

Clinical and demographic characteristics of the study population by cohort at the baseline visit. p-values were calculated using the Mann-Whitney U test. BMI 
categories were determined using the World Health Organization (WHO) standards [23]. NA represents values not collected/relevant to a particular cohort. Values are 
reported as the median with the minimum and maximum range in brackets

ART Naïve PLWH 
(Naïve)

ART Experienced 
PLWH (Exp)

Healthy Controls (HC) p-value

(N=67) (N=33) (N=42) Naïve vs Exp Naïve vs HC Exp vs HC

Arm 0.84 0.87 0.74

 Rural 34 (50.7%) 16 (48.5%) 22 (52.4%)

 Urban 33 (49.3%) 17 (51.5%) 20 (47.6%)

Sex 0.53 0.73 0.79

 Female 39 (58.2%) 17 (51.5%) 23 (54.8%)

 Male 28 (41.8%) 16 (48.5%) 19 (45.2%)

Age (years) 35 [19, 51] 46 [19, 64] 35.5 [18, 67] <0.0001 0.69 <0.0001

BMI (kg/m^2) 22.7 [15.8, 33.4] 20.2 [14.6, 27.8] 22.6 [16.9, 35] 0.018 0.32 0.004

BMI Category 0.057 0.22 0.014

 Severe Thinness <16.0 1 (1.5%) 2 (6.1%) 0 (0%)

 Moderate Thinness <17.0 0 (0%) 0 (0%) 1 (2.4%)

 Mild Thinness <18.5 3 (4.5%) 5 (15.2%) 1 (2.4%)

 Normal 18.5–24.9 51 (76.1%) 22 (66.7%) 28 (66.7%)

 Overweight ≥25.0 10 (14.9%) 4 (12.1%) 10 (23.8%)

 Obese ≥30.0 2 (3.0%) 0 (0%) 2 (4.8%)

CD4 T cells count (cells/μL) 257 [10, 824] 412 [77, 838] NA [NA, NA] 0.001 NA NA

CD4 T cells (%) 22.2 [0, 48.8] 36.7 [0.1, 55.7] 55.8 [27.8, 70.4] 0.00037 <0.0001 <0.0001

CD4/CD8 T cell ratio 0.3 [0, 1.3] 0.7 [0, 1.5] 1.7 [0.4, 3.3] 0.00069 <0.0001 <0.0001

ART exposure (years) NA [NA, NA] 7 [1.8, 21.7] 0 [0, 0] NA NA NA

Co-trimoxazole exposure 
(months)

0 [0, 7] 84 [0, 138] 0 [0, 0] <0.0001 NA NA

Viral Load (copies/mL) 26491 [36, 1159529] 0 [0, 103] NA [NA, NA] <0.0001 NA NA

Both Visit 0.2 0.88 0.27

 No 7 (10.4%) 1 (3.0%) 4 (9.5%)

 Yes 60 (89.6%) 32 (97.0%) 38 (90.5%)
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Cross-sectional and longitudinal analysis of immune 
phenotype
As expected, the ART-naïve cohort had higher HIV viral 
loads and lower CD4 + T cell count, CD4 + T cell percent, 
and CD4/CD8 T cell ratio compared to the ART-expe-
rienced cohort at baseline (Table 1; Figure S2). CD4 + T 
cell percent and CD4/CD8 T cell ratio were not signifi-
cantly different at baseline between the urban and rural 
location in ART-naïve or experienced PLWH, but were 
higher in HC in the rural area (Table S2). CD4 + T cell 
count, CD4 + T cell percent, and CD4/CD8 T cell ratio 
were higher in ART-naïve and ART-experienced women 
compared to men (Table S1). All but 15 (22.4%) of the 
ART naïve individuals reached virologic control, defined 
as viral load < 200 copies of HIV-1/mL of plasma, after 
24  weeks of therapy and 6 (15.4%) of the 39 individu-
als who were originally recruited into the ART experi-
enced cohort had uncontrolled HIV infection at baseline 
despite ART (Figure S1). Levels of virologic control with 
ART were not significantly different between the urban 
and rural sites. The individuals that remained viremic 

with treatment were removed from longitudinal analyses 
(Figure S1). A significant increase in CD4 + T cell percent 
and CD4/CD8 T cell ratio was observed after 24  weeks 
of treatment among individuals in the ART-naïve cohort 
who reached virologic control in both the urban and 
rural sites (Figure S2).

We next used flow cytometry to gain a deeper under-
standing of the effects of successful ART on CD4 + and 
CD8 + T-cell populations in blood. The immune char-
acterization included the following: (1) chronic immune 
activation using HLA-DR and CD38 as markers, a com-
mon measure of disease progression in studies of HIV 
[24–29]; (2) a marker of immune exhaustion, PD-1, which 
prior studies have shown to increase in PLWH [30–32]; 
and (3) mucosal trafficking by examination of CD103 
expression, which can either increase in blood with chal-
lenge as populations expand, or decrease as they traffic 
from blood to mucosal sites [33, 34]. We also evaluated 
inflammation, by measuring plasma levels IL-6 and CRP 
using ELISA, both of which have been shown to increase 
in PLWH [35, 36].

Fig. 1 Differences in immune markers across cohorts and over time, before and after commencement of ART. Comparing immune marker 
values between cohorts (inter) and across timepoints (intra). Inter-cohort comparisons were performed on baseline (week 0) samples using 
a Kruskal–Wallis with a Dunn’s post hoc test. Intra-cohort comparisons compared week 0 to 24 using a paired Mann–Whitney U test. Significant 
relationships are colored by the mean change in value to show directionality: For any given comparison (e.g., naïve – Exp), the box is colored 
red (up) if the average value of Exp is higher than that of naïve. If blue (down), the average value of Exp is lower than naïve. The intensity 
of the color indicates the strength of the change. Detailed plots for significant relationships are shown in Figure S3 (CD8 + CD38 + HLA-DR + and 
CD4 + CD38 + HLA-DR +), Figure S4 (CD4 + PD1 + and CD8 + PD1 +), Figure S5 (IL-6 and CRP), and Figure S6 (CD8 + CD103 + and CD4 + CD103 +). 
B Stratified analysis of CD8 and CD4 PD1 percent change over time by location. p-values are coded as “****” between (0, 0.0001), “***” (0.0001, 
0.001), “**” (0.001, 0.01), and “*” (0.01, 0.05), with square brackets indicating that the endpoints are included in the interval. NS not significant, Naïve 
ART-naïve cohort, Exp ART-experienced cohort
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Immune activation, exhaustion, and inflammation
As expected, based on prior studies [30, 32, 34, 35], ART-
naïve PLWH had higher levels of chronically activated 
(CD38 + HLA-DR +) and exhausted (PD1 +) CD4 + and 
CD8 + T cells compared to HC (Fig.  1, Figures S3, S4). 
Compared to ART-naïve, PLWH who were ART-experi-
enced at baseline had significantly lower levels of chroni-
cally activated and exhausted CD4 + and CD8 + T cells 
(Fig.  1, Figures S3, S4), showing expected improvement 
with ART. However, when conducting the same analy-
ses stratified by the urban versus rural location, signifi-
cantly lower T cell exhaustion levels in ART-experienced 
versus ART-naive PLWH were found only in the urban 
and not the rural location (Fig. 1, Figures S3, S4). ART-
experienced PLWH also had significantly higher levels 
of CD4 + and CD8 + T cell exhaustion compared to HC, 
indicating incomplete recovery with ART, but statistically 
significant differences in CD8 + T cell exhaustion were 
observed in the rural and not urban cohort in stratified 
analysis (Fig. 1, Figure S4). The inflammatory marker IL-6 
also showed the highest level at baseline in the ART naïve 
cohort, followed by the ART experienced cohort, while 
the HC had the lowest levels. However, only a reduction 
in IL-6 between ART-naïve PLWH and the HC was sta-
tistically significant, and this difference was significant 
in the urban and not rural location in stratified analyses 
(Fig.  1A, Figure S5). Taken together, these results show 
ART-experienced individuals to have expected improve-
ments in inflammation and T cell exhaustion compared 
to ART-naïve PLWH in the urban but not the rural area. 
Accordingly, ART-experienced individuals in the rural 
and not the urban area had significant differences from 
HC in exhaustion phenotypes.

Longitudinal analysis of the ART naïve cohort showed 
consistent results. There was a significant reduction in 
CD4 + and CD8 + T cell exhaustion and CD8 + but not 
CD4 + chronic T cell activation with 24  weeks treatment 
overall (Fig.  1, Figures S3, S4). However, again this was 
driven by improvements only in the urban area; individu-
als from the urban area showed a significant reduction with 
24 weeks of ART in all CD4 + and CD8 + T cell activation 
and exhaustion markers but the PLWH in the rural area 
showed a significant reduction in CD8 + T cell activation 
only (Fig. 1). ART-naïve PLWH in the urban area had a sig-
nificant reduction in both IL-6 and CRP following 24 weeks 
of ART, but in the rural area only IL-6 was reduced. Over-
all, these results suggest that the people living in the urban 
location exhibit better improvement in T cell activation 
and exhaustion levels and inflammation with ART. This is 
the case even though we restricted our analyses to include 
only individuals with controlled viral replication and the 
rural and urban sites did not differ in the percent of indi-
viduals who achieved virologic control with ART.

One result suggesting a potential confounder is 
that the HC exhibited increased CD8 + T cell exhaus-
tion over time, even though no intervention occurred 
in this cohort. Similarly, the ART-experienced cohort 
showed an increase in CRP over time in the rural 
and not the urban location (Fig.  1A). Furthermore, 
CD8 + CD38 + HLA-DR + levels decreased over time in 
HC in the urban and not the rural area. Changes over 
time without an intervention may be related to increased 
socio-economic stressors in Zimbabwe between Janu-
ary 2018 and August 2019 [37], when these samples 
were collected. To correct for these potential confound-
ers, we also applied a linear modeling approach to deter-
mine whether the changes observed with treatment of 
the ART-naïve cohort were greater than those observed 
over time in the HC cohort (see Methods Model M1; Fig-
ure S7). These results suggested that improvements in 
CD4 + PD1 + and CD8 + PD1 + T cells with 24  weeks of 
ART may have been underestimated and improvements 
in CD8 + CD38 + HLA-DR + T cells with ART in the 
urban area may be overestimated. They also showed that 
CRP results were impacted by confounding effects over 
time. When measured as change in the ART-naïve cohort 
relative to the HC, we found that CRP decreased with 
24 weeks of ART in the urban area, as would be expected, 
but actually increased in the rural area (Figure S5).

Mucosal trafficking
One goal of this study was to relate immune markers in 
HIV to the intestinal microbiome. Thus, we also evalu-
ated T cells expressing the mucosal trafficking marker 
CD103, since some of these cells might be trafficking to or 
from intestinal sites. CD8 + CD103 + T cells were highest 
in the ART-experienced cohort and lowest in the ART-
naïve. CD4 + CD103 + T cells were significantly higher 
in HC compared to ART-naïve at baseline (Fig. 1, Figure 
S6). Change over time in the ART naïve cohort showed 
that both CD4 + and CD8 + T cells expressing CD103 
increased with treatment (Fig.  1A). The HC cohort 
showed a significant decrease in CD4 + CD103 + T cells 
over time in the rural area (Fig. 1A), so linear modeling 
showed that the increase over time in ART-naïve PLWH 
relative to HC was more pronounced (Figure S6).

Cross-sectional and longitudinal analysis of microbiome 
diversity
Alpha diversity
We next evaluated intestinal microbiome composition 
using 16S ribosomal RNA (rRNA)-targeted sequencing of 
fecal samples. One potential confounder in understand-
ing the effects of ART on the microbiome in PLWH is the 
concomitant use of the antibiotic cotrimoxazole. There 
was also some exposure of ART-naïve individuals to 
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cotrimoxazole at baseline, and this was greater in people 
living in the rural versus urban location (Table 1). Despite 
this, ART-naïve individuals in the rural area did not have 
significantly lower alpha diversity (measured with Shan-
non entropy [38]) at baseline compared to urban (Mann–
Whitney U test, p > 0.05) and length of cotrimoxazole 
treatment at baseline did not correlate with alpha diver-
sity (Figure S8). Individuals in the ART naïve cohort had 
reduced Shannon entropy compared to HC in the rural 
and not the urban location (Fig. 2A).

The ART-naïve cohort had the lowest alpha diversity at 
baseline in both locations (Fig. 2A,B). ART-naïve patients 
had a significant decrease in alpha diversity following 
24  weeks of ART in the rural location only (Fig.  2C). 
There are two distinct processes that may underlie a rela-
tionship between treatment and microbiome alpha diver-
sity: (1) the ART drugs or cotrimoxazole might decrease 
diversity through direct effects on the microbiome or (2) 
immune or gut barrier function improvements that occur 
with viral control could restore diversity of a compro-
mised microbiome. We thus hypothesized that increas-
ing or decreasing diversity with ART might depend on 

baseline values. To test this hypothesis, we used linear 
regression to evaluate whether the change in Shannon 
Entropy following 24 weeks of treatment was significantly 
related to baseline Shannon Entropy values (Fig. 2D, see 
Methods Model M2). Indeed, individuals with the high-
est baseline diversity showed the greatest loss in diversity, 
indicating a greater potential importance of direct drug 
effects. Alternately, those with the lowest baseline diver-
sity showed a positive change in alpha diversity on aver-
age in both urban and rural areas, indicating that ART 
can potentially restore diversity in those with higher lev-
els of HIV-driven microbiome disturbance.

Beta diversity
Individuals in Zimbabwe had a microbiome composi-
tion typical of those previously described in studies of 
SSA [39], with relatively high relative abundance of bac-
teria in the genus Prevotella (17.71% mean relative abun-
dance ± 13.07%) and low Bacteroides (9.42% mean relative 
abundance ± 9.26%) (Figure S9). In a principal coordi-
nate analysis (PCoA) of weighted UniFrac [40] values 
to visualize beta diversity, principal coordinate 1 (PC1) 

Fig. 2 Alpha diversity across cohorts stratified by time and location. Shannon entropy differences between cohorts at baseline. p-values were 
calculated using a Kruskal–Wallis test with a Dunn’s post hoc (pairwise comparisons shown). B Same as A stratified by location. C Shannon 
entropy between timepoints for each cohort stratified by location. p-values were calculated using a paired Mann–Whitney U test. D Linear 
regression of the difference in Shannon entropy (Shannon entropy at week 24 minus week 0) by baseline Shannon entropy (Shannon entropy 
at week 0). p-values are coded as “****” between (0, 0.0001), “***” (0.0001, 0.001), “**” (0.001, 0.01), “*” (0.01, 0.05), with square brackets indicating 
that the endpoints are included in the interval
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separated individuals by differences in Prevotella and 
Bacteroides genera (Fig. 3A). We used a linear model to 
explore relationships between PC1–PC4 and HIV/ART 
status, rural versus urban location, BMI, cotrimoxazole, 
CD4 + percent, CD4/CD8 ratio, viral load, and Shannon 
entropy (see Methods Model 3; Table S3). We found that 
higher levels of PC1 were found in those in the rural loca-
tion, which is consistent with prior studies showing more 
Prevotella-rich microbiomes in rural versus urban areas 
in SSA [20]. PC2 correlated positively with Shannon 
entropy, BMI, and length on cotrimoxazole. PC3 cor-
related negatively with Shannon entropy and length on 
cotrimoxazole, and PC4 correlated positively with ART 
status (Table S3; Fig.  3B). Treatment (p-value = 0.039) 
but not HIV-infection status (p = 0.111) had a significant 
effect on beta diversity based on Adonis (see Methods 
Model M4) and living in the rural versus urban location 
also had a significant effect on beta diversity (Adonis, 

p = 0.035; see Methods Model M5). PCoA plots stratified 
by location and week are shown in Figure S10.

We also used beta diversity measures to estimate dys-
biosis as the average weighted UniFrac distance between 
PLWH and HC (Fig. 3B, C, Figure S11). ART experienced 
PLWH showed significantly higher dysbiosis compared to 
ART-naïve PLWH in the urban and not rural area (Figure 
S11), with the rural area actually showing the opposite 
trend. However, individuals in the rural area had higher 
exposure to cotrimoxazole at baseline, and the time of 
cotrimoxazole at baseline did correlate significantly with 
dysbiosis (Figure S8), which may in part explain why 
change was only observed in the urban cohort. No sig-
nificant change in dysbiosis over time was found in ART-
naïve and experienced cohorts, including when stratifying 
for location (Figure S10). We hypothesized that a change 
in dysbiosis with ART could manifest as increased dys-
biosis due to direct drug effects, or decreased dysbiosis 

Fig. 3 Biplots of weighted UniFrac PCoA axes and delta dysbiosis analyses stratified by cohort and location. A Plotted weighted UniFrac PCoA 
axes that account for over 50% of the variance with important genera (importance defined as those farthest from the origin using Euclidean 
distance) indicated. B Linear regression model showing delta dysbiosis as a function of baseline dysbiosis stratified by cohort. Dysbiosis for each 
sample in ART-naïve and experienced cohorts was calculated by taking the average weighted UniFrac distance from each sample to all healthy 
controls (HC). This average was calculated on values of the same timepoint. For example, if the sample had been taken at week 0, the dysbiosis 
score (average distance to HC) was calculated with values only at week 0. Delta dysbiosis was calculated by taking the difference in dysbiosis 
between week 24 and 0. C Same analysis as B but stratified by location
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due to ART driven immunologic improvements, and thus 
may be influenced by baseline dysbiosis. Indeed, change 
in dysbiosis was significantly related to baseline values in 
a linear regression (see Methods Model M6), particularly 
in the rural location (Fig. 3C), with those with the highest 
dysbiosis at baseline having improvement (negative delta) 
following 24 weeks of ART/cotrimoxazole treatment and 
individuals with the lowest dysbiosis at baseline show-
ing worsening dysbiosis (positive delta) at week 24. This 
same pattern was also statistically significant in the ART-
experienced cohort though with a smaller effect size 
(slope) (Fig. 3B), suggesting continuous effects of ART on 
dysbiosis over time.

Differential abundance analysis
To understand which genera significantly differed 
between cohorts, we used ANCOM-BC2 [41, 42], a dif-
ferential abundance (DA) analysis package for com-
positional microbiome data that allows for regression 
modeling to control for potential confounding fac-
tors. Specifically, we determined which genera differed 
between HC and the ART-experienced or ART-naïve 
cohorts in models that also included the effect of time, 
viral load, and location to control for confounders. We 
used both baseline values only (see Methods Model M7) 
so that we could compare the naïve cohort before ART 
treatment to the other two cohorts, and a mixed effects 
model analysis with data from both timepoints (see 
Methods Model M8), although in the ART-naïve versus 
HC comparison, it is important to note that this includes 
individuals both before and after ART, and so results will 
also in part be driven by ART. Analyses were done on 
bacterial genera classified with the Silva taxonomy (ver-
sion 138) [43].

The ART-naïve cohort showed only a significant 
decrease in the Clostridium_sensu_stricto_1 genus when 
compared to HC at baseline. With two timepoints (so 
also including samples from after 24 weeks of ART), the 
ART-naïve versus HC comparison additionally showed 
decreases in Turicibacter, Blastocystis, and Butyrivibrio 
(Fig.  4B). Neither location nor viral load was found to 
impact DA at baseline.

Comparisons between ART experienced PLWH 
and HC baseline values showed an increase in Lach-
noclostridium and Megamonas and a decrease in 
Turicibacter, Butyrivibrio, Blastocystis, and Clostrid-
ium_sensu_stricto_1 (Fig.  4A). In models created using 
samples from both timepoints, a decrease in Clostridia_
UCG-014 in the ART experienced and an increase in 
Bilophila was additionally detected (Fig. 4B). Finally, we 
also evaluated change over time in the ART-naïve cohort 
(see Methods Model M9) to detect longitudinal microbi-
ome changes with 24  weeks of ART using mixed linear 
model. Only genus Lachnoclostridium was significant 
and decreased over time (p-value 7.75e-05).

Integrative analysis of immune markers and microbiome
To gain further insight into relationships between gut 
microbiome composition and immune phenotypes, we 
used linear models with the immune markers described 
in Fig. 1 as response variables, and measures of microbi-
ome alpha (Shannon entropy) and beta (weighted Uni-
Frac) diversity as explanatory variables. Beta diversity 
was summarized as the first 4 PCs in the PCoA analysis 
described in Fig. 3A. We also included several other vari-
ables that could potentially influence immune measures 
in the models including age, BMI/BMI categories, gen-
der, location, HIV diagnosis date (indication of how long 

Fig. 4 Differential abundance of genera relative to healthy controls. A Using ANCOM-BC, significant differential log-fold changes between microbes 
were calculated relative to healthy controls using only baseline values. The model used also evaluated the effect of location and viral outcome. 
A zero means that there is no significant difference in the genus between cohorts. B Similar to A, however both timepoints were included 
in the model; therefore, time was added to the model, and we controlled for dependence between samples belonging to the same patient
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PLWH were on ART in the ART experienced cohort), 
and viral load. We used backwards selection [44] to 
define a set of predictors that associated with immune 
markers. Models were customized for each cohort as 
measurements of viral load would not apply to HC and 
the number of years on ART would not influence the 
ART-naïve cohort. Models were then applied to each 
timepoint separately (Fig. 5).

For microbiome explanatory variables, we found 
that in ART-naïve individuals only, the inflammatory 
marker IL-6 was negatively associated with PC3 and 
positively associated with PC4 of the weighted UniFrac 
PCoA analysis shown in Fig. 3 (Fig. 5). PC1, whose val-
ues correlated with having a more Prevotella-rich/Bacte-
roides-poor microbiome type, positively correlated with 
CD8 + PD1 + T cells in the ART-naive cohort following 
24 weeks of ART treatment (Fig. 5). CD8 + CD38 + HLA-
DR + T cells also correlated negatively with PC2 in the 
HC.

Other interesting observations for non-microbiome 
explanatory variables included that BMI negatively 
correlated with CD4 + CD38 + HLA-DR + T cells in 

ART-naïve PLWH, and that both age and BMI posi-
tively correlated with CRP in HC. Living in the rural 
versus urban location also influenced immune popula-
tions in both the PLWH and HC. CD4 + and CD8 + T 
cell exhaustion was higher in the rural location com-
pared to urban after 24 weeks of ART (Fig. 5). CD8 + T 
cell activation (CD38 + HLA-DR +) was also higher in 
the urban compared to rural area in HC but not HIV-
infected cohorts. We next used linear regression to 
identify individual microbes and modules of highly 
co-correlated microbes (ASVs defined using DADA2 
[45], and modules created with SCNIC [46]) associ-
ated with immune factors. We performed separate 
analyses on data from the baseline and week 24 sam-
ples. We then formed a network (Fig.  6), where edges 
represent relationships between an immune popula-
tion and microbe where the estimated slope for the 
HIV-naïve cohort was significantly different from 
either the ART-experienced or HC cohort. At baseline, 
this would identify relationships in untreated infec-
tion that are corrected with ART or not present in 
HC. Twenty-nine relationships were identified, with 

Fig. 5 Predictive models for immune markers. Each row within each square represents one model. Circles represent predictors included in models. 
Predictors were determined by backwards stepwise regression feature selection. Location was retained in all models, viral load in the 2 PLWH 
cohorts, and HIV diagnosis date in the ART-experienced cohort. Predictors that had a significant impact on the model are colored red (↑/positive) 
or blue (↓/negative). Gender (up) represents higher values in males; location (up) represents higher values in the rural location; BMI categories 
(up) represent higher values with higher BMI; water source (up) represents higher values in people who drink from wells as opposed to tap; 
education level (up) represents higher values in people who went to secondary school as compared to tertiary; manual job (up) represents 
higher values in those who do work manual jobs as compared to those who do not. “Model NS” means that the overall model was not significant 
despite the predictor being significant. Gray circles represent non-significant predictors
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14 for CD4 + PD1 + cells, 7 for CD8 + CD38 + HLA-DR 
cells, 7 for CD4 + CD38 + HLA-DR + cells, and 1 for 
CD8 + PD1 + T cells, and none for the other immune 
populations tested. Using only baseline data, both 
negative and positive associations were detected, indi-
cating a potential influence of both protective and det-
rimental bacteria. When performing the same analysis 
using only the data from the samples collected at the 
24  weeks timepoint, only 2 associations were found, 
showing a diminishing of these relationships with effec-
tive ART.

To evaluate microbe-immune relationships specific to 
treated infection versus HC, we used a similar approach 
to identify relationships between ASVs and immune 
phenotypes that were significantly different than zero 
for one of the cohorts (either experienced PLWH or 
HC) and significantly different between the cohorts 
(see Methods Model M10). These analyses showed 
a much weaker effect, identifying six relationships 
at baseline (5 with CD4 + PD1 + cells, and one with 
CD8 + CD103 + cells) (Figure S12), and 1 relationship 
at week 24 (specifically, a positive relationship with an 
ASV in the family Enterobacteriaceae (p-value of slope 
in Exp = 4.2  e−4).

Discussion
This study allowed us to assess differences in both 
immune and gut microbiome response to ART in 
HIV + individuals living in an urban versus rural area of 
Zimbabwe and potential relationships between them. 
Although the percent of PLWH who achieved viral con-
trol with ART was not different between the rural and 
urban locations, improvements in inflammation, T cell 
activation, and T cell exhaustion markers with success-
ful ART were muted in the rural compared to the urban 
area. Furthermore, ART with cotrimoxazole prophylaxis 
had a relatively strong impact on gut microbiome com-
position compared to HIV infection alone, with reduc-
tions in alpha diversity and greater deviation from the 
microbiome composition of HC. Other important associ-
ates with microbiome differences were BMI and living in 
the rural versus urban location. Finally, we observed sig-
nificant relationships between gut microbiome compo-
sition and inflammation, T cell exhaustion, and chronic 
immune activation markers particularly in ART-naïve 
PLWH. Elevated immune exhaustion after 24  weeks of 
treatment correlated with both living in the rural loca-
tion and a more Prevotella-rich/Bacteroides-poor micro-
biome type, suggesting a potential role for microbiome 

Fig. 6 Network analysis of immune and microbial associations. A Network summarizing relationships between immune markers (beige nodes) 
and microbial ASVs (pink nodes) at week 0. Red edges represent positive associations between an immune marker and microbial feature 
in the ART-naive cohort; blue edges represent negative associations. Edge widths are a function of the p-value on the slope of the ART-naive 
cohort, with thicker edges representing smaller p-values. Relationships were generated by linear models of the form immune marker ~ microbial 
feature + microbial feature × cohort, with an additional term for read count of the microbial feature. Relationships in this network are limited to those 
with an FDR-adjusted p-value on the F statistic of the overall regression < 0.2, adjusted R2 > 0.25, p-value on the slope for the naïve cohort < 0.05 
and different from the slope for the experienced cohort and/or the healthy controls (p < 0.05), and maximum absolute value of DFFITS < 2. 
Names are based on Silva taxonomy [43] assignment for each ASV. Square nodes with more than one listed feature represent highly correlated 
microbes that were binned using SCNIC [46]. B, C Scatterplots and fitted regression models of associations between CD8 + CD38 + HLA-DR + (B), 
and CD4 + PD1 + (C) immune cells and microbial features. Each circle represents one person, colored by cohort. Fitted models for each cohort 
are shown with colored lines, with dashed lines representing slopes significantly different than naïve (p < 0.05), and dotted lines not significantly 
different than naïve. For all plots, the slope for the naïve cohort is significantly different than zero (pNaive, with significance codes for p-values 
defined as “***” (0, 0.001), “**” (0.001, 0.01), “*” (0.01, 0.05). Adjusted R2 (adjR2) is provided as a measure of overall model quality
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differences or their co-variates in the muted improve-
ments in immune exhaustion in the rural area.

In this study, all participants with HIV-1 were treated 
with EFV/3TC/TDF. Levels of viral control were con-
sistent with previous reports of an 81% viral control rate 
with EFV/TDF/FTC [47]; failures have been previously 
related to both discontinuation due to adverse events 
and the development of antiviral resistance [47]. That we 
did not detect a difference in viral control rate between a 
rural and urban location contrasts with prior studies con-
ducted in SSA that found increased failure of first-line 
ART in rural locations to be related to poor compliance 
because of longer travel distances to access health care 
facilities, increased stigma, and human resources chal-
lenges [2, 21, 48]. It is difficult to discern the degree to 
which the muted improvement in inflammation, T cell 
activation, and exhaustion observed with successful ART 
in the rural area could have been related to similar com-
pliance issues.

Non-HIV-related factors that influenced these same 
immune phenotypes included BMI, gender, and age; 
however, these factors did not significantly differ in 
PLWH in the urban and rural locations so are also not 
likely drivers. The negative correlation between levels of 
activated CD4 + CD38 + HLA-DR + T cells and BMI in 
ART-naïve PLWH is consistent with this immune marker 
and wasting occurring with progression to AIDS [49]. 
Our data suggests a potential role for microbiome differ-
ences that occur with low BMI in CD4 + T cell activation, 
since BMI significantly affected microbiome composition 
in our models. It was striking that 43.8% of ART experi-
enced men were in the underweight categories, suggest-
ing that this population may be particularly vulnerable to 
food insecurity. Our observation of significantly higher 
CD4 + T cell percent and CD4/CD8 T cell ratio in ART-
naïve women compared to men is consistent with the 
results of several prior studies conducted in SSA, and a 
sex hormone effect is one possible explanation that has 
been suggested [50].

Surprisingly, the HC had a significant increase in 
CD8 + T cells expressing the exhaustion marker PD1 and 
the ART-experienced cohort in the rural location had 
an increase in the inflammatory marker CRP over time 
(Fig. 1) both of which we would have expected to remain 
unchanged. One potential driver of these changes may 
be socio-economic change in Zimbabwe during patient 
sample collection, as indicated by increases in inflation 
rates, which ranged from 3.52 to 66.8% during baseline 
sample collections (January 2018 to March 2019) and 
from 4.29 to 230.54% during 24 week sample collections 
(July 2018 to August 2019) [37]. In one prior study con-
ducted in Uganda, high levels of inflammatory markers 
(IL-6 and d-dimer) among PLWH on ART were linked 

with economic insecurity, specifically a lack of electricity 
and an unprotected water source [51]. However, we did 
not see an effect on immune measures of water source 
(tap, bore hole, or well) in our linear models.

Since one goal of this study was to relate immune mark-
ers in HIV to the intestinal microbiome, we also evalu-
ated T cells expressing the mucosal trafficking marker 
CD103. The chief ligand for CD103 is E-cadherin, a cel-
lular adhesion molecule found on epithelial cells which 
is important for T cell homing to mucosal sites, includ-
ing the intestine [52]. Circulating CD103 + T cells share 
a cellular transcriptome that more closely resembles 
CD4 + T cells from the gut, suggesting they are homing 
to the gut [53]. The decrease in CD103 + T cells in ART-
naïve PLWH compared to HC could indicate trafficking 
to the gut to combat HIV-driven challenges. The increase 
in CD103 + T cells in ART-experienced versus ART-naive 
could be indicative of a reduction in gut homing of T 
cells following a partial resolution of mucosal inflamma-
tion with ART.

Our study population overall had a relatively Prevo-
tella-rich/Bacteroides-poor microbiome, which is con-
sistent with other studies conducted in SSA [16, 54, 55]. 
Individuals in the urban area had a significantly differ-
ent microbiome composition compared to rural, char-
acterized in part by lower values on the PC1 axis that 
separated Prevotella-rich from Bacteroides-rich micro-
biomes. This is consistent with prior studies comparing 
gut microbiomes of individuals in rural versus urban 
Cameroon and Tanzania [19, 54]. Movement towards a 
more Bacteroides-rich/Prevotella-poor microbiome has 
previously been described as a “Westernization” of the 
microbiome with urbanization [54]. Interestingly, PC1 
positively correlated with CD8 + PD-1 + T cell exhaus-
tion in the ART-naïve cohort after 24 weeks of treatment. 
That elevated immune exhaustion after 24 weeks of treat-
ment correlated with both living in the rural location and 
a more Prevotella-rich/Bacteroides-poor microbiome 
type suggests a potential role for microbiome differ-
ences or their co-variates in the muted improvements in 
immune exhaustion in the rural area.

Consistent with prior studies [17], gut microbiome 
differences with untreated HIV infection were not pro-
nounced, with no significant difference from HC based 
on beta diversity and only 1 ASV in Clostridium cluster 
I having a significantly reduced abundance compared 
to HC. The gut microbiome of ART-naïve PLWH had 
reduced alpha diversity compared to HC in the rural 
location, which has been reported previously in SSA 
[14] and Western countries [27], but inconsistently [17]. 
Although reduced alpha diversity in untreated HIV 
infection has previously been linked with disease sever-
ity [14], Shannon diversity was not related to CD4 + T 
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cell percent in ART-naïve PLWH in our models. Some 
ART-naïve PLWH in the rural site were taking the anti-
biotic cotrimoxazole at baseline; however, time on cotri-
moxazole did not correlate with baseline alpha diversity 
values, suggesting that untreated HIV infection and not 
cotrimoxazole was driving the reduced alpha diversity 
observed with untreated HIV infection in the rural area. 
Microbiome dysbiosis did correlate positively with length 
on cotrimoxazole in the ART-naïve PLWH at baseline. 
Cotrimoxazole was previously found to not decrease 
alpha diversity [56], but to change global composition 
[57], or suppress potential pathogens such as Streptococ-
cus [58], in randomized trials conducted in SSA.

Despite a lack of pronounced microbiome differences 
in ART naïve PLWH, we did find significant relationships 
between gut microbiome composition and inflammation; 
The inflammatory marker IL-6 was negatively associ-
ated with PC3 and positively associated with PC4 of the 
weighted UniFrac PCoA analysis in ART-naïve PLWH 
only. We also identified many correlations between ASVs 
and levels of T cell exhaustion and activation that were 
specific to the ART-naïve PLWH, with CD4 + PD1 + T 
cells being the strongest hub, followed by CD8 + and 
CD4 + CD38 + HLA-DR + T cells. ASVs that were posi-
tively correlated with these cell populations included 
bacteria that have been implicated in bacteremia, intra-
abdominal or endodontic infections, colorectal cancer, 
and/or inflammatory bowel diseases including Bacteroides 
massiliensis [59], Massilliprevotella massiliensis [60], 
Mogibacterium [61], and Sutterella [62, 63]. B. massilien-
sis is additionally a mucin degrader with a preference for 
host glycans over dietary substrates [64], an activity that 
has been previously shown to compromise barrier func-
tion [65]. M. massiliensis has previously been found to 
correlate with CD8 + CD38 + HLA-DR + T cells in ART-
experienced men who have sex with men (MSM) [17]. 
Many of the negatively correlated bacteria were poorly 
defined or had unclear effects on health, but included bac-
teria previously associated with disease protection such as 
Parabacteroides [66], the butyrate producers Coprococcus 
[67], and Blautia [68]. Coprococcus has been previously 
associated with improved barrier function among ART-
experienced MSM [69]. Taken together, these results sug-
gest that microbiome composition in ART-naïve PLWH 
may influence levels of immune activation and exhaustion 
driven by translocation. Although we do not have labo-
ratory validation supporting causality, prior work in our 
lab showed that the fecal bacteria from ART-naïve PLWH 
in the USA stimulated high levels CD8 + CD38 + HLA-
DR + T cells from peripheral blood mononuclear cells 
(PBMCs) in  vitro and that levels of in  vitro stimulation 
correlated with ex vivo levels of activated CD8 + T cells in 
matched patient blood [10].

The ART-experienced cohort had more pronounced 
microbiome differences from the HC. Our results sug-
gest the concomitant use of cotrimoxazole as one driver, 
since dysbiosis correlated positively with length on cot-
rimoxazole in the ART-naïve PLWH at baseline. Our 
observation of reduced alpha diversity in ART-experi-
enced PLWH compared to ART-naïve is consistent with 
other studies evaluating PLWH exposed to both ART 
and cotrimoxazole [12] and to PLWH exposed to ART 
only [70–73], although increased diversity with ART has 
also been observed [27] and related to longer ART dura-
tion [13]. Even within this study, whether alpha diversity 
was gained or lost with ART depended on baseline val-
ues, suggesting differential effects based on the degree 
of HIV-associated gut microbiome disturbance at the 
commencement of treatment. Whereas a previous study 
in Cameroon found a more pronounced effect of ART 
regimens containing ritonavir-boosted protease inhibi-
tor (PI/r)-based ART compared to NNRTI based regimes 
[12], one study in Mexico showed reduced diversity with 
the same ART regimen used here without concomitant 
cotrimoxazole use, supporting that the loss of diversity 
observed here may be at least partially driven by the ART 
drugs themselves [73].

Taxa significantly enriched in ART-experienced PLWH 
compared to HC include Megamonas, Bilophila, and 
Lachnoclostridium, which have all been found to be 
increased in prior studies of gut microbiome differences 
with treated HIV infection [8, 15, 74]; Megamonas has 
additionally been associated with iron deficiency in the 
context of treated HIV infection [15], and both Bilophila 
and Megamonas can be pro-inflammatory [15, 75]. Taxa 
that were depleted in ART-experienced PLWH included 
Turicibacter, Butyrivibrio, Blastocystis, and other poorly 
defined ASVs in the order Clostridiales. Despite the pos-
sibility for microbiome differences observed with ART 
to be involved in inflammation, we found fewer correla-
tions between the immune readouts and the microbiome 
within ART-experienced PLWH. Linear models used to 
identify relationships between individual microbes and 
immune populations in ART-experienced PLWH identi-
fied only a few correlations, again with immune exhaus-
tion. These included positive associations between 
CD4 + PD1 + T cells and ASVs in genera often considered 
to be beneficial commensals such as Bacteroides, Faecali-
bacterium, and Gastranaerophilales (Figure S12).

Our study does have some weaknesses. Since we only 
used 16S rRNA targeted sequencing of bacteria to assess 
microbiome composition, our results do not rule out a 
role for fungi, parasites, viruses, strain level variation, or 
differences in expressed functions. Furthermore, we were 
unable to validate immune modulation by fecal bacterial 
communities using in  vitro assays or gnotobiotic mice 



Page 13 of 20Burkhart Colorado et al. Microbiome           (2024) 12:18  

[34] because we collected fecal samples in a preservative 
for DNA integrity but not amenable to such functional 
experiments because of challenges with getting samples 
from rural Zimbabwe to CO, USA. Due to stigma and 
concerns for loss of privacy and participant safety [76], 
we did not collect information on sexual preferences in 
this cohort. Therefore, we are unable to assess potential 
confounding resulting from associations between sexual 
practices and microbiome differences as described in 
studies of persons with HIV in the USA and Europe [17, 
70]. Finally, we were surprised to find differences over 
time in immune readouts our non-intervention cohorts. 
Although we suspect that changes in economic stability 
that occurred over the time of sampling may have been 
at play, we did not measure factors such as changes in 
access to food, clean water, or stress over time to confirm 
drivers. Future analyses of this cohort will also include 
information on factors including diet and markers of 
socio-economic status and how they also influence meta-
bolic health.

Methods
Recruitment
The rural recruitment site was the Mutoko District 
Hospital, which is in a small town (population of about 
12,500) about a 2-h drive from the city of Harare that ser-
vices surrounding rural villages. The urban subjects were 
recruited from the Mabvuku Polyclinic, a large urban 
clinic administered by the City of Harare. Subjects were 
excluded from all cohorts if they had used antibiotics 
(apart from co-trimoxazole) within the prior 2  months, 
were pregnant, or had a body mass index (BMI) greater 
than 29 kg/m2 (are obese). All participants were 18 years 
old or older.

Fecal and blood specimen collection
At the first visit after informed consent was obtained, 
study participants were given a fecal collection kit. Stool 
samples were collected in a specimen collector within 
24 h prior to their second and third clinic visits, and ali-
quoted by the study participant into an OmniGene Gut 
collection system (OM-200, DNA Genotek, Ontario, 
Canada) for preservation of DNA. A fasting blood sam-
ple was collected by venipuncture during the second and 
third visits. Blood and fecal samples from the rural clinic 
were couriered to the Infectious Diseases Research Lab-
oratory in the Internal Medicine Unit at the University 
of Zimbabwe Faculty of Medicine and Health Sciences 
(Harare), which is a 2-h drive from the Mutoko District 
Hospital, in a cooler on the day of sample collection and 
then stored at − 80 °C. Samples for microbiome sequenc-
ing were shipped on dry ice to the University of Colorado 

Anschutz Medical Campus (Aurora, CO) and stored 
at − 80° C upon arrival.

Collection of demographic information
Study participants filled out a questionnaire which 
included questions on age, body mass index (BMI), gen-
der, education level, water source, and factors related to 
occupation and home life.

Blood sample processing
A subset of the blood sample was analyzed by flow 
cytometry using fresh PBMCs at the Infectious Dis-
eases Research Laboratory (IDRL) located in the Inter-
nal Medicine Unit at the University of Zimbabwe Faculty 
of Medicine and Health Sciences. Whole blood was col-
lected in BD vacutainer tubes containing sodium hepa-
rin and red blood cells (RBCs) from 500  mL of blood 
were lysed with 1 × RBC lysis Buffer (Thermo Fisher). 
Cells were washed twice with staining buffer contain-
ing PBS, 2% BSA, 1 mM EDTA, and surface stained with 
BV785-labeled anti-CD3 antibody (BioLegend Cat# 
317330), PerCP/Cy5.5-labeled anti-CD4 (BioLegend 
Cat# 317428), BV421-labeled anti-CD8 antibody (Bio-
Legend Cat# 344748), BV605 labeled anti-CD38 anti-
body (BioLegend Cat# 303533), Pe-labeled anti-CD103 
antibody (BioLegend Cat# 350206), Pe-Cy7 labeled anti-
HLA-DR antibody (BioLegend Cat# 307616), and FITC-
labeled anti-PD-1 antibody (BioLegend Cat# 329904) 
or appropriate fluorescence minus one (FMO) controls. 
Cells were washed twice with staining buffer and fixed 
in 1% formaldehyde. Cells were acquired on a BD LSR-
Fortessa flow cytometer and analyzed by FlowJo. Repre-
sentative staining and gating for CD103, PD1, and T cell 
activation (CD38 + HLA-DR +) on CD4 + and CD8 + T 
cells is shown in Figure S13.

Plasma was isolated and frozen for shipment to the 
University of Colorado for measurement of CRP and 
IL-6 with ELISA following the manufacturer’s protocol 
(CRP: R&D Systems cat. DCRP00, IL-6 Invitrogen cat. 
88–7066).

Blood samples were also used to evaluate absolute 
CD4 + T cell count or CD4 + T cell percent using the Sys-
mex (formally Partec) CyFLOW cytometer, and CD4 easy 
count kit or CD4 percent easy count kit following man-
ufacturer’s instructions (Sysmex, cat: 058401, 058505, 
respectively), and HIV viral load using a Roche COBAS 
AmpliPrep/COBAS TaqMan (CAP/CTM) instrument 
with COBAS AmpliPrep/TaqMan HIV-1 test v2.0 kit fol-
lowing manufacturer’s instructions at the Infectious Dis-
eases Research Laboratory (IDRL) located in the Internal 
Medicine Unit, UZ Faculty of Medicine and Health  
Sciences (UZFMHS).
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DNA extraction and sequencing
DNA was extracted using the DNeasy PowerSoil Kit pro-
tocol (Qiagen). Extracted DNA was PCR-amplified with 
barcoded primers targeting the V4 region of 16S rRNA 
gene according to the Earth Microbiome Project 16S Illu-
mina Amplicon protocol with the 515F:806R primer con-
structs [77]. A sterile water blank was included in each 
batch of extractions and PCR amplification to serve as 
a procedural control. Each PCR product was quantified 
using PicoGreen (Invitrogen), and equal amounts (ng) of 
DNA from each sample were pooled and cleaned using 
the UltraClean PCR Clean-Up Kit (MoBio). Sequences 
were generated on two runs on a MiSeq personal 
sequencer (Illumina, San Diego, CA).

Software
Unless otherwise specified, all analyses were run in R ver-
sion 4.2.2 (2022–10-31) [78]. 

Data preprocessing
Before analyses were performed, one sample with no 
immune data (ZIM033.3) was removed. ART-naïve patients 
at week 24 and ART experienced patients at week 0 were 
labeled as “viremic” if they had more than 200 copies of 
HIV/mL of blood [23]. There were 10 patients whose CD4 
T cell immune data was not able to be measured. Therefore, 
we imputed values for that missing data, specifically, for the 
following immune markers: CD4 + CD38 + HLA-DR + (%), 
CD4 + PD1 + (%), CD4 + CD103 + (%). Imputed values were 
calculated as the average immune marker value. Length on 
ART was calculated for the ART-experienced PLWH as 
the number of days between the visit date and the date that 
they started ART. For all longitudinal analyses, only study 
participants who provided samples at both baseline and 
week 24 were included.

Immune phenotype analyses
Fixed‑effects ordinary least squares linear modeling
Linear modeling performed in Figure S6 (M1) used the 
feols function in the fixest package [79] in R to run fixed-
effects OLS linear modeling.

Model (M1) was run on all study participants and then 
stratified by location and clustered by Person ID (PID), 
due to the longitudinal aspect of the study. ggplot [80] 
was then used to visualize results. Immune marker values 
were not imputed for this analysis.

Inter‑ and intra‑cohort immune analyses
For the inter-cohort tests (Fig.  1), all baseline values 
were used regardless of whether the study participant 

(M1)Immune marker ∼ Cohort +Week + Cohort ∗Week

completed the 24 week visit. ART-experienced individu-
als who were viremic at baseline were excluded to evalu-
ate the effects of successful ART. Significant differences 
were assessed with a Kruskal–Wallis test with a Dunn’s 
post hoc. In the intra-cohort longitudinal comparisons, 
study participants who did not complete both the base-
line and 24 week visit were excluded as were all viremic 
patients (including ART-naïve and experienced). Sig-
nificant differences were assessed with a paired Mann–
Whitney U test. No immune marker means were imputed 
in this analysis. ggplot [80] was used to visualize results.

Microbiome analyses
Core metrics analysis and taxonomic classification
Demultiplexing of 16S rDNA gene sequences and quality 
control using DADA2 [45] to define ASVs were performed 
in QIIME2 (version 2023.5) [81]. SILVA (version 138) [82, 
83] was used to perform taxonomic classification of each 
ASV. Taxa that were not classified at the phylum level or 
that were classified as mitochondria and chloroplasts were 
excluded. SEPP [84] was used to produce a phylogeny of 
ASVs for use in diversity analyses. The feature table of 
ASVs was rarified to a sampling depth of 16,645 sequences 
per sample prior to downstream analyses.

Alpha diversity, measured as Shannon entropy [38], 
was plotted across all three cohort and over time (Fig. 2A, 
B) using QIIME 2. Linear modeling (Fig.  2C) (M2) was 
performed using the lm function in stats package [78].

Beta diversity, measured using weighted UniFrac dis-
tances [40], was calculated using the core metrics func-
tions in QIIME2. Predictors were found to be correlated 
with weighted UniFrac PCoA arms using mixed effects 
linear modeling (Table S3).

Weighted UniFrac PCoA results from the core metrics 
analysis were used to calculate coordinates for biplots in 
QIIME2 and then visualized in R. To evaluate potential 
moderators of beta diversity, two different Adonis tests 
[85] were performed in R. The models that were run 
were:

Both models M4 and M5 were stratified (using the 
strata parameter) by PID to account for the depend-
ence between samples from the same patient. Age was 

(M2)
�Shannon Entropy ∼ Baseline Shannon Entropy

(M3)PCoA Arm ∼ All Predictors + (1|PID)

(M4)Weighted UniFrac ∼ Age +HIV Status + Treatment Status

(M5)Weighted UniFrac ∼ Location+Week + Location ∗Week
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included in model M4 as a potential confounder since it 
significantly differed across cohorts. Dysbiosis was cal-
culated in R as the mean distance of each sample in the 
ART-naïve and experienced cohort to all healthy controls 
of the same timepoint. Linear modeling (M6) was then 
performed using the lm function in stats package [78] for 
each cohort and each location separately (Fig. 3B, C).

Compositional differences
To determine genera that significantly differed in abun-
dance across cohorts, we used ANCOM-BC (version 2.0.2) 
[41]. This allowed us to account for the compositional 
nature of microbiome data, control for location and viral 
control with ART as potential confounders, and account 
for the longitudinal study design. Analysis was performed 
in R using the Phyloseq (version 1.42.0) [86], and Qiime2R 
(version 0.99.6) [87] packages. The taxonomic level that 
we evaluated at was genus and the reference group used in 
the analysis was the healthy controls. Subsequently, three 
models were tested using ANCOM-BC.

Model M6 was run only on baseline values. Also, val-
ues were grouped by cohort which is used to help detect 
structural zeros and performing multi-group compari-
sons. Results are shown in Fig. 4A.

Model M7 evaluated values at both timepoints (both 
week 0 and week 24) and grouped by cohort as in model 
M6. The random effects term was added to account for 
the dependence between samples of the same patient. 
Results are shown in Fig. 4B, and it should be noted that 
since the second timepoint was after 24 weeks of ART/
cotrimoxazole, these additional differences from baseline 
also will reflect changes with ART.

Model M8 evaluated values at both timepoints but only 
for those patients who were ART-naïve PLWH at base-
line, to evaluate changes over time with ART. No results 
were visualized for this model as there were very few dif-
ferences. For models M6 and M7, visualizations (Fig. 4A, 
B) were produced using ggplot [80] and microViz [88].

(M6)�Dysbiosis ∼ Baseline Dysbiosis

(M7)
Filtered Taxa ∼ Location+ Viral Outcome + Cohort

(M8)Filtered Taxa ∼ Location+Week + Viral Outcome + Cohort + (1|PID)

(M9)
Filtered Taxa ∼ Location+Week + Viral Outcome + (1|PID)

Integrative analysis of immune markers and microbiome
Predictive models for immune markers
To understand the impact that other variables might have 
on patient immunity (Fig. 5), we curated a list of poten-
tial clinical and demographic features: cohort, location, 
gender, BMI, BMI categories (severe thinness, moderate 
thinness, mild thinness, normal, overweight, and obese), 
HIV status (negative/positive), week, age, Bristol stool 
score, education level (primary, secondar, and tertiary), 
water source (tap, bore hole, and well), cotrimoxazole 
(Y/N), length on cotrimoxazole (months), normal work 
transportation (bus or train, car or motorcycle, does not 
travel to work, and walk or bike), manual work, manual 
chores at home (Y/N), head of household (Y/N), and 
length on ART (years); and measures of microbial com-
munity diversity (PCA1, PCA2, PCA3, PCA4 from the 
weighted UniFrac PCoA and Shannon entropy). Since 
linear models inherently penalize large numbers of 
explanatory variables [89] because more variables in the 
model can reduce results accuracy due to overfitting, we 
reduced the number of explanatory variables when devel-
oping the models using backwards stepwise regression 
feature selection [44]. Overall, 226 samples were evalu-
ated—including individuals who had come in at both 
timepoints and who had controlled infection—against 
the 24 aforementioned explanatory variables for each  
immune marker. Afterwards, viral load was included 
in the models pertaining to PLWH (naïve and experi-
enced); and HIV diagnosis date was included in models  

pertaining only to ART-experienced PLWH. Models were 
created for each immune marker, cohort, and time sepa-
rately using the lm function from stats package [78].

Network analysis of immune and microbial associations
Data for 8 immune markers and 237 microbial features were 
combined in a dataset spanning 127 participants at baseline 
and 113 participants at week 24. Analyses were run sepa-
rately for baseline and week 24 data. Microbial features were 
limited to those observed in > 20% of samples, resulting in 
191 single ASVs and 46 modules (Table S4) of highly co-
correlated ASVs aggregated by SCNIC using default param-
eters [46]. Features were expressed as relative abundance. 
For each timepoint, linear regressions were performed for  
each pair of immune markers and microbial features as 
previously described [90]. The form of the model was:

(M10)Immune Marker ∼ Microbial Read Count+Microbial Feature+Microbial Feature∗Cohort
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The read count term accounted for differences in across 
samples since this analysis did not use rarefied data. To 
identify relationships that were evident in ART-naïve 
PLWH and different from ART-experienced PLWH or HC, 
resulting models were filtered to include only those with 
an FDR-adjusted p-value on the F statistic of the overall 
regression < 0.2, adjusted R2 > 0.25, p-value on the slope for 
the ART-naïve cohort < 0.05 and different from the slope 
for the ART-experienced cohort and/or the HC (p < 0.05 
for at least one of these slopes), and maximum absolute 
value of DFFITS < 2 (to exclude results that were outlier 
driven). The resulting network and models were visualized 
using the VOLARE [90] web application. A high-resolu-
tion version of the network was generated with the igraph 
[91] library in R. To compare microbe:immune relation-
ships observed in ART-experienced PLWH to HC, data 
was filtered to exclude the ART naïve cohort. Resulting 
models were limited to those with FDR-adjusted p-value 
on the F statistic of the overall regression < 0.2, adjusted 
R2 > 0.25, one of the slopes for the 2 cohorts different than 
0, and the slopes for the 2 cohorts being different than each 
other ((pSlopeExp < 0.05 | pSlopeHC < 0.05) and pExp_v_
HC < 0.05), maximum absolute value of DFFITS < 2.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 023- 01718-4.

Additional file 1: Figure S1. Number of study participants and samples 
used in different analyses and excluded for different reasons. Figure S2. 
CD4+ T cell percent and CD4/CD8 percent ratios across all cohorts 
stratified by location and across time (Baseline= Week 0). Statistical 
significance was calculated using a paired Mann-Whitney U test. P-values 
are coded as ‘****’ between [0, 0.0001], ‘***’ (0.0001, 0.001], ‘**’ (0.001, 0.01], 
‘*’ (0.01, 0.05], with square brackets indicating that the endpoints are 
included in the interval. Figure S3. Detailed plots of CD8+CD38+HLA-
DR+ (Panels A, B) and CD4+CD38+HLA-DR+ T (Panels C, D) cells 
underlying p-values reported in Fig. 1A. Panels A, C: Inter-cohort 
comparisons using only baseline (Week 0) values. Statistical significance 
assessed using a Kruskal Wallis with a Dunn’s post-hoc test. Panels B,D: 
Intra-cohort longitudinal comparisons over time. Statistical significance 
assessed using a paired Mann-Whitney U test. P-values are coded as ‘****’ 
between [0, 0.0001], ‘***’ (0.0001, 0.001], ‘**’ (0.001, 0.01], ‘*’ (0.01, 0.05], with 
square brackets indicating that the endpoints are included in the interval. 
Figure S4. Detailed plots of CD8+PD1+ T cells (Panels A, B) and 
CD4+PD1+ T cells (Panels C, D) underlying p-values reported in Fig. 1A. 
Panels A, C: Inter-cohort comparisons using only baseline (Week 0) values. 
Statistical significance assessed using a Kruskal Wallis test with a Dunn’s 
post-hoc test. Panels B,D: Intra-cohort longitudinal comparisons over time. 
Statistical significance assessed using a paired Mann-Whitney U test. 
p-values are coded as ‘****’ between [0, 0.0001], ‘***’ (0.0001, 0.001], ‘**’ 
(0.001, 0.01], ‘*’ (0.01, 0.05], with square brackets indicating that the 
endpoints are included in the interval. Figure S5. Detailed plots of IL-6 
(Panels A, B) and CRP (Panels B, C) levels underlying p-values reported in 
Fig. 1A. Panels A,C: Inter-cohort comparisons using only baseline (Week 0) 
values. Statistical significance assessed using a Kruskal Wallis with a Dunn’s 
post-hoc test. Panels B,D: Intra-cohort longitudinal comparisons over time. 
Statistical significance assessed using a paired P-values are coded as ‘****’ 
between [0, 0.0001], ‘***’ (0.0001, 0.001], ‘**’ (0.001, 0.01], ‘*’ (0.01, 0.05], with 
square brackets indicating that the endpoints are included in the interval. 
p-values < 0.0001 are labeled as ****, < 0.001 are ***, 0.01 are **, and  

< 0.05 are *. Figure S6. Detailed plots of CD8+CD103+ (Panels A, B) and 
CD8+CD103+ (Panels C, D) T cells underlying p-values reported in Fig. 1A. 
Panels A, C: Inter-cohort comparisons using only baseline (Week 0) values. 
Statistical significance assessed using a Kruskal Wallis with a Dunn’s 
post-hoc test. Panels B, D: Intra-cohort longitudinal comparisons over 
time. Statistical significance assessed using a paired Mann-Whitney U test. 
P-values are coded as ‘****’ between [0, 0.0001], ‘***’ (0.0001, 0.001], ‘**’ 
(0.001, 0.01], ‘*’ (0.01, 0.05], with square brackets indicating that the 
endpoints are included in the interval. Figure S7. Fixed-effects ordinary 
least squares (OLS) linear modeling was used to evaluate the combined 
effects of differences in cohorts and time points overall (left panel) and 
stratified by rural (middle panel) and urban (right panel) location. From 
the left, columns representing predictors should be interpreted as follows: 
the effect of ART naïve PLWH relative to healthy controls; the effect of ART 
experienced PLWH relative to heathy controls; change over time (COT) in 
healthy controls; the interaction of ART naïve PLWH with time relative to 
healthy controls and time; and the interaction of ART experienced PLWH 
with time relative to healthy controls and time. Coefficient and color show 
directionality of the relationship – red is a positive effect and blue 
negative. P-values are coded as ‘****’ between [0, 0.0001], ‘***’ (0.0001, 
0.001], ‘**’ (0.001, 0.01], ‘*’ (0.01, 0.05], with square brackets indicating that 
the endpoints are included in the interval. Figure S8. Correlation between 
the Length of time on Cotrimoxazole (in months) at Baseline (week 0) and 
alpha diversity (Shannon Entropy) and Dysbiosis (average weighted 
UniFrac distance of a given sample from each of the health control 
samples). Values shown for only the ART naïve cohort. A linear regression 
model was used with an interaction term for rural versus urban location. 
Figure S9. Taxa bar plots. Taxonomic assignments were made using a 
QIIME2 trained naïve-bayes classifier and the Silva (version 138) taxonomic 
database [51].  Each color represents a different bacterial genus, and 
genera within the same Phylum are depicted in different shades of the 
same color using microshades [92]. Samples are stratified by cohort and 
time. Figure S10. Weighted UniFrac Principal Coordinates Analysis (PCoA). 
The PCoA was conducted using data from all of the samples, but only a 
subset of samples are plotted in the different quadrants depending on 
whether they were from the rural or urban location (columns) or collected 
at week 0 or week 24 (rows). Points are colored by cohort. Naïve = HIV+ 
ART Naïve cohort, Exp = HIV+ ART Experienced cohort, HC= Healthy 
controls. The percent of variation explained by PC1 and PC2 are indicated 
on the x and y axes respectively. Figure S11. Detailed plots of microbi-
ome dysbiosis levels. A dysbiosis value for each sample was calculated as 
the average weighted UniFrac distance of that sample from each of the 
health control samples. Panel A: Inter-cohort comparisons using only 
baseline (Week 0) values. Statistical significance assessed using a Mann 
Whitney U test. Panel B: Intra-cohort longitudinal comparisons over time. 
Statistical significance was assessed using a paired Mann-Whitney U test. 
P-values are coded as ‘****’ between [0, 0.0001], ‘***’ (0.0001, 0.001], ‘**’ 
(0.001, 0.01], ‘*’ (0.01, 0.05], with square brackets indicating that the 
endpoints are included in the interval. Figure S12. (A) Network 
summarizing relationships between immune markers (beige nodes) and 
microbial ASVs (dark pink nodes) at Week 0 for only 2 cohorts: ART 
experienced and healthy controls. Red edges represent positive 
associations between an immune marker and microbial feature in the ART 
Naive cohort. Edge widths are a function of the p-value on the slope of 
the ART Naive cohort, with thicker edges representing smaller p-values. 
Relationships were generated by linear models of the form immune 
marker ~ microbial feature + microbial feature x cohort, with an additional 
term for read count of the microbial feature. Relationships in this network 
are limited to those with an FDR-adjusted p-value on the F statistic of the 
overall regression < 0.2, adjusted R2 > 0.25, p-value on the slope for the 
Naïve cohort < 0.05 and different from the slope for the Experienced 
cohort and/or the healthy controls (p<0.05), and maximum absolute value 
of DFFITS < 2. Names are based on Silva taxonomy assignment for each 
ASV. Square nodes with more than one listed feature represent highly 
correlated microbes that were binned using SCNIC. B, C) Scatterplots and 
fitted regression models of associations between CD4+PD1+ (B), and 
CD8+PCD103+ (C) immune cells and microbial features.  Each circle 
represents one person, colored by cohort (brown=experienced, 
green=healthy control).  Fitted models for each cohort are shown with 

https://doi.org/10.1186/s40168-023-01718-4
https://doi.org/10.1186/s40168-023-01718-4
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colored lines, with dashed lines representing slopes significantly different 
than 0 (p < 0.05), and dotted lines not significantly different than 0. For all 
plots, the slope for the experienced cohort is significantly different than 
zero (pExp, with significance codes for p-values defined as ‘***’ [0, 0.001], 
‘**’ (0.001, 0.01], ‘*’  (0.01, 0.05); where square brackets indicate endpoints 
included in the interval).  Adjusted R2 (adjR2) is provided as a measure of 
overall model quality. Figure S13. Representative staining and gating for 
CD103, PD1 and T cell activation (CD38+HLA-DR+) on CD4+ and CD8+ T 
cells in human PBMC. Human PBMC was stained for CD3, CD4, CD8, CD38, 
CD103, HLA-DR and PD-1 and analyzed by flow cytometry. CD3+ T cells 
were gated through singlet and lymphocyte gates. CD4+ and CD8+ T 
cells were then examined for expression of CD103, PD-1 and activation as 
determined by double positive expression of CD38 and HLA-DR (top right 
quadrant). Staining of PBMC from a HIV seronegative participant is shown. 
Table S1. Clinical and demographic characteristics of study population by 
cohort at baseline visit, stratified by sex. P-values were calculated using 
Mann Whitney U test. NA represents values not collected/ relevant to a 
particular cohort. Values are reported as the median with the minimum 
and maximum range indicated in brackets. Virologic failure is defined as 
PLWH who are on ART but have uncontrolled viral replication(> 200 
copies of HIV per milliliter of blood)   [23, 24]. BMI categories were 
determined using World Health Organization (WHO) standards [25]. 
Table S2. Clinical and demographic characteristics of study population by 
cohort at baseline visit, stratified by the rural versus urban location. 
P-values were calculated using Mann Whitney U test. NA represents values 
not collected/relevant to a particular cohort. Values are reported as the 
median with the minimum and maximum range indicated in brackets. 
BMI categories were determined using World Health Organization (WHO) 
standards [25]. Table S3. Mixed effect linear model p-value results with 
Weighted UniFrac PCoA arms as response variables. Location decreases 
from Rural to Urban and ART status increases from no treatment to on 
treatment. For continuous variables blue indicates negative correlation 
and red positive correlation. Table S4. Composition of largest modules 
found using SCNIC. Modules will have over four ASVs assigned to them.
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