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Abstract 

Background The recent recognition of the importance of the microbiome to the host’s health and well-being 
has yielded efforts to develop therapies that aim to shift the microbiome from a disease-associated state to a health-
ier one. Direct manipulation techniques of the species’ assemblage are currently available, e.g., using probiotics 
or narrow-spectrum antibiotics to introduce or eliminate specific taxa. However, predicting the species’ abundances 
at the new state remains a challenge, mainly due to the difficulties of deciphering the delicate underlying network 
of ecological interactions or constructing a predictive model for such complex ecosystems.

Results Here, we propose a model-free method to predict the species’ abundances at the new steady state based 
on their presence/absence configuration by utilizing a multi-dimensional k-nearest-neighbors (kNN) regression 
algorithm. By analyzing data from numeric simulations of ecological dynamics, we show that our predictions, which 
consider the presence/absence of all species holistically, outperform both the null model that uses the statistics 
of each species independently and a predictive neural network model. We analyze real metagenomic data of human-
associated microbial communities and find that by relying on a small number of “neighboring” samples, i.e., samples 
with similar species assemblage, the kNN predicts the species abundance better than the whole-cohort average. By 
studying both real metagenomic and simulated data, we show that the predictability of our method is tightly related 
to the dissimilarity-overlap relationship of the training data.

Conclusions Our results demonstrate how model-free methods can prove useful in predicting microbial communi-
ties and may facilitate the development of microbial-based therapies.

Introduction
Motivated by the significant role that microbial commu-
nities play in various environments [1–3], ongoing efforts 
are being made to develop practical therapies for diseased 
human-associated microbial communities and rehabilita-
tion techniques for disrupted natural microbial ecosys-
tems [4, 5]. The successful development of rational and 
safe manipulations of microbial communities depends on 
the ability to predict their post-perturbative composition. 
In practice, typical intervention techniques for microbial 

communities involve manipulation of the “species assem-
blage,” i.e., the sample-specific configuration of resident 
species. Such manipulations include the removal of 
microbial species, e.g., using narrow or broad-spectrum 
antibiotics, or introduction of single cultured probiotic 
organisms, consortia of microbes, or ‘complete’ micro-
bial ecologies, e.g., fecal microbiota transplants. After 
such perturbation, the modified ecosystem is expected to 
be shifted towards a new steady state where the species 
abundances are determined by the new ecological bal-
ance. Therefore, we aim to predict the abundance com-
position of microbial communities based on their species 
assemblage.

Current methods to predict the composition of micro-
bial communities commonly rely on prior reconstruction 
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of a mediating network model. Such approaches mainly 
describe an effective population dynamics model whose 
parameters are chosen by fitting to the available data, or 
from detailed knowledge of the biochemical reactions 
[6–9]. These models predict the personalized response 
of a particular microbial community to a given pertur-
bation by tracking the resultant time-dependent dynam-
ics. However, applying such models to large real-world 
microbial communities is very challenging, mainly due 
to the difficulty in reliably fitting their parameters [9, 10], 
and concerns regarding their validity [11].

Another active direction is to apply machine learning 
techniques to microbial communities [12–21]. These 
methods have proven useful in various tasks, including 
in predicting the steady state of microbial communities 
using deep learning [22]. However, training a predictive 
model has several caveats. For example, it often requires 
a large number of training samples as well as exten-
sive computational and time resources. In addition, the 
trained model might not be directly generalized to differ-
ent datasets or different ecological communities.

Here, we propose a model-free approach to predict the 
composition of microbial communities based on their 
species assemblage. We assume that in the analyzed eco-
logical dynamics, there is a one-to-one mapping, relat-
ing each species assemblage to a unique steady-state 
composition, i.e., true multi-stability does not exist, but 
the alternative steady states are associated with different 
species assemblages. This assumption is mathematically 
valid for the case of the generalized Lotka Volterra (GLV) 
model of ecological dynamics and, as far as we know, true 
multi-stability in human-associated microbial communi-
ties has not been demonstrated experimentally.

Our approach avoids the inherent issues involved with 
the prerequisite of network reconstruction. In addition, 
it directly predicts the steady state, avoiding the sensi-
tive task of following time-dependent dynamics. This 
approach is relevant to a broad range of medical condi-
tions for which potential microbiome-based therapies 
are tested. For example, when developing microbiome 
manipulations to treat chronic diseases, such as IBD or 
diabetes, we are mainly interested in the long-term sta-
bility of the system rather than its time transition.

Methodology
In this study, we develop a framework to predict the 
abundance profile of a test sample � , based on its spe-
cies assemblage φ . The species assemblage of the test 
sample is a species subset from a pool of N species. Here, 
�i ( i = 1 . . .N  ) is the relative abundance of species i, and 
φi is the presence/absence of species i, such that φi = 0 
if �i = 0 and φi = 1 otherwise. The prediction is based 
on a given “training set” of m other abundance profiles, 

represented as an m× N  matrix � , i.e., the matrix ele-
ment �j,i represents the abundance of species i in train-
ing sample j. The key idea is that we distinguish between 
two different features in each training sample, its spe-
cies assemblage and its abundance profile. We utilize a 
multi-dimensional k-nearest neighbors (kNN) regression 
algorithm where the features are the species assemblages 
and the target is the abundance profile. Essentially, our 
method predicts the abundance profile of the test sample 
as the average profile of the k training samples with the 
species assemblages that are the most similar to the test 
sample (as illustrated in Fig. 1).

The specific steps are subsequently elaborated. We start 
by transforming the training set � , into a binary matrix θ 
of the same size that represents the species assemblages 
of the training set such that θj,i = 0 if �j,i = 0 and θj,i = 1 
otherwise. Next, we calculate the Jaccard similarity 
between the species assemblage of the test sample, φ , and 
the species assemblage of each of the training samples 
θ j ( j = 1 . . .m ) (see the  “Methods” section). The subset 
of the k samples with the highest values of Jaccard simi-
larity, i.e., the k nearest neighbors, is denoted as R. The 
average abundance profile of the k nearest neighbors �̄k 
is defined as the average abundance, while the average is 
calculated over the present species only. Specifically, the 
average abundance of species i is

where pi is the number of samples in R for which the 
abundance of species i is non-zero. Finally, the predicted 
abundance profile of the test sample � is defined �i = �̄k

i  
where φi = 1 and �i = 0 where φi = 0 . This means that 
the abundances of the present species in the test sam-
ple are predicted according to the average profile of the 
k nearest neighbors, while the abundances of the absent 
species in the test sample are set to zero. In case pi = 0 
and φi = 1 , i.e., species i is absent in all the k nearest 
neighbors but is present in the test sample, its abundance 
is predicted as the average abundance over all samples.

To assess the added value of the kNN method, its pre-
dictions are compared against an alternative “naïve” 
approach that predicts the abundance of each present 
species as the average abundance of that species, i.e., the 
abundance of species i is �̄k

i  as defined in Eq. 1 if φi = 1 
(species i is present in the test sample) and 0 otherwise. 
This ‘null model’ that predicts each species independently 
represents an alternative approach to the kNN method 
which assumes that the abundance predictions are better 
when taking into account the configuration of all species.

This “null model” represents an alternative approach 
to the kNN method since it predicts each species 

(1)�̄k
i = 1

pi
ν∈R

�ν,i
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independently. In contrast, the kNN method assumes 
that the abundance predictions are better when taking 
into account the configuration of all species. In other 
words, in order to predict the abundance of species i, the 
kNN first considers the species configuration of all other 
species to select the nearest neighbors, based upon which 
the abundance of species i will be predicted.

Results
We systematically study the kNN method using simu-
lated and real abundance profiles. We predict the abun-
dance profiles of “test samples” using their species 
assemblage only and compare them to the real abun-
dance profiles, defining the prediction error as the root 
Jensen-Shannon divergence (rJSD) between them (see 
the “Methods” section).

To study the effect of the number of training samples 
on the performance of the kNN method, we test it on 
synthetic data generated using the GLV model, which 
has been used for qualitative modeling of the ecosystems 
[23, 24] (see the  “Methods” section). We model ecosys-
tems with N species ( N = 10, 20, 40, 100 ) and calculate 
the prediction errors when using different sizes of train-
ing sets as well as different values of k (Fig. 2a–d). In all 
cases, the prediction error is reduced for larger sizes of 
the training set. By increasing the number of training 
samples, the density of the N-dimensional state space 
increases, resulting in more similar neighbors and better 
predictions. In marked contrast, the prediction error of 

the null model remains the same even when large training 
sets are used.

We demonstrate the effect of the number of training 
samples on the kNN method by comparing it to a neu-
ral network model (see the “Methods” section), as shown 
in Fig.  2d. While the predictions of the neural network 
model improve for larger training sets, it requires much 
more training samples to achieve the same prediction 
error as the kNN. For example, when using a training 
set of one hundred samples, the prediction errors of 
the kNN are about 0.09, 0.18, and 0.28 for 10, 20 and 40 
species, respectively, compared with 0.45, 0.6, and 0.8, 
when using the neural network model (the results of the 
neural network model are not compared with the case 
of N = 100 which was simulated with weaker inter-
actions to ensure system’s stability). Additionally, the 
neural network training is considerably time-consuming 
compared with the kNN, which does not require any 
training. Obviously, machine learning methods can be 
applied using a variety of models that might work better 
in this case. Specifically, we note that the machine learn-
ing models were trained using standard algorithms that 
implement the mean square error loss function. Yet, we 
consider the studied model as a representative example 
of the fundamental differences between the kNN as a 
model-free method and the neural network approach.

An important feature of the kNN method is demon-
strated when comparing the effect of k ( k = 1, 2, 5, 10 ) in 
the three different system sizes. For the smaller systems 

Fig. 1 Prediction of microbiome composition based on its species assemblage. An illustration of the framework that is used in order to predict 
the abundance profile (open red circle), based on its known species assemblage, given a training set of other abundance profiles for which 
both the species assemblages and their abundances are known (blue spheres). We consider the species assemblages of the training samples, 
illustrated by ‘projecting’ them onto the assemblage subspace, and the abundance of the sample of interest is predicted based on the samples 
with the most similar species assemblages, using the k-nearest neighbors (kNN) method
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( N = 10 species), the predictions are the best for k = 1 , 
while for larger systems ( N = 20, 40 ), the predictions 
improve for larger values of k. Generally, the optimal k 
used in the kNN method balances two effects: (i) predic-
tions with larger values of k rely on more training samples 
which improve the statistics, (ii) the closer training sam-
ples on the features-space represent more relevant and 
specific information for the particular test sample. In the 
case shown in Fig. 2a representing a system with a pool 
of 10 species, a typical sample consists of about 6 species 
and the typical 2nd nearest neighbor has a considerably 
different species assemblage compared with the test sam-
ple. Therefore, for small systems, k = 1 produces the best 
predictions. In contrast, in larger systems ( N = 20, 40 ) 
the prediction errors with k = 5, 10 are smaller than 
k = 1, 2 , since the 5th or 10th nearest samples still repre-
sent a close neighborhood of the test sample.

To test this effect systematically in large and complex 
ecosystems, we analyze cross-sectional human-associ-
ated microbial samples from different body sites from a 
large-scale metagenomic study, the Human Microbial 
Project (HMP) [1]. The dataset contains abundance pro-
files collected from 13 different human body sites, where 
“species” are defined at the operational taxonomic unit 
(OTU) level. After the pre-processing steps, the num-
ber of samples m varies between 145 and 195, and the 
number of species N varies between 387 and 1061 across 
the different body sites (see the  “Methods” section). 
After the pre-processing stage, we apply the kNN algo-
rithm described above. The prediction error calculation 
is performed in the following way. For each dataset, we 
divide the data into two parts. The first, containing 99% 

of the data is used as the training set, and the other 1% 
(typically 2 samples) serves as the test samples. For each 
test sample, we apply the kNN algorithm using differ-
ent k values and calculate the prediction error between 
the predicted and the real abundance profiles. We repeat 
this process 1000 times, each time randomly dividing the 
training set into 99%/1% training/test samples, and cal-
culate the errors. The average error versus k is presented 
as the blue line in Fig. 3a–m. The prediction error associ-
ated with the null model, a constant value corresponding 
to k = m is marked by the horizontal orange line.

We found that for small values of k, the prediction 
error decreases, reaching a minimum point kmin , and 
then increases for larger values of k. We define the kNN 
gain, � , which quantifies the difference between the null 
model’s prediction error and the kNN’s prediction error 
for k = kmin , as illustrated in Fig. 3a. The different body 
sites differ both in the values of kmin and of � , where the 
value of � is typically large when kmin is small and vice 
versa, as shown in Fig. 3n. As mentioned above, the value 
of kmin reconciles between specificity, i.e., averaging over 
the closest neighbors, and improving the statistics by 
averaging over a large number of samples. Accordingly, 
when kmin is relatively small, the closest vicinity of the 
test sample provides enough information for obtain-
ing significantly better predictions than the null model, 
and, thus, a larger value of � . In contrast, a high value of 
kmin means that more samples are required and, thus, the 
kNN predictions are getting closer to the null model, i.e., 
a smaller value of �.

The key assumption in applying the kNN method for 
predicting microbial communities is that samples with 

Fig. 2 Enhanced prediction accuracy in the kNN method with increasing training samples. We used the GLV model to generate abundance 
profiles as a training set and 20 test samples, whose abundance profiles were predicted based on their species assemblages. The prediction error 
is calculated as the rJSD between the predicted and real abundance profiles. Symbols and shaded areas represent the average over 100 realizations 
and the standard deviation, respectively. a Prediction error of the kNN (circles) and the null model (squares) versus the number of training samples, 
for a system of 10 interacting species. b and c same as a for 20 and 40 species, respectively. The kNN predictions improve for a larger number 
of training samples, in marked contrast with the null model which is effectively independent of the number of training samples. d same as a for 100 
species, here we set σ = 0.4 . e Results of predictions of a neural network model trained and tested with similar conditions as in a–c. Compared 
with the kNN, the neural network model yields a higher prediction error for a small number of training samples ( < 500)
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similar species assemblages are expected to have similar 
abundance profiles. To investigate how the validity of this 
assumption across datasets is related to the performance 
of the kNN, we utilize the dissimilarity-overlap curve 
(DOC) analysis, a recently developed approach for the 
analysis of the relationships between species assemblages 
(measured as overlap) and abundance profiles (meas-
ured as dissimilarity) [16] (see the  “Methods” section). 
The DOC represents the dissimilarity and overlap val-
ues calculated between a pair of microbial samples as a 
point in the dissimilarity-overlap plane. Typical examples 

of DOC clouds representing all sample pairs in a given 
dataset are shown in Fig. 4a–c for simulated data. If sam-
ples with similar species assemblages (high overlap) tend 
to have similar abundance profiles (low dissimilarity), the 
DOC cloud will have a negative slope at the range of high 
overlap (Fig. 4a). Thus, we can relate to the DOC slope at 
the range of high overlap as a proxy for the validity of the 
kNN assumption mentioned above.

Here, we compare different datasets of both simulated 
and real microbial samples and investigate the effect of 
different DOC slopes on the kNN predictions. We first 

Fig. 3 Predicting microbial composition in real metagenomic data. The prediction error of the kNN versus k (blue lines), compared 
with the prediction error of the null model(orange lines). Each point represents the average prediction error over 100 ‘leave-one-out’ realizations, 
where a single microbial sample is randomly selected as a test sample. Different panels show the results of 13 microbial communities from different 
body sites, obtained from the HMP dataset: anterior nares (a), attached keratinized nares (b), buccal mucosa (c), hard palate (d), left retroauricular 
crease (e), right retroauricular crease (f), palatine tonsils (g), saliva (h), subgingival plaque (i), supragingival plaque (j), throat (k), tongue dorsal 
(l), and stool (m). In each case, we define � as the difference between the prediction errors of the kNN for k = kmin and of the null model, 
as demonstrated in a. n Purple dots represent the relation between � and kmin calculated for the different body sites. The solid curve represents 
a polynomial fit
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generate cohorts of simulated samples with different  
DOC slopes. As demonstrated in Ref. [16], the slope of 
the DOC in GLV simulations can be controlled by tuning 
the “interaction strength” or the “universality” features 
of the underlying GLV models (see the  “Methods” sec-
tion). For each cohort, we calculate two quantities: (i) The 
DOC slope, defined as the incline of the linear fit of 20% 
of the points with the highest overlap; (ii) The kNN gain, 
� . Figure 4d shows that � is correlated with the slope of 
the DOC such that better kNN predictions (higher � ) are 
related to steeper DOC slopes (higher absolute values of 
the slopes). This pattern repeats for both tuning meth-
ods, i.e., changing the universality with a fixed interaction 
strength or vice versa. We then repeat the same analysis 
for the real metagenomic data analyzed in Fig. 3, meas-
uring the DOC slope and the � between the kNN and 
the null model for each cohort. As shown in Fig. 4h, the 
kNN predictions are more accurate (larger � ) for cohorts 
with steeper DOC slope. These results display a strong 

dependence between the DOC slope and the kNN pre-
dictability, supporting the relationship between the kNN 
assumption and its performance. Consequently, the DOC 
analysis can be used as a pre-analysis indicator of the 
suitability of the kNN method for a particular system.

Up to this point, we’ve assessed the mean kNN gain 
across a set of samples originating from a shared eco-
logical environment. While utilizing the mean is logical 
when dealing with uniform groups, certain microbial 
communities might exhibit greater heterogeneity in the 
density of microbial samples. Since the kNN focuses on 
the neighboring samples, its performance may vary notably 
across different individuals in the same cohort.

In particular, the gut microbiome is a complex ecosys-
tem with a considerably large number of detected spe-
cies, and in the HMP dataset, its cohort showcases the 
largest sample-to-sample variability (the average Jaccard 
distance is 0.86 compared with between 0.78 and 0.84 in 
the other body sites). Figure 5a visualizes the “assemblage 

Fig. 4 Dissimilarity-overlap analysis of the training data as a proxy for the kNN performance. a-c Examples of dissimilarity-overlap curves 
(DOCs) for three cohorts of m = 1000 simulated samples, with N = 40 species, interaction strength σ = 3.4 , and different universality values 
( � = 0, 0.25, 0.5 ). The slope of the DOC is calculated using linear fit over the highest 20% overlapping points (blue lines). d The kNN gain, � , 
versus the DOC slope for different cohorts of simulated samples. For each cohort, we calculate its DOC slope as well as its � value, calculated based 
on 50 test samples. Different cohorts were generated by choosing the ‘interaction strength’ and the ‘universality’ features. Blue symbols represent 
the mean � over 10 cohorts with a fixed universality value of � = 0 and interaction strength σ ranging between 0.8 and 3.4. Yellow diamonds 
represent the mean � over 10 cohorts with a fixed interaction strength σ = 3.4 and � between 0 and 1. The error bars represent the standard error 
(SE). The straight lines are linear fits (with goodness of fit R2 = 0.99 for both lines). e-g Examples of DOCs of three cohorts of real microbial samples 
from different body sites (“left retroauricular crease,” “hard palate,” and “subgingival plaque”). h Same as (d), for 13 body sites of the HMP dataset. The 
straight line is a linear fit (goodness of fit R2 = 0.96 ). In both simulated and real microbial data, the kNN gain is larger for cohorts with steeper DOC 
slopes (larger absolute values)
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space” of the gut microbiome (principal coordination 
analysis using the Jaccard distance), where some areas of 
the assemblage space are denser than others. For exam-
ple, the sample-to-sample distances between the subset 
of 15 samples marked by the green rectangle are signifi-
cantly smaller compared with those of the 15 samples 
marked by the red rectangle (see inset).

We evaluate the kNN method for each individual and 
test whether it relates to the density of available samples 
in its local surroundings in the assemblage space. Spe-
cifically, we measure for each sample the average Jac-
card distance between its species assemblage and its 10 
nearest neighbors, 〈D10〉 . Figure 5b demonstrates that the 
kNN profile, i.e., the kNN gain versus k, depends on the 
value of 〈D〉 for the analyzed individual. The kNN pro-
files of samples from dense areas in the assemblage space 
(small values of 〈D〉 ) have a typical minimum point at 
k ≈ 10− 20 . This means that for these samples, the kNN 
prediction when using a small number of neighbor sam-
ples is better than the prediction that incorporates all the 
cohort’s samples ( errkNN < erravg ). In contrast, the kNN 
profiles of samples from sparse areas in the assemblage 
space have shallower minimum points at large values of 
k, i.e., the prediction using the average is typically better 
than the kNN predictions using their closest neighbors.

In order to elucidate the efficacy of the kNN algorithm 
within the context of perturbation experiments, we con-
ducted a comprehensive analysis on the microbiome 
datasets originally presented in Ref. [25]. This particular 

dataset encapsulates microbiome profiles for a cohort of 
21 human subjects, both prior to and subsequent to the 
administration of antibiotics. Specifically, for each sub-
ject, two distinct samples were assessed: an initial sam-
ple, denoted as ’baseline,’ collected prior to antibiotic 
treatment, and a subsequent sample, labeled “post-ABX,” 
obtained at the 56-day mark following antibiotic admin-
istration (refer to the “Methods” section for details).

We utilize the kNN method to estimate the “post-ABX” 
abundance profiles for each participating subject. Impor-
tantly, we aimed to scrutinize the impact of sample den-
sity within the assemblage space on the performance of 
the kNN algorithm. Given the heterogeneous distribu-
tion of post-ABX assemblages in this space - that is, some 
samples reside in regions characterized by higher sample 
density compared to others (Fig.  6a) — we ask whether 
the efficacy of the kNN predictions is associated with the 
local density of samples within their proximate neigh-
borhoods. For each subject, we used a training set that 
comprised samples from all other subjects, while inten-
tionally excluding the ’baseline’ sample from the indi-
vidual under prediction. This exclusion was executed to 
mitigate the risk of “data leakage,” which could otherwise 
introduce bias into the model by capturing the “recov-
ery effect” — a phenomenon wherein the post-antibiotic 
microbiome tends to revert towards its original state. In 
addition, while some of the subjects underwent spon-
taneous recovery, others were treated with probiotics 
or auto fecal microbiota transplant, which degraded or 

Fig. 5 Individualized kNN analysis for the gut microbiome. a The distribution of 184 microbial stool samples over the ‘assemblage space’, which 
represents the Jaccard distance between the species assemblages as depicted through principal coordinates analysis, is non-homogeneous. 
For example, the Jaccard distances between the 15 points marked by the red rectangle are significantly larger compared with the distances 
between the 15 points marked by the green rectangle (inset). b Three examples of kNN profiles of samples with small values of 〈D(10)〉 , i.e., 
the average Jaccard between the sample and its 10 nearest neighbors (0.45, 0.45, and 0.48, green curves) and three with high values of 〈D(10)〉 (0.74, 
0.74, and 0.8, red curves). The kNN profiles of the samples from dense neighborhoods typically reach a minimum (best prediction) at small values 
of k. In contrast, the kNN predictions of samples from sparse neighborhoods typically require including many or even all the cohort samples. c The 
kNN gain � of a predetermined value k = 10 is significantly higher for the samples with small 〈D(10)〉 values compared with those with large 〈D(10)〉 
values. Box plots represent the first and third quartiles; middle line, median; red daggers, outliers. Boxes represent equal ranges of 〈D10〉 values. 
Asterisk, p value = 0.02 , calculated using the Mann-Whitney U-test between the samples associated with the left and the right boxes
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improved their recovery (see Ref. [26]). By excluding the 
‘baseline’ sample from each subject, these differences are 
ignored and in our results, we didn’t see a significant dif-
ference between the groups.

Figure  6b shows that the kNN success (high value of 
� ) is associated with narrower local neighborhoods of 
the predicted samples (lower value of 〈D3〉 ) (Pearson cor-
relation − 0.5, p-value 0.02). This outcome illustrates the 
implementation of the kNN method for forecasting the 
abundance profile of microbial communities following 
perturbations. As elaborated in the subsequent “Discus-
sion” section, kNN can be effectively employed in con-
junction with a predictive model for species assemblage 
or to facilitate the design of specific perturbations needed 
to guide the microbiome toward a desired stable state.

Discussion
In this study, we predict species’ abundance profiles 
based on their presence/absence configuration using 
the kNN regression algorithm. The uniqueness of this 
approach lies in the fact that the kNN algorithm does 
not train a predictive model (such as a neural network 
model), but relies instead on comparing each test sam-
ple to the training data directly. Generally, avoiding the 
daunting task of accurately training a model has the 
advantages of saving precious time and computational 
resources, as well as reducing the risk of overfitting the 
model to a particular ecological environment. On the 
other hand, using the kNN method requires storing the 
whole data at the prediction step, unlike a trained model, 
which is much more compact. The priority that is given 

to one consideration over another depends on the ratio 
between the amount of data available and the complex-
ity of the system. In cases where the system is relatively 
simple, e.g., an ecosystem with a small number of inter-
acting species, and a large number of training samples, 
an effective predictive model can be accurately trained. 
However, natural microbial ecosystems typically consist 
of hundreds of species, while only a few dozen samples 
are available. In this case, the kNN approach might be an 
effective tool for the task of predicting the microbiome 
composition.

The essence of the approach we take in this research 
is to divide the complicated problem of predicting per-
turbation outcomes into a two-step prediction scheme: 
predicting the species assemblage, and — based on the 
assemblage — predicting the associated abundance pro-
file. In practice, the two-step approach can be used in 
two main avenues: (i) Predicting the response of a given 
perturbation using the kNN depends on the prior pre-
diction of the assemblage. In this sense, while the kNN 
is “model-free,” the entire process does depend on a pre-
dictive model for the species assemblage. (ii) Conversely, 
our strategy can be adapted to create a custom perturba-
tion, with the goal of guiding a given subject’s microbi-
ome towards a specified state. Here, the kNN is pivotal 
in selecting the target species assemblage that aligns with 
the intended abundance profile, providing direction for 
the intervention.

We have established that the kNN algorithm, when 
applied to cross-sectional data, yields the best results 
when using a relatively small number of neighboring 

Fig. 6 Association between kNN efficacy and local samples’ density in post-perturbation experiments. a Principal coordination analysis 
of the Jaccard distances between 42 samples from 21 subjects, before (hollow circles) and after antibiotic administration (filled circles). Dashed 
lines are drawn between samples from the same subject. b The kNN gain � versus the mean distance of the closest three neighbor samples 〈D3〉 
calculated for 21 post-antibiotic microbial samples. Samples in denser regions in the assemblage space tend to have better predictions of the kNN 
method compared with samples in sparse regions. The orange straight line represents the linear regression model, represented by the equation 
Y = −0.5X + 0.25 , with p-value = 0.02. The light-blue curves indicate the 95% confidence envelop around the regression line
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samples. Typically, the value of kmin is about 10, which 
is only around 5 percent of the total available data. The 
fact that the algorithm uses only the nearest neighbors to 
predict the test sample most effectively is consistent with 
the hypothesis that microbial samples represent different 
alternative steady states of the ecosystem. We consider 
each microbial sample as a representation of a possible 
steady state of the ecosystem, whereas temporal changes 
are considered as minor fluctuations around a steady 
state, or transitions between alternative steady states, as 
also suggested by previous longitudinal studies [27, 28] 
and a macroecological description of the microbiome [29].

Accordingly, in order to make an accurate assessment 
of the test sample, the most relevant samples are those 
that are near its steady state, rather than the entire spec-
trum of alternative states.

Lastly, we show that the kNN method’s main prerequi-
site is a relationship between the species assemblages of 
the samples and their abundance profiles, which can be 
characterized by the DOC analysis as the slope at a high 
overlap region. For this sake, we do not have to assume 
any interpretation regarding what factors lead to the 
variance of DOC slopes across different environments. 
Nevertheless, the feature that we used in our GLV simu-
lations may suggest two qualitative ecological features of 
the data that affect the kNN’s performance. A relation-
ship between species assemblages of different samples 
and their abundance profiles may be a result of host-inde-
pendent underlying mechanisms that control the species 
dynamics, i.e., consistent ecological environment-species 
and species-species interactions across different hosts in 
the same ecological environment. Accordingly, an eco-
logical environment for which the kNN can be success-
fully applied may (but not necessarily) be characterized 
by strong species-species interactions and “universal” 
underlying dynamics.

Methods
Population dynamics model
The GLV model represents the dynamics of N inter-
acting species as a set of ordinary differential equa-
tions: dxidt

= rixi +
∑N

j=1 aijxixj . Here, ri is the intrinsic 
growth rate of species i, aij is the interaction strength 
between species j and i, and aiix2i  (with aii < 0 ) repre-
sents the logistic term. We consider a microbial “sam-
ple” as a steady state of a GLV model parameterized by 
the growth rate vector r = {ri} ∈ R

N and the interac-
tion matrix A = (aij) ∈ R

N×N . In our simulations, ri is 
randomly chosen from the uniform distribution U(0, 1) , 
aij = a′ijwi , where a′ij is randomly chosen from the nor-
mal distribution N(0, σ) with interaction strength σ = 0.6 
for N = 10, 20, 40 and σ = 0.4 for N = 100 (to ensure 
system’s stability) and wi weighs the influence of species 

i ( wi is chosen from a power-law distribution such that 
wi = 1/

√
ǫi where ǫi is randomly chosen from the uni-

form distribution U(0, 1) and then wi is normalized such 
that 

∑N
i=1 wi = 1 ), and we set aii = −1 . We generated dif-

ferent “cohorts,” each consisting of m “samples” (unique 
steady states), generated by integrating the GLV differen-
tial equations with random initial conditions (both initial 
assemblage and abundance profile were randomly cho-
sen). When tuning the “universality” feature, we use for 
each cohort GLV models that differ from each other in 
their specific parameters. For each cohort, we first con-
struct a “base” GLV model ( r∗i  and a∗ij ) as before, and for 
each realization, we create aij = a∗ij + � ∗ Bij , where Bij is 
randomly chosen from a normal distribution N(0, 1).

Overlap between species assemblages
Given two microbial samples, represented by two 
abundance vectors x = (x1, x2, ..., xn) ∈ R

N and 
y = (y1, y2, ..., yn) ∈ R

N , their species assemblages are 
denoted as X = {i|xi > 0} and Y = {i|yi > 0}.

To quantify the similarity of the species assemblages of 
the two samples, we use the overlap measure 
O(x̃, ỹ) ≡

∑

i∈S
x̃i+ỹi
2

 where x̃i ≡ xi
∑N

i=1 xj
 and ỹi ≡ yi

∑N
i=1 yj

 

are the relative abundances, and S ≡ X ∩ Y  is the set of 
the shared species present in both samples. If S is empty, 
O(x̃, ỹ) = 0 . In the case of S = {1, 2, . . . ,N } , that is, all the 
species in X and Y are shared, O(x̃, ỹ) = 1 , but the abun-
dances can be different.

Dissimilarity between abundance profiles
To compare the abundance profiles of two samples, we 
first renormalize the relative abundances of only the 
shared species (in set S), yielding 
x̂i ≡ x̃i

∑

j∈S x̃j
= xi/

∑N
k=1 xk

∑

j∈S xj/
∑N

k=1 xk
= xi

∑

j∈S xj
 and ŷi is defined 

similarly. By using this definition, we remove the spurious 
dependence between the relative abundances of the 
shared and the non-shared species. More importantly, 
this renormalization assures that the calculated dissimi-
larity measure is mathematically independent of the  
overlap measure. The dissimilarity is then calculated  
via the root Jensen-Shannon divergence (rJSD) which  

is defined by D(x̂, ŷ) ≡
[

DKL(x̂,m)+DKL(ŷ,m)

2

]
1
2  where 

m ≡ x̂+ŷ
2

 and DKL ≡
∑

i∈S x̂ilog(
x̂i
ŷi
) is the Kullback-Leibler 

divergence between x̂ and ŷ.

Dissimilarity‑Overlap curve (DOC)
To systematically compare sample pairs with a wide 
range of overlap values and analyze their dissimilarity-
overlap relations, we calculate the overlap and dissimilar-
ity of all the sample pairs from a given set of microbiome 
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samples, and represent each sample pair as a point in the 
dissimilarity-overlap plane. The DOC slope is calculated 
using linear fit over the points with the top 20% overlap 
values using MATLAB’s polyfit function.

Jaccard similarity
The Jaccard coefficient of two sets, A and B, is defined 
as the size of the intersection divided by the size of the 
union of the sample sets J (A,B) = A∩B

A∪B . If the two sets A 
and B are equal, J (A,B) = 1 , and if A and B are disjoint 
sets, J (A,B) = 0.

Null model
For a training set � of m samples representing the abun-
dance profiles of N species, the abundance profile of the 
test sample � is predicted to be �i = 1

m

∑m
ν=1�ν,i where 

φi = 1 , and �i = 0 where φi = 0 (The null model is simi-
lar to the kNN where k = m).

Machine Learning
We train fully connected neural networks with two hid-
den layers, where each layer consists of 50 neurons, and 
apply the Levenberg-Marquardt backpropagation algo-
rithm for optimization. The Number of neurons in the 
first and last layers is equal to the number of species N. 
Each cohort of samples is first divided into training, vali-
dation and test sets, consisting of 70% , 20% , and 10% of 
the samples, respectively. We use the species assemblage 
of each sample as the input, and the relative abundance 
as the desired output when training the network. The loss 
is calculated using the mean square error (MSE) between 
the real and predicted abundance profiles.

Data and data pre‑processing
We use cross-sectional microbiome data from the 
Human Microbiome Project (HMP) [1], a 16S rRNA 
gene-based dataset of the human microbiomes from 
239 healthy subjects. We performed the analysis at the 
OTU level. The cohorts of samples are pre-processed 
as follows: We remove from each cohort low-abun-
dance OTUs with less than one read per sample on 
average, across all the samples in the cohort. Addition-
ally, we remove OTUs with a prevalence lower than 
10% in each cohort. We used a single sample from each 
subject. In cases where more than one sample was 
available, we used the first collection. After the pre-
processing stage, the cohorts contain the following 
numbers of samples and species (m is the number of 
samples and N is the maximal number of species, respec-
tively). Anterior nares ( m = 145,N = 497 ), attached 
keratinized nares ( m = 195,N = 585 ), buccal mucosa 
( m = 179,N = 570 ), hard palate ( m = 172,N = 672 ), 

left retroauricular crease ( m = 159,N = 387 ), pala-
tine tonsils ( m = 181,N = 850 ), right retroauricular 
crease ( m = 163,N = 403 ), saliva ( m = 163,N = 804 ), 
subgingival plaque ( m = 179,N = 942 ), supragingival 
plaque ( m = 183,N = 897 ), throat ( m = 172,N = 759 ), 
tongue dorsum ( m = 184,N = 803 ), and stool 
( m = 184,N = 1061 ). Full protocol details are avail-
able at the HMP DACC website (http:// hmpda cc. org/ 
HMMCP).
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