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Abstract 

Background  Leakages of cold, methane-rich fluids from subsurface reservoirs to the sea floor are termed cold seeps. 
Recent exploration of the deep sea has shed new light on the microbial communities in cold seeps. However, conven-
tional metagenomic methods largely rely on reference databases and neglect the phylogeny of functional genes.

Results  In this study, we developed the REMIRGE program to retrieve the full-length functional genes from shotgun 
metagenomic reads and fully explored the phylogenetic diversity in cold seep sediments. The abundance and diver-
sity of functional genes involved in the methane, sulfur, and nitrogen cycles differed in the non-seep site and five 
cold seep sites. In one Haima cold seep site, the divergence of functional groups was observed at the centimeter 
scale of sediment depths, with the surface layer potentially acting as a reservoir of microbial species and functions. 
Additionally, positive correlations were found between specific gene sequence clusters of relevant genes, indicating 
coupling occurred within specific functional groups.

Conclusion  REMIRGE revealed divergent phylogenetic diversity of functional groups and functional pathway pref-
erences in a deep-sea cold seep at finer scales, which could not be detected by conventional methods. Our work 
highlights that phylogenetic information is conducive to more comprehensive functional profiles, and REMIRGE 
has the potential to uncover more new insights from shotgun metagenomic data.
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Background
Within the last few decades, targeted amplicon sequenc-
ing and shotgun sequencing have been used to detect the 
composition and potential functions of microbial com-
munities. 16S rRNA gene sequencing is the most widely 
used amplicon sequencing method. Although several 
tools, such as PICRUST2 and Tax4Fun2, make it pos-
sible to predict functional profiles from 16S rRNA gene 
sequencing data, these predictions tend to be biased 
towards known reference genomes, and cannot provide 
the resolution to perform strain-based analyses [1, 2]. 
Moreover, some relatively conserved functional genes 
can also be used as marker genes for certain functional 
groups. Nevertheless, low primer coverage is a common 
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issue [3]. In comparison, shotgun metagenomic methods 
provide unbiased detection of various microbial groups 
and help to understand microbial diversity and functional 
profiles. Even so, many metagenomic tools rely heavily on 
reference databases, and often cannot represent the true 
phylogeny of the studied ecosystems [4, 5].

Fully exploiting the totality of information provided 
by metagenomes, rather than focusing solely on depos-
ited sequences of known genes, is essential for revealing 
the taxonomic and functional compositions of micro-
bial communities in unexplored natural environments. 
To obtain the real species composition from shotgun 
reads, researchers have developed EMIRGE (expecta-
tion maximization iterative reconstruction of genes from 
the environment), which enabled the reconstruction of 
full-length ribosomal genes from microbial communi-
ties [6]. However, EMIRGE was designed for small subu-
nit ribosomal RNA (SSU rRNA) genes, with SILVA being 
the only compatible database. Therefore, broadening the 
applicability of this tool for comprehensive analysis of 
diverse functional genes necessitates further refinement 
and improvement.

Marine sediments are typical underexplored natural 
environments. Normally, in continental slopes, methane 
from the subsurface diffuses upwards slowly and is oxi-
dized by microbes before reaching the sediment–water 
interface [7]. However, despite the more abundant and 
richer microbiota, only 20–80% of the methane can be 
consumed in deep-sea cold seep areas due to the high 
methane flux and fluid flow rate [8]. The biological con-
sumption of methane in the ocean is comprised of aero-
bic and anaerobic oxidation [9, 10]. Aerobic oxidation 
of methane (AeOM) is limited to the top oxygenated 
sediments [11], while anaerobic oxidation of methane 
(AOM), mainly driven by consortia of anaerobic metha-
notrophic archaea (ANME) and sulfate-reducing bacteria 
(SRB), dominates methane consumption in marine eco-
systems, accounting for 75–90% of methane consump-
tion [12, 13]. Previous studies indicated that the AOM 
process could also couple to denitrification [14, 15], or 
provide ATP for nitrogen fixation [16]. Consequently, the 
methane cycle of cold seeps is inextricably linked to the 
sulfur and nitrogen cycles.

Owing to the reduced biological complexity of micro-
bial communities and tight coupling between geochemical 
and biological processes, cold seeps are ideal targets for the 
study of composition, function, evolution, and environ-
mental adaptation [17]. In 2015, the Haima remote-oper-
ated vehicle discovered a large active cold seep site (known 
as Haima cold seep) on the northern continental slope of 
the South China Sea. Subsequent dives showed that the 
site consisted of at least six individual patches of commu-
nities and displayed noticeable ecological and geochemical 

gradients [13, 18]. However, our understanding of the phy-
logeny of functional genes and the interactions between 
microbial functional groups in these systems remains poor.

In this study, we sampled a cold seep site (CS) and an 
adjacent non-seep background site (NS) by a push-core 
sampler in the Haima cold seep area. To retrieve full-length 
functional genes from raw metagenomic reads, we devel-
oped REMIRGE (Reprogrammed EMIRGE), and then used 
it to analyze representative functional genes of the meth-
ane, sulfur, and nitrogen cycles, constructed maximum-
likelihood trees, calculated the indices of phylogenetic 
diversity, and analyzed the correlation between representa-
tive functional genes. Metagenomic datasets from four 
other cold seeps in the South China Sea were also included 
for analysis and comparison. In summary, we used 
REMIRGE to delve into the metabolic pathways and diver-
sity profiles of functional genes and retrieved new insights 
into the cold-seep microbial communities. Furthermore, 
this method holds significant promise for investigating 
microbial functional groups in a variety of diverse habitats.

Results
REMIRGE and the online platform
Our REMIRGE program was built upon the core algo-
rithm of EMIRGE, which employs an iterative method 
based on the expectation–maximization algorithm [6]. The 
analysis pipeline is illustrated in Fig. 1. REMIRGE requires 
FASTQ-formatted read files and a FASTA-formatted ref-
erence database as inputs. Clean reads after quality con-
trol can be directly input for REMIRGE, or alternatively, a 
pre-screening step can be implemented to identify poten-
tial target reads, expediting program execution. The initial 
reference database can be chosen from the predicted cod-
ing sequences (CDS), an existing reference database such 
as FunGene [19], or a combination of both. The outputs 
include correctly reconstructed sequences in FASTA for-
mat, the overall relative abundance of these sequences, and 
a BAM-formatted file generated by the last iteration. Fur-
thermore, abundance calculation and normalization scripts 
can transform the outputs into results supporting various 
subsequent analysis methods. All necessary scripts are pro-
vided on GitHub to facilitate localized analysis. Addition-
ally, our visual online analysis platform (https://​remir​ge.​
dengl​ab.​org.​cn) offers a convenient solution for users lack-
ing analysis resources.

Characteristics and microbial communities 
of the Haima cold seep
In 2019, we collected sediment cores from the Haima 
cold seep and an adjacent non-seep site. The 24 cm sedi-
ment core from the methane-rich cold seep was equally 
divided into four layers (CS1-4), while the 6 cm surface 
layer of the non-seep site (NS) was used as the control 

https://remirge.denglab.org.cn
https://remirge.denglab.org.cn
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(Fig.  2a). Each layer had five replicates. Both NovaSeq 
and Nanopore technologies were applied for shotgun 
sequencing, generating reads for hybrid metagenomics 
assembly. Simultaneously, another 24  cm sediment core 
was divided into 12 layers to measure environmental 
factors. According to the Mantel analysis, most environ-
mental factors were significantly correlated with the SSU 
rRNA gene, indicating that multiple environmental fac-
tors collectively influence the microbial communities in 
the Haima cold seep (Fig. 2c).

As sediment depth increased, we observed an expo-
nential increase in dissolved inorganic carbon (DIC) 
(Figure  S1f ). Generally, the source of DIC in deep-sea 
sediments could be attributed to either anaerobic oxida-
tion of methane or organoclastic sulfate reduction (OSR) 
[20]. Both processes utilize sulfate as an electron accep-
tor, convert carbon in methane or other complex organic 
compounds into DIC, and consequently contribute to the 
permanent carbon sink in the deep sea [21]. In contrast 
to other organic sources, methane has significantly lower 
δ13C content. The extremely low δ13CDIC in pore water 
indicates that AOM is the primary carbon source of DIC 
(Figure  S1g) [22]. Moreover, the methane concentra-
tion increased exponentially while sulfate concentration 
decreased linearly with depth (Figure  S1a and b). This 
pattern is a typical characteristic of the sulfate-methane 
transition zone (SMTZ), and the shallow SMTZ in this 
site implied a large methane flux, accompanied by active 
sulfate-dependent anaerobic methane oxidation (SAMO). 

Although nitrate and nitrite also exhibited decreasing 
trends with depth, their concentrations are relatively low 
(less than 5 μM) (Figure S1c and d), suggesting that deni-
trification-coupled AOM may be limited.

In addition, annotations at the phylum level revealed 
that Proteobacteria is the most abundant phylum in the 
surface layers (NS and CS1) and is widely distributed 
across all samples (Fig.  2d). Halobacterota (includes 
ANME) and Desulfobacterota (includes SRB) were the 
two most abundant phyla in the cold seep, especially in 
the subsurface layers. In summary, environmental data 
and taxonomic information confirmed that sulfate-
dependent anaerobic methane oxidation, mediated by 
ANME and SRB, is the dominant biogeochemical process 
at the Haima cold seep site.

Geographically different functional genes in cold 
seeps
Besides CS, datasets of four other cold seep sites in the 
South China Sea (HY, SF, HM1, and HM5, see Data S1 
for details) were also included for primary analysis and 
comparison of representative functional genes. Next, 
we used MCycDB [23], SCycDB [24], and NCycDB 
[25] to calculate the abundances of individual sam-
ples (blue-red blocks), as well as the total abundance 
(white-green blocks) of each functional gene (Fig. 2b). 
Most of the genes related to AOM, including mcrAB-
CDG, mtrABCDEFGH, mer, mtd, mch, ftr, and fmdBC 
(or fwdBC), were abundant in the cold seeps, peculiarly 

Fig. 1  Flowchart for REMIRGE. REMIRGE requires a FASTA-formatted starting reference database and FASTQ-formatted clean read files. The starting 
reference database includes nucleotide sequences from CDS prediction or available nucleic acid databases. The optional pre-screening step can 
significantly reduce the running time. After several iterations, the correctly reconstructed sequences, relative abundance table, and BAM-formatted 
file are output for various subsequent analyses
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Fig. 2  Schematic map of sampling sites and profiles of microbial communities. a The locations of Haima, Site F, and Haiyang 4 cold seeps, 
constructed with GeoMapApp (www.​geoma​papp.​org). In our sampled cold seep site (CS), gas bubbles were found at the center of a dense mussel 
bed. At the CS site, sediment was evenly divided into four layers, meanwhile the non-seep (NS) site was collected from the adjacent non-cold 
seep background. Each layer had five replicates. b The abundance of genes implicated in methane, sulfur, and nitrogen cycles at the non-seep 
and five cold seep sites. Each row represents a gene and each column represents a sampling layer. For each gene, the total abundance of all 
samples was logarithmically transformed and shown on the right side (white-green block). The respective abundances of samples were 
logarithmically transformed and scaled by row (blue-red block). The depths of samples are shown on the top (white-purple block). c Mantel test 
between environmental factors and SSU rRNA gene. Red curves indicate significant correlations (p < 0.05), while gray curves indicate insignificant 
correlations (p > 0.05), and the line width represents the r statistic of the Mantel test. Pairwise comparisons of environmental factors were conducted 
and shown in the heat map. The color gradients and size of the squares represent Pearson correlation coefficients. d The stacked bar chart 
at the phylum level, based on annotations and respective abundance of SSU rRNA gene sequence clusters

http://www.geomapapp.org
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in the deeper layers. dsrAB, which are involved in dis-
similatory sulfate reduction, were also abundant in the 
cold seeps. Most representative genes for the nitro-
gen cycle were relatively diverse and abundant in the 
surface and shallow layers, especially napAB, narGH, 
norB, and nosZ for denitrification. Notably, nifDKH 
genes for nitrogen fixation were more abundant in the 
deep layers of the cold seeps. To better measure the 
diversity profiles of functional genes in the five cold 
seep sites, we proposed a framework in units of gene 
sequence clusters (GSCs) using REMIRGE. REMIRGE 
generated the sequences of reconstructed GSCs and 
respective abundance, making it possible to build 
phylogenetic trees and calculate the weighted Unifrac 
β-diversity among samples. We also adopted the use 
of Hill numbers, for both taxonomic diversity (qD) and 
phylogenetic diversity (qPD), to quantify the diversity 
of functional genes based on GSCs [26]. The diversity 
order q determines the sensitivity to relative abun-
dances [27].

The PCoA plots of five representative functional 
genes, including mcrA, dsrA, nifH, narG, and nosZ, 
showed that different cold seep sites were separated 
(Figure  S2, P < 0.001, PERMANOVA). Although the 
richness and abundance of the mcrA gene exhibited 
substantial variation across the cold seep sites, the qPD 
profiles of the three sites from the Haima cold seep 
(CS, HM1, and HM5) were relatively similar (Fig. 3a–
c), among which CS showed a steeper slope, indicating 
that abundance of the mcrA GSC was more uneven. 
Additionally, CS and HM5 showed higher diversity 
and abundance of mcrA, dsrA, and nifH, indicating 
the presence of AOM, sulfate reduction, and nitro-
gen fixation processes (Fig. 3a–i). In contrast, the low 
abundance and diversity of narG and nosZ observed at 
HM5 suggested an absence of denitrification processes 
(Fig.  3j–o). At the HM1 site, the high abundance and 
diversity of dsrA, narG, and nosZ demonstrated the 
significance of sulfate reduction and denitrification 
processes (Fig. 3).

Divergent functional genes in different sediment 
depth
Sampling site CS exhibited diverse genes involved in the 
methane, sulfur, and nitrogen cycles (Fig. 2b), suggesting 
that CS harbored a wide range of functional groups with 
great metabolic potential. Notably, there were few sig-
nificant differences in the abundances of representative 
functional genes among sediment layers (Data S2, Dunn’s 
all-pairs rank comparison test), but the newly developed 
REMIRGE revealed more obvious phylogenetic diver-
gence. For most AOM-related functional genes (Fig.  4 
and Figure  S3), NS, CS1, CS2, and CS3-4 formed four 
distinct clusters. This pattern was also observed in the 
nifH PCoA plot. Meanwhile, sat, aprA, and dsrA, repre-
sentative functional genes of three main steps in dissimi-
latory sulfate reduction, showed three distinct clusters 
formed by NS, CS1, and layers CS2-4. This pattern was 
also observed in the narG and nosZ genes, illustrating 
that functional groups of dissimilatory sulfate reduction 
and denitrification were significantly different in the sur-
face and subsurface layers.

The phylogenetic diversity of GSC was further dem-
onstrated (Fig. 5). We found that most SSU rRNA GSCs 
(92.1%) were from the SILVA 138 database (red colora-
tion) (Fig. 5a), while 7.9% could be still generated by iter-
ation (yellow coloration). Compared with the SSU rRNA 
gene (7.9%, Fig. 5a) and dsrA (4.4%, Fig. 5c), mcrA GSCs 
generated from iteration accounted for a far larger pro-
portion (56.7%, Fig. 5b). Most likely because the existing 
mcrA database was incomplete, the iteration method dis-
covered many new mcrA GSCs. mcrA gene appeared to 
be more diverse in the cold seep, especially the subsur-
face layers (Fig. 5b). However, dsrA was more diverse in 
the surface layer (Fig. 5c). cysH and sir genes were more 
diverse in NS and CS1, implying that the surface layers of 
the cold seep and the non-seep site had greater functional 
potentials for assimilatory sulfate reduction (Fig. 5d and 
Figure  S4i). As for denitrification, narG, responsible for 
nitrate reduction to nitrite, was diverse in NS and CS1, 
while nosZ, responsible for N2O reduction to N2, was 
diverse in CS1 (Fig.  5e and Figure  S4k). Also, nifH, the 

Fig. 3  Richness, abundance, and diversity profiles of representative genes in different cold seep sites. In the bar graphs of functional genes, 
the red bars on the left signify richness, which is scaled with the left y-axis, representing how many distinct GSCs are present for that particular 
functional gene. The blue bars on the right signify abundance, which is scaled with the right y-axis, indicating the average number of reads 
that successfully mapped to the reference sequences of the corresponding functional gene at the cold seep site. The middle qD profiles depict 
the taxonomic diversity, specifically referring to the diversity of GSCs, while the qPD profiles on the right represent the phylogenetic diversity. 
Different colors of the curves correspond to distinct cold seep sites. qD and.qPD vary in order q which determines the measures’ sensitivity to GSC 
relative abundances. The weight assigned to GSCs with higher relative abundance augments as the q-value increases. Smooth curves indicate 
high evenness. The colors of functional gene names represent the metabolic processes in which they participate. a–c mcrA for anaerobic 
oxidation of methane (orange). d–f dsrA for dissimilatory sulfate reduction (green). g–i nifH for nitrogen fixation (blue). j–l narG, and m–o nosZ 
for denitrification (light blue)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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marker gene for nitrogen fixation, was diverse in the 
cold seep (Fig. 5f ). In general, functional genes related to 
AOM and nitrogen fixation were more diverse in the cold 
seep’s subsurface layers, while most other genes were 
more diverse in the surface layer.

Coupling between specialized gene sequence 
clusters
Mantel analysis revealed that the mcrA gene strongly 
correlated with the sulfate concentration, while the dsrA 
gene seemed unrelated to the methane concentration 
(Table  S1). This observation suggests that AOM largely 
relies on sulfate concentrations, while sulfate reduction is 
relatively independent. Thus, we hypothesize that SAMO 
is the primary methane consumption process, with only a 
few SRB participants.

Correlation analyses have provided information about 
co-occurrences between operational taxonomic units 
(OTUs) or functional groups, which is an essential pre-
condition of coupling or symbiosis [28]. To test the afore-
mentioned hypothesis and gain deeper insights into the 
microbial consortia of ANME and SRB in the CS site, we 
analyzed the correlation between mcrA and dsrA genes, 
and used a well-organized dsrAB database to annotate 
the type, distribution, and taxon of each dsrA GSC [29]. 
About 77% of the dsrA GSCs were derived from marine 

environments while 23% of lineages were originally 
recovered from other environments (Fig.  6), suggest-
ing both marine-specific dsrA GSCs and widely distrib-
uted dsrA GSCs were present in our sampling site. The 
majority of oxidative-type dsrA GSCs were negatively 
correlated to mcrA, while reductive-type dsrA GSCs 
were negatively or positively correlated (Fig.  6). Mark-
edly, a distinct clade positioned at the bottom of Fig.  6 
encompassed six dsrA GSCs that exhibited strong cor-
relations with the majority of mcrA GSCs, indicating a 
shared ecological niche between SRB possessing spe-
cific dsrA GSCs and ANME. This special dsrA clade was 
annotated as either Desulfobacteraceae (known ANME 
partner) or Desulfovibronaceae (an electroactive micro-
organism) [30, 31]. However, not all dsrA GSCs anno-
tated as Desulfobacteraceae or Desulfovibronaceae were 
clustered together, with some GSCs displaying negative 
correlations with mcrA GSCs. We inferred that not all 
complementary functional groups coupled, with specific 
members of the SRB possessing the potential to couple 
with a broad spectrum of ANME, allowing them to dom-
inate the SAMO process.

By contrast, there were clear negative correlations 
between almost all mcrA and narG GSCs (Figure  S5), 
suggesting that nitrate reduction was unlikely to be cou-
pled with AOM. Additionally, a clade of nifH (located on 

Fig. 4  Principal coordinates analysis (PCoA) plots of representative genes based on weighted-Unifrac distance. Ellipses represent 95% confidence 
intervals. The colors of functional gene names represent the metabolic processes in which they participate. a SSU rRNA gene. b mcrA for anaerobic 
oxidation of methane (orange). c dsrA for dissimilatory sulfate reduction (green). d cysH for assimilatory sulfate reduction (yellow-green). e narG 
for denitrification (light blue). f nifH for nitrogen fixation (blue). Overall P values are annotated on the plots, while pairwise P- and F- values are 
compiled in Data S3
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the right side of Figure  S6b) had strong positive corre-
lations with most mcrA GSCs, as well as with the small 
clade of dsrA (bottom right of Figure S6a). Previous stud-
ies have shown that while biological nitrogen fixation can 
be fueled by various catabolic processes, nitrogen fixa-
tion pathways correlated with AOM were selected for in 
hydrocarbon seeps [16]. Our results further indicated the 

unique diversity of diazotrophs in the CS site and uncov-
ered the dominant GSCs. The nifH clade on the right side 
of Figure S6b, which was strongly associated with mcrA 
genes, might contain the most dominant GSCs in this 
symbiotic system, while the remaining nifH GSCs indi-
cated nitrogen fixation pathways driven by other cata-
bolic processes.

Fig. 5  Phylogenetic trees, abundance heat maps, and diversity profiles of representative genes in different layers of the CS site. Only branches 
whose supporting values were higher than 0.75 are represented in the phylogenetic trees. The outer heat maps illustrate logarithmically 
transformed abundance. The inner strips represent the types of gene sequence clusters (GSCs), while the heat maps at the bottom-right inset 
for each gene show the diversity profiles measured by Hill numbers, logarithmically transformed, and scaled by row. The colors of functional gene 
names represent the metabolic processes in which they participate. a SSU rRNA gene. b mcrA for anaerobic oxidation of methane (orange). c dsrA 
for dissimilatory sulfate reduction (green). d cysH for assimilatory sulfate reduction (yellow-green). e narG for denitrification (light blue). f nifH 
for nitrogen fixation (blue)
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Functional pathway preferences in the cold seep 
and the non‑seep site
In order to demonstrate the divergences of microbial 
functional profiles, we focused on six key processes of the 
methane cycle and the related sulfur and nitrogen cycles 
in the cold seep (CS) and non-seep (NS) sites, including 
anaerobic oxidation of methane, dissimilatory sulfate 
reduction, assimilatory sulfate reduction, SOX system, 
nitrogen fixation, and denitrification. Taking abundance, 
diversity, and phylogenetic diversity into consideration, 
we constructed a conceptual diagram of primary meta-
bolic processes in the CS and the NS sites (Fig. 7).

Anaerobic oxidation of methane occurred almost 
exclusively in the CS site, especially the subsurface lay-
ers, as the methane concentration increased rapidly 
with depth and the abundance and diversity of mcrA 
GSCs were higher in CS2-4 than in CS1 (Figure S1a and 
Fig.  5b). According to the annotation results based on 
SILVA 138 (Data  S4), ANME-1a, 1b, ANME-2a/2b, 2c, 
and ANME-3 groups were detected in our study, among 
which ANME-1 dominated and was most abundant in 
CS2, ANME-2a/2b was distributed evenly in subsurface 
layers CS2-4, and the abundance of ANME-2c increased 
with depth and reached a maximum in CS4, suggesting 

distinctive niches and geographic distribution for differ-
ent ANME in the CS site.

In dissimilatory sulfate reduction (DSR), sulfate serves 
as an electron acceptor, while in assimilatory sulfate 
reduction (ASR), sulfate is used to synthesize sulfur-con-
taining amino acids [32]. Our results revealed that the 
CS site possessed both pathways, while the NS site was 
dominated by ASR (Fig. 7). SEEP-SRB1, which was found 
to form a symbiotic partnership with ANME-1, exhib-
ited the highest level of prevalence, especially in subsur-
face layers of the cold seep. Conversely, other free-living 
SRBs were present and more diverse in the surface layer. 
The SOX system, which is regarded as the central sulfur 
oxidization pathway of phototrophic and chemotrophic 
sulfur-oxidizing bacteria [33], was only detected in the 
surface layer of this cold seep.

Marine diazotrophs supply nearly one-half of the global 
fixed nitrogen demand, meanwhile, at least half of the 
ocean’s fixed nitrogen is lost by sedimentary denitrifi-
cation [34, 35]. We found that the nifH gene related to 
nitrogen fixation occurred mainly in the subsurface lay-
ers of the CS site, while genes related to denitrification 
occurred mainly in the surface layers. More specifically, 
although the narG gene was diverse in the surface layers 

Fig. 6  Pearson correlation analysis between dsrA and mcrA. Strips on the top and left represent the types of gene sequence clusters (GSCs). 
Annotation results of dsrA are shown on the right side. Triangles represent distributions, circles represent the annotations at the class level, and stars 
represent the annotations of Deltaproteobacteria at the family level
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of both the CS and the NS site (Fig. 5e), nosZ was more 
abundant and diverse in CS1 (Figure  S4k), suggesting 
that the denitrification occurred to a greater extent in the 
cold seep. Furthermore, we noted that ammonium con-
centration increased with depth (Figure S1e), paralleling 
the trends of nifH gene abundance. Nitrate and nitrite 
concentrations decreased with depth (Figure S7c and d), 
aligning with the trends of narG and nosZ gene abun-
dance, and supporting the notion that diazotrophs occur 
in the subsurface layers while denitrification primarily 
occurs in the surface layer of the cold seep.

Discussion
Bioinformatics tools for shotgun metagenome datasets 
are continually improving, and the most commonly used 
methods can be divided into read-based and assembly-
based systems. Read-based methods, which directly map 
the original reads to reference databases, have the poten-
tial to perform large-scale analyses due to their simplicity. 
Recently, several emerging databases, such as MCycDB, 
SCycDB, and NCycDB, are expected to improve the 
searching efficiency and accuracy of read-based analy-
sis [23–25]; however, this still relies on the complete-
ness and accuracy of the known reference genes. On 

the other hand, assembly-based methods firstly assem-
ble reads into contigs. Then, after taxonomic and func-
tional annotation, reads are mapped to these annotated 
contigs. For instance, assembly-based methods have 
been used to investigate the whole microbial commu-
nity and their ecological functions in deep-sea cold seep 
ecosystems [14]. It is worth emphasizing that phyloge-
netic diversity is a useful measure to consider taxonomic 
changes that are linked to niche differentiation, resource 
partitioning, and other ecological processes. However, 
read-based methods are usually unable to investigate 
phylogenetic relationships, as they only map reads to an 
existing database, and are unable to obtain full-length 
genes. Additionally, for assembly-based methods, suf-
ficient gene coverage is difficult to obtain, especially for 
environmental functional groups [36], and thus the phy-
logenetic tree of the retrieved functional genes could be 
incomplete. Our method is a combination of read-based 
and assembly-based methods. With protein predic-
tion based on assembled contigs and iteration based on 
reads, our method fully mined the potential information 
of metagenomics data, identified subtle variations in phy-
logenetic diversity that conventional methods are unable 
to discern, and expanded our knowledge of functional 
groups in this extreme environment.

Fig. 7  Conceptual diagram of primary metabolic processes in the cold seep and the non-seep site. The colors of the arrows represent 
the metabolic processes. Orange: anaerobic oxidation of methane (AOM). Green: dissimilatory sulfate reduction (DSR). Yellow-green: assimilatory 
sulfate reduction (ASR). Pink: sulfur-oxidizing X protein system (SOX system). Blue: nitrogen fixation. Light blue: denitrification. The investigated 
cold seep site exhibits typical sulfate-dependent anaerobic methane oxidation (SAMO), predominantly driven by anaerobic methanotrophic 
archaea (ANME) and sulfate-reducing bacteria (SRB). In the surface layer, SRB exhibits high diversity and evenness, whereas ANME are scarce. 
In the subsurface layer, the abundance and diversity of ANME increase, leading to the emergence of dominant SRB which can form symbiotic 
associations with ANME
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According to the level of specificity at which functional 
diversity is analyzed, methods also can be classified into 
targeted and non-targeted [37]. Targeted methods are 
typically used to measure the diversity of a single spe-
cific functional trait, such as estimating the diversity of 
sequence variants of a specific gene or protein. This type 
of method is highly specific and has been used to recover 
mcrA gene diversity and analyze the nifH gene in-depth 
[16, 38]. Although it is appropriate for focused subjects 
and hypotheses, it might be difficult to observe potential 
relationships between taxa. Non-targeted approaches, 
on the other hand, capture a wide breadth of functional 
traits and have been used to reveal nitrogen, methane, 
and sulfur metabolism in Yellowstone hot spring samples 
[39]. This type of method focuses on metabolic pathways 
instead of the diversity of individual genes, resulting in a 
general functional profile but may ignore critical details. 
Overall, targeted and non-targeted methods are two 
extremes of specificity and breadth. Our approach con-
siders both the breadth and depth of functional genes, 
through which we analyzed the abundance profiles of 68 
representative functional genes at a non-seep site and 
five cold seep sites, and then explored the phylogeny of 
specific genes. It provided insights into the most repre-
sentative functional genes and details about the func-
tional groups in cold seeps.

Previous studies on cold seeps were mainly concerned 
with the distribution of microbial communities over large 
vertical scales, as the biological removal of methane by 
SAMO always occurs at a distinct deep zone known as 
the sulfate-methane transition zone [11, 13, 40]. How-
ever, the extreme spatial heterogeneity at the scale of a 
few centimeters in cold seeps was also confirmed [41]. 
The microbial activity in shallow sediment has a more 
direct impact on global element cycling, making it cru-
cial for comprehending the functioning of cold seep 
ecosystems. We investigated the cold seep sediments at 
a smaller but finer vertical scale, uncovering a shallow 
SMTZ. Our findings revealed that even at small scales, 
microbial communities exhibited distinct niche separa-
tion and metabolic preferences within this zone. The 
subsurface layers were dominated by the SAMO process, 
while the surface layer of the CS site had all six key path-
ways, and the diversity and evenness of the SSU rRNA 
gene were high (Fig.  5a). The mean nearest taxon dis-
tance (MNTD) result also revealed that the MNTD value 
of CS1 was the highest, indicating the taxa in the surface 
layer were more phylogenetically distant (Figure  S7). In 
the surface layer, gas and solute exchanges at the water–
sediment interface are generally active due to the large 
gas fluxes and bioturbation, which have impacts on the 
microbial communities [41]. Considering the complex 
and dynamic environment, communities in the surface 

layer developed high species richness and evenness, as 
well as diverse metabolic pathways and strong resistance, 
to maintain community stability. Therefore, the surface 
layer of the CS site may act as a reservoir of microbial 
species and functions.

Microbial communities exhibited pronounced dissimi-
larity both among non-seep and cold seep sites, as well 
as across various cold seep locations. The conceptual 
diagram in Fig. 7 portrays the specific scenario of the CS 
site and the adjacent NS site, and may not be universally 
applicable to all cold seeps. Notably, even HM1 and HM5, 
situated in the Haima cold seep and sharing a similar geo-
graphic location with CS, do not align with the depicted 
conceptual diagram. HM1 had a higher abundance and 
diversity of functional genes associated with sulfate and 
nitrate metabolism, whereas nitrate reduction genes were 
absent in HM5. Interestingly, despite variations in the 
richness and abundance of the mcrA gene, its phyloge-
netic diversity demonstrated comparability across these 
three sites, implying that while ANME had experienced 
distinct evolution and selection, microbial communities 
in the Haima cold seep preserved similar potentials for 
AOM. Local diversification in cold seep sites could be 
affected by methane-supply regimes, gradients of elec-
tron acceptors and donors, and biological interactions 
[42]. Thus, environmental factors, both abiotic and biotic, 
had a complex influence on functional groups. In-depth 
interpretation is required in combination with more 
environmental factor data and analytical methods. In 
addition, we found that coupling occurs between specific 
GSCs, but we are uncertain whether this phenomenon is 
derived from the fact that functional groups with specific 
GSCs are more likely to establish symbiotic relationships, 
or that long-term symbiotic relationships select specific 
GSCs. To address this, time series studies, synthetic com-
munity experiments, and other analyses are required.

Conclusions
Our pipeline integrates both read-based and assembly-
based techniques while maintaining a balance between 
targeted and non-targeted methods. It has proven to be 
robust to errors and omissions in the reference database. 
By applying REMIRGE to the cold seep dataset, we have 
been able to gain deeper insights into the phylogeny and 
achieve a more comprehensive assessment of microbial 
diversity. These findings have opened exciting avenues 
for further research. To enhance user-friendliness, nec-
essary scripts and a convenient online analysis plat-
form are made available. With the potential to explore 
a wide range of environments, this innovative pipeline 
holds great promise in advancing our understanding of 
functional groups and their contributions to ecosystem 
processes.
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Materials and methods
Experimental design
In 2019, sediment samples were collected from the 
Haima cold seep (− 1371  m) using a push-core. As 
shown in Fig.  2a, the sediment core was collected from 
a site of active methane seepage, and equally divided 
into four sections (groups), as follows: CS1 (0–6  cm), 
CS2 (6–12  cm), CS3 (12–18  cm), and CS4 (18–24  cm). 
Meanwhile, the core of the control group was collected 
from an adjacent non-seep site, about 6.73 m away from 
the seep site, and equally divided into four sections as 
well. Then each layer was equally divided into five parts. 
All 40 samples were delivered to the laboratory on dry 
ice and stored at − 80  °C to decrease microbial activity. 
After 24  h of vacuum freeze-drying, microbial commu-
nity genomic DNA was extracted from 2 g of freeze-dried 
sediment with the grind plus kit method as described 
previously [43]. The DNA was quantified with Qbuit® 
3.0, and the quality was checked via gel electrophoresis. 
As the DNA concentrations of the non-seep site’s subsur-
face layers were too low for sequencing, only the surface 
layer of the non-seep site (NS, 0–6 cm) was retained as 
the control group. Both 2nd generation (NovaSeq) and 
3rd generation (Nanopore) technologies were applied 
to perform metagenomic sequencing at private compa-
nies (Guangdong Magigene Biotechnology Co. Ltd. and 
Wuhan Benagen Technology Co., Ltd., respectively). For 
NovaSeq, sequencing libraries were generated using NEB 
Next® Ultra™ DNA Library Prep Kit for Illumina® fol-
lowing the manufacturer’s recommendations, and index 
codes were added. The library quality was assessed on the 
Qubit® 4.0 Fluorometer and Qsep400 High-Throughput 
Nucleic Acid Protein Analysis system. Finally, the library 
was sequenced on an Illumina NovaSeq 6000 platform 
and 250 bp paired-end reads were generated. Meanwhile, 
five DNA replicates of each group were equally mixed 
and then purified using Agencourt Ampure XP beads. 
Next, a prepared library was loaded on the PromethION 
Flow Cell R9.4 and transferred into Oxford Nanopore 
PromethION for sequencing.

Another 24 cm sediment core was divided into 12 lay-
ers to measure environmental factors. Concentrations 
of methane, sulfate, nitrate, nitrite, ammonium, and dis-
solved inorganic carbon (DIC), as well as the δ13C value 
of DIC, were determined using previously established 
methods [21].

Quality control and assembly
FastUniq (version 1.1) [44] was used to remove PCR 
duplications, and Trimmomatic (version 0.36) [45] 
was used to trim and filter raw short reads (param-
eters: -threads 16 -phred33 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:20 MINLEN:50). Next, the quality 
of clean reads was evaluated by FastQC (version 0.11.8). 
For each group, the five replicate FASTQ files were 
merged for subsequent assembly. NS, CS1, CS2, and CS3 
were assembled using metaSPAdes (version 3.14.1) [46] 
with default parameters, while CS4 was assembled using 
Megahit (version 1.2.9) [47] due to the larger number of 
reads. Next, long reads generated by Nanopore sequenc-
ing and OPERA-MS (version 0.9.0) [48] were used for 
hybrid metagenomics assembly to improve the contiguity 
of contigs.

In addition, four other metagenomic reads datasets 
(HY, SF, HM1, and HM5) were downloaded from NCBI, 
please see Data  S1 for more details. The quality control 
methods were the same as above.

Fast profiling of functional genes
MCycDB, SCycDB, and NCycDB, which are the special-
ized databases for the representative functional genes in 
methane, sulfur, and nitrogen cycling, were used for fast 
profiling of functional genes in the non-seep and five cold 
seep sites [23–25]. We selected 68 representative func-
tional genes, including 23 for the methane cycle, 23 for 
the sulfur cycle, and 22 for the nitrogen cycle, to study 
the functional profiles. We calculated the total abun-
dance of each gene and the respective abundances of the 
samples. After natural log transformation, R and RStu-
dio were used to create the heatmap with the pheatmap 
package (version 1.0.12). For NS and CS1-4, the abun-
dance of functional genes in the five replicates of each 
layer was also calculated. The significance was evaluated 
using the Kruskal–Wallis test and Dunn’s all-pairs rank 
comparison test (PMCMRplus package, version 1.9.6), 
and the P values were corrected by the false discovery 
rate (FDR) method.

REMIRGE improvements and applications
We modified the EMIRGE script [6] for building the 
starting reference database based on functional genes. 
After that, we could input our reference database of func-
tional genes of interest (FASTA format), and the script 
would filter and cluster sequences, deal with ambiguous 
bases, and finally create a starting bowtie2 index. Fur-
thermore, we also modified the EMIRGE script for itera-
tion, and replaced the older version of Bowtie with the 
updated version, Bowtie2 [49]. Therefore, some param-
eters such as insert size distribution mean and distribu-
tion standard deviation were no longer necessary. During 
iteration, if the fraction of variants in a GSC exceeded 
0.04, a new GSC was split out; if the identity of two GSCs 
exceeded 0.97, they were merged into one.

Prokka (version 1.14.6) [50] was used to predict and 
annotate functional genes from the assembled contigs 
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with two modes (-Archaea and -Bacteria) and the default 
databases. After that, the REMIRGE was applied for ana-
lyzing the SSU rRNA gene, and functional genes. The ini-
tial database of the SSU rRNA gene was SILVA 138 SSU 
Ref NR99 [51], and the initial database for functional 
genes was from Prokka annotation (mcrA and dsrA were 
also derived from FunGene) [19]. Simultaneously, clean 
reads were tagged, merged, and input for iterations with 
default parameters (-n 40 -a 1 -p 0.04 -v 0.1 -j 0.97 -c 3 
–phred33). After iterations, a final bam file was gener-
ated, recording which read matched with which reference 
sequence. The workflow is shown in Figure S8. We wrote 
python scripts for abundance calculation, and the abun-
dance was normalized by the equation below:

where As,i stands for the original abundance, Ns,i stands 
for the normalized abundance of gene i in sample s, rs 
stands for the reads number of samples, rmax stands for 
the highest reads number among all samples, li stands for 
the length of gene i, and lmax stands for the length of the 
longest gene.

Considering that CS4_3 varied greatly from the other 
replicates of CS4, it was removed from subsequent analy-
ses. A well-organized dsrAB database was used to classify 
dsrA genes with BLAST (version 2.11.0 +) [52], including 
their types (oxidative or reductive), environmental distri-
butions, and taxa [29].

By inputting clean reads of the CS site to REMIRGE, 
we obtained the real full-length sequences of functional 
genes at the site after iteration. Subsequently, these 
sequences were input as the starting reference database 
to reconstruct the real functional gene sequences from 
the other cold seep sites (HM1, HM5, HY, and SF). The 
abundance was calculated in the same manner as above.

Phylogenetic tree construction
MAFFT (version 7.310) [53] was used to align the SSU 
rRNA genes. Whereas for functional genes, MACSE (ver-
sion 2.05) [54] was used to align the coding sequences 
based on their amino acid translations while account-
ing for frameshifts. After that, FastTree (version 2.1.10) 
[55] was used to infer phylogenies for previously aligned 
sequences. The tree files were uploaded to Interactive 
Tree Of Life (https://​itol.​embl.​de) for visualization [56]. 
In addition, we used an online analysis platform (https://​
dmap.​dengl​ab.​org.​cn) [57] to annotate SSU rRNA gene 
sequence clusters [58], and calculated the abundance of 
several critical phyla. We also used the platform to cal-
culate the mean nearest taxon distance (MNTD) of the 
SSU rRNA GSCs in each sample. Significant differences 
between groups were evaluated using Dunn’s test, and 

Ns,i = As,i ×
rmax

rs
×

lmax

li

the P values were corrected by the FDR method via the 
FSA package (version 0.9.3).

Diversity and correlation analysis
Alpha diversity indexes of the SSU rRNA gene and each 
functional gene were evaluated by Hill numbers with gra-
dient orders (q = 0, 1, 2), including diversity qD and phy-
logenetic diversity qPD [26]. Abundance matrices were 
used for qD calculation, while abundance matrices and 
tree files were used for qPD calculation. Calculations were 
conducted in R and RStudio, with the hilldiv package 
(version 1.5.1) [59] for qD while the hillR package (ver-
sion 0.5.1) [60] for qPD. For beta diversity, we employed 
the phyloseq (version 1.38.0) to calculate the weighted-
UniFrac distance [61, 62], and ggplot2 (version 3.3.6) 
[63] for principal coordinates analysis (PCoA) plots. 
PERMANOVA based on weighted UniFrac distance dis-
similarities was conducted using the vegan package (ver-
sion 2.6–2) and the pairwiseAdonis package (version 0.4), 
and the P values were corrected by FDR. Moreover, the 
correlation was performed using Pearson correlation 
analysis. Correlations between functional genes were 
visualized by the corrplot package (version 0.92), while 
correlations between environmental factors were visual-
ized by ggplot2 (version 3.3.6). Mantel analysis between 
GSCs and environmental factors was conducted using 
the function mantel of the vegan package (version 2.6–2). 
For GSCs, we calculated the weighted Unifrac distance 
between samples in conjunction with the phylogenetic 
tree; for environmental factors, we calculated the Euclid-
ean distance between samples.

Online analysis platform of REMIGE
We developed an online analysis platform for REMIRGE 
(https://​remir​ge.​dengl​ab.​org.​cn). The “REMIRGE” sec-
tion includes the main program of REMIRGE, as well as 
tools for abundance statistics and normalization, which 
are designed for processing output files of REMIRGE. 
The “Phylogenetic diversity” section integrates alignment 
tools including MAFFT and MACSE, FastTree for infer-
ring phylogenies, and scripts for calculating diversity and 
phylogenetic diversity profiles. The “Miscellaneous” sec-
tion contains some file processing tools. Please refer to 
the user manual on the website for more guidance.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​023-​01723-7.

Additional file 1: Figure S1. Regression analysis of environmental fac-
tors in Haima cold seep sediments. a Methane (μM), b Sulfate (mM), c 
Nitrate(μM), d Nitrite(μM), e Ammonium(μM), f DIC (mM) and g δ13CDIC 
(‰). Figure S2. Principal coordinates analysis (PCoA) plots of representa-
tive genes based on weighted-Unifrac distance. The shapes and colors 

https://itol.embl.de
https://dmap.denglab.org.cn
https://dmap.denglab.org.cn
https://remirge.denglab.org.cn
https://doi.org/10.1186/s40168-023-01723-7
https://doi.org/10.1186/s40168-023-01723-7


Page 14 of 16Wang et al. Microbiome          (2023) 11:276 

of the data points correspond to various cold seep sites, while the size 
reflects the average sampling depth. Ellipses represent 95% confidence 
intervals. a mcrA, b dsrA, c nifH, d narG, and e nosZ. Overall P-values are 
annotated on the plots, while pairwise P- and F- values are compiled in 
Data. S3. Figure S3. Principal coordinates analysis (PCoA) plots of other 
significant genes based on weighted-Unifrac distance. Ellipses represent 
95% confidence intervals. a mtrA, b mer, c mtd, d mch, e ftr and f fwdC 
for methane cycle; g sat, h aprA, i sir, and j soxA for sulfur cycle; k nosZ for 
nitrogen cycle. Overall P-values are annotated on the plots, while pairwise 
P- and F- values are compiled in Data. S3. Figure S4. Phylogenetic trees, 
abundance heat maps and diversity profiles of other significant functional 
genes. Only branches whose supporting values were higher than 0.75 
are represented in the phylogenetic trees. The outer heat maps illustrate 
logarithmically transformed absolute abundance. The inner strips repre-
sent the types of gene sequence clusters (GSCs), while the heat maps at 
bottom-right inset for each gene show the diversity profiles measured 
by Hill numbers, logarithmically transformed and scaled by row. a mtrA, 
b mer, c mtd, d mch, e ftr and f fwdC for methane cycle; g sat, h aprA, i sir, 
and j soxA for sulfur cycle; k nosZ for nitrogen cycle. Figure S5. Pearson 
correlation analysis between narG and mcrA. Figure S6. Pearson correla-
tion analysis between a dsrA and nifH; b mcrA and nifH. Figure S7. Box 
plots of mean nearest taxon distance (MNTD) of SSU rRNA gene sequence 
clusters, significance tests are at 5% significance level. The letters above 
the boxes show the significance, and different letters indicate significant 
differences. Figure S8. Metagenomic data analysis workflow. Table S1. 
Mantel test between environmental factors and functional genes (Pearson 
correlation coefficient based on weighted Unifrac distance).

Additional file 2: Data S1. Sample information.

Additional file 3: Data S2. Dunn’s non-parametric pairwise comparison 
test for Kruskal-type ranked data. The P-values were corrected by FDR 
method. Significant values (5% significance level) are colored light red.

Additional file 4: Data S3. Pairwise PERMANOVA results based on 
weighted-UniFrac distance dissimilarities. The values of upper triangular 
matrices are P-values, while the values of lower triangular matrices are 
F-values. The P-values were corrected by FDR method. Significant values 
(5% significance level) are colored light red.

Additional file 5: Data S4. Taxonomic annotations of SSU rRNA gene 
sequence clusters according to SILVA 138 database.

Acknowledgements
We thank Dr. James Walter Voordeckers for carefully editing the grammar of 
the manuscript and for some valuable suggestions for this manuscript.

Authors’ contributions
All authors contributed substantially to this paper. D.W. and Y.D. conceived 
and designed the experiments. J.L. provided the sediment samples from the 
Haima cold seep. D.W. and L.S. performed the experiment. D.W. analyzed the 
data. D.W. and Y.D. wrote the paper. W.S., Zheng Z., and Zhaojing Z. provided 
guidance and expertise. K.F., X.P., Z.W., and B.Z. helped to develop the pipeline. 
E.Y. provided constructive suggestions. All authors have reviewed and agreed 
with the paper and declared they have no interest conflicts.

Funding
This project was supported by the National Key Research and Development 
Program of China (No. 2019YFC1905001); the National Natural Science Foun-
dation of China (42277104, 32001092); the Open Project of Key Laboratory of 
Environmental Biotechnology, CAS (Grant No. kf2021003).

Availability of data and materials
The metagenomics data reported in this paper have been deposited in the 
Genome Sequence Archive in the National Genomics Data Center, China 
National Center for Bioinformation / Beijing Institute of Genomics, Chinese 
Academy of Sciences that are publicly accessible at https://​ngdc.​cncb.​ac.​cn/​
gsa (GSA: CRA009925 for NovaSeq and CRA009932 for Nanopore). All scripts 
for the reprogrammed EMIRGE, abundance calculations, and normaliza-
tion are available on GitHub (https://​github.​com/​yedeng-​lab/​Repro​gramm​
ed-​EMIRGE).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 15 August 2023   Accepted: 16 November 2023

References
	1.	 Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, 

et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 
2020;38(6):685–8. https://​doi.​org/​10.​1038/​s41587-​020-​0548-6.

	2.	 Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, et al. 
Tax4Fun2: prediction of habitat-specific functional profiles and functional 
redundancy based on 16S rRNA gene sequences. Environ Microbiome. 
2020;15(1):11. https://​doi.​org/​10.​1186/​s40793-​020-​00358-7.

	3.	 Wang Z, Feng K, Wei Z, Wu Y, Isobe K, Senoo K, et al. Evaluation and rede-
sign of the primers for detecting nitrogen cycling genes in environments. 
Methods Ecol Evol. 2022;13(9):1976–89. https://​doi.​org/​10.​1111/​2041-​
210X.​13946.

	4.	 Zepeda Mendoza ML, Sicheritz-Pontén T, Gilbert MTP. Environmental 
genes and genomes: understanding the differences and challenges 
in the approaches and software for their analyses. Brief Bioinform. 
2015;16(5):745–58. https://​doi.​org/​10.​1093/​bib/​bbv001.

	5.	 Silva GGZ, Green KT, Dutilh BE, Edwards RA. SUPER-FOCUS: a tool for 
agile functional analysis of shotgun metagenomic data. Bioinformatics. 
2015;32(3):354–61. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv584.

	6.	 Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. EMIRGE: reconstruc-
tion of full-length ribosomal genes from microbial community short read 
sequencing data. Genome Biol. 2011;12(5):R44. https://​doi.​org/​10.​1186/​
gb-​2011-​12-5-​r44.

	7.	 Regnier P, Dale AW, Arndt S, LaRowe DE, Mogollón J, Van Cappellen P. 
Quantitative analysis of anaerobic oxidation of methane (AOM) in marine 
sediments: a modeling perspective. Earth Sci Rev. 2011;106(1):105–30. 
https://​doi.​org/​10.​1016/j.​earsc​irev.​2011.​01.​002.

	8.	 Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by meth-
ane from cold seeps. Nat Geosci. 2013;6(9):725–34. https://​doi.​org/​10.​
1038/​ngeo1​926.

	9.	 Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, 
et al. Reverse methanogenesis: testing the hypothesis with environmen-
tal genomics. Science. 2004;305(5689):1457–62. https://​doi.​org/​10.​1126/​
scien​ce.​11000​25.

	10.	 Wang F-P, Zhang Y, Chen Y, He Y, Qi J, Hinrichs K-U, et al. Methanotrophic 
archaea possessing diverging methane-oxidizing and electron-transport-
ing pathways. ISME J. 2014;8(5):1069–78. https://​doi.​org/​10.​1038/​ismej.​
2013.​212.

	11.	 Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global disper-
sion and local diversification of the methane seep microbiome. Proc 
Natl Acad Sci. 2015;112(13):4015–20. https://​doi.​org/​10.​1073/​pnas.​14218​
65112.

	12.	 Glodowska M, Welte CU, Kurth JM. Chapter Four - Metabolic potential of 
anaerobic methane oxidizing archaea for a broad spectrum of electron 
acceptors. In: Poole RK, Kelly DJ, editors. Advances in Microbial Physiol-
ogy. Academic Press; 2022. p. 157–201.

	13.	 Niu M, Fan X, Zhuang G, Liang Q, Wang F. Methane-metabolizing micro-
bial communities in sediments of the Haima cold seep area, northwest 
slope of the South China Sea. FEMS Microbiology Ecology. 2017;93(9). 
https://​doi.​org/​10.​1093/​femsec/​fix101.

	14.	 Jing H, Wang R, Jiang Q, Zhang Y, Peng X. Anaerobic methane oxidation 
coupled to denitrification is an important potential methane sink in 

https://ngdc.cncb.ac.cn/gsa
https://ngdc.cncb.ac.cn/gsa
https://github.com/yedeng-lab/Reprogrammed-EMIRGE
https://github.com/yedeng-lab/Reprogrammed-EMIRGE
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1186/s40793-020-00358-7
https://doi.org/10.1111/2041-210X.13946
https://doi.org/10.1111/2041-210X.13946
https://doi.org/10.1093/bib/bbv001
https://doi.org/10.1093/bioinformatics/btv584
https://doi.org/10.1186/gb-2011-12-5-r44
https://doi.org/10.1186/gb-2011-12-5-r44
https://doi.org/10.1016/j.earscirev.2011.01.002
https://doi.org/10.1038/ngeo1926
https://doi.org/10.1038/ngeo1926
https://doi.org/10.1126/science.1100025
https://doi.org/10.1126/science.1100025
https://doi.org/10.1038/ismej.2013.212
https://doi.org/10.1038/ismej.2013.212
https://doi.org/10.1073/pnas.1421865112
https://doi.org/10.1073/pnas.1421865112
https://doi.org/10.1093/femsec/fix101


Page 15 of 16Wang et al. Microbiome          (2023) 11:276 	

deep-sea cold seeps. Sci Total Environ. 2020;748:142459. https://​doi.​org/​
10.​1016/j.​scito​tenv.​2020.​142459.

	15.	 Wu Y, Qiu J-W, Qian P-Y, Wang Y. The vertical distribution of prokaryotes 
in the surface sediment of Jiaolong cold seep at the northern South 
China Sea. Extremophiles. 2018;22(3):499–510. https://​doi.​org/​10.​1007/​
s00792-​018-​1012-0.

	16.	 Dong X, Zhang C, Peng Y, Zhang H-X, Shi L-D, Wei G, et al. Phylogeneti-
cally and catabolically diverse diazotrophs reside in deep-sea cold seep 
sediments. Nat Commun. 2022;13(1):4885. https://​doi.​org/​10.​1038/​
s41467-​022-​32503-w.

	17.	 Shu W-S, Huang L-N. Microbial diversity in extreme environments. 
Nat Rev Microbiol. 2022;20(4):219–35. https://​doi.​org/​10.​1038/​
s41579-​021-​00648-y.

	18.	 Xu H, Du M, Li J, Zhang H, Chen W, Wei J, et al. Spatial distribution of 
seepages and associated biological communities within Haima cold seep 
field, South China Sea. J Sea Res. 2020;165:101957. https://​doi.​org/​10.​
1016/j.​seares.​2020.​101957.

	19.	 Fish J, Chai B, Wang Q, Sun Y, Brown CT, Tiedje J, et al. FunGene: the func-
tional gene pipeline and repository. Frontiers in Microbiology. 2013;4. 
https://​doi.​org/​10.​3389/​fmicb.​2013.​00291.

	20.	 Böttcher ME, Oelschläger B, Höpner T, Brumsack H-J, Rullkötter J. Sulfate 
reduction related to the early diagenetic degradation of organic matter 
and “black spot” formation in tidal sandflats of the German Wadden Sea 
(southern North Sea): stable isotope (13C, 34S, 18O) and other geochemi-
cal results. Org Geochem. 1998;29(5):1517–30. https://​doi.​org/​10.​1016/​
S0146-​6380(98)​00124-7.

	21.	 Liu W, Wu Z, Xu S, Wei J, Peng X, Li J, et al. Pore-water dissolved inorganic 
carbon sources and cycling in the shallow sediments of the Haima cold 
seeps, South China Sea. J Asian Earth Sci. 2020;201:104495. https://​doi.​
org/​10.​1016/j.​jseaes.​2020.​104495.

	22.	 Yoshinaga MY, Holler T, Goldhammer T, Wegener G, Pohlman JW, Brunner 
B, et al. Carbon isotope equilibration during sulphate-limited anaerobic 
oxidation of methane. Nat Geosci. 2014;7(3):190–4. https://​doi.​org/​10.​
1038/​ngeo2​069.

	23.	 Qian L, Yu X, Zhou J, Gu H, Ding J, Peng Y, et al. MCycDB: a curated 
database for comprehensively profiling methane cycling processes 
of environmental microbiomes. Mol Ecol Resour. 2022;22(5):1803–23. 
https://​doi.​org/​10.​1111/​1755-​0998.​13589.

	24.	 Yu X, Zhou J, Song W, Xu M, He Q, Peng Y, et al. SCycDB: a curated 
functional gene database for metagenomic profiling of sulphur cycling 
pathways. Mol Ecol Resour. 2021;21(3):924–40. https://​doi.​org/​10.​1111/​
1755-​0998.​13306.

	25.	 Tu Q, Lin L, Cheng L, Deng Y, He Z. NCycDB: a curated integrative data-
base for fast and accurate metagenomic profiling of nitrogen cycling 
genes. Bioinformatics. 2018;35(6):1040–8. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​bty741.

	26.	 Chao A, Chiu C-H, Jost L. Phylogenetic diversity measures and their 
decomposition: a framework based on hill numbers. In: Pellens R, Grand-
colas P, editors. Biodiversity Conservation and Phylogenetic Systemat-
ics: Preserving our evolutionary heritage in an extinction crisis. Cham: 
Springer International Publishing; 2016. p. 141–72.

	27.	 Chao A, Chiu C-H, Jost L. Unifying species diversity, phylogenetic diver-
sity, functional diversity, and related similarity and differentiation meas-
ures through hill numbers. Annu Rev Ecol Evol Syst. 2014;45(1):297–324. 
https://​doi.​org/​10.​1146/​annur​ev-​ecols​ys-​120213-​091540.

	28.	 Metcalfe KS, Murali R, Mullin SW, Connon SA, Orphan VJ. Experimentally-
validated correlation analysis reveals new anaerobic methane oxidation 
partnerships with consortium-level heterogeneity in diazotrophy. ISME J. 
2021;15(2):377–96. https://​doi.​org/​10.​1038/​s41396-​020-​00757-1.

	29.	 Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. Phylogenetic and 
environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. 
ISME J. 2015;9(5):1152–65. https://​doi.​org/​10.​1038/​ismej.​2014.​208.

	30.	 Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, 
et al. A marine microbial consortium apparently mediating anaerobic 
oxidation of methane. Nature. 2000;407(6804):623–6. https://​doi.​org/​10.​
1038/​35036​572.

	31.	 Zheng S, Li M, Liu Y, Liu F. Desulfovibrio feeding Methanobacterium 
with electrons in conductive methanogenic aggregates from coastal 
zones. Water Res. 2021;202:117490. https://​doi.​org/​10.​1016/j.​watres.​2021.​
117490.

	32.	 Zhou L, Ou P, Zhao B, Zhang W, Yu K, Xie K, et al. Assimilatory and dis-
similatory sulfate reduction in the bacterial diversity of biofoulant from a 
full-scale biofilm-membrane bioreactor for textile wastewater treatment. 
Sci Total Environ. 2021;772:145464. https://​doi.​org/​10.​1016/j.​scito​tenv.​
2021.​145464.

	33.	 Li L-F, Fu L-J, Lin J-Q, Pang X, Liu X-M, Wang R, et al. The σ54-dependent two-
component system regulating sulfur oxidization (Sox) system in Acidithio-
bacillus caldus and some chemolithotrophic bacteria. Appl Microbiol Bio-
technol. 2017;101(5):2079–92. https://​doi.​org/​10.​1007/​s00253-​016-​8026-2.

	34.	 Chang BX, Devol AH. Seasonal and spatial patterns of sedimen-
tary denitrification rates in the Chukchi sea. Deep Sea Res Part II. 
2009;56(17):1339–50. https://​doi.​org/​10.​1016/j.​dsr2.​2008.​10.​024.

	35.	 Hou L, Wang R, Yin G, Liu M, Zheng Y. Nitrogen fixation in the intertidal 
sediments of the yangtze estuary: occurrence and environmental impli-
cations. J Geophys Res Biogeosci. 2018;123(3):936–44. https://​doi.​org/​10.​
1002/​2018J​G0044​18.

	36.	 Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shot-
gun metagenomics, from sampling to analysis. Nat Biotechnol. 
2017;35(9):833–44. https://​doi.​org/​10.​1038/​nbt.​3935.

	37.	 Johnson DR, Pomati F. A brief guide for the measurement and interpreta-
tion of microbial functional diversity. Environ Microbiol. 2020;22(8):3039–
48. https://​doi.​org/​10.​1111/​1462-​2920.​15147.

	38.	 Speth DR, Orphan VJ. Metabolic marker gene mining provides insight in 
global mcrA diversity and, coupled with targeted genome reconstruc-
tion, sheds further light on metabolic potential of the Methanomassiliico-
ccales. Peerj. 2018;6. https://​doi.​org/​10.​7717/​peerj.​5614.

	39.	 Yu FB, Blainey PC, Schulz F, Woyke T, Horowitz MA, Quake SR. Microfluidic-
based mini-metagenomics enables discovery of novel microbial lineages 
from complex environmental samples. eLife. 2017;6:e26580. https://​doi.​
org/​10.​7554/​eLife.​26580.

	40.	 Zhang Y, Li GX, Gao XH. Sulfate-methane transition depths and its 
implication for gas hydrate. Journal of Ocean University of China. 
2020;19(4):837–42. https://​doi.​org/​10.​1007/​s11802-​020-​4490-5.

	41.	 Khripounoff A, Caprais JC, Decker C, Essirard M, Le Bruchec J, Noel P, et al. 
Variability in gas and solute fluxes through deep-sea chemosynthetic 
ecosystems inhabited by vesicomyid bivalves in the Gulf of Guinea. Deep 
Sea Res Part I. 2015;95:122–30. https://​doi.​org/​10.​1016/j.​dsr.​2014.​10.​013.

	42.	 Niu M, Deng L, Su L, Ruff SE, Yang N, Luo M, et al. Methane supply drives 
prokaryotic community assembly and networks at cold seeps of the 
South China Sea. Mol Ecol. 2023;32(3):660–79. https://​doi.​org/​10.​1111/​
mec.​16786.

	43.	 Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composi-
tion. Appl Environ Microbiol. 1996;62(2):316–22. https://​doi.​org/​10.​1128/​
aem.​62.2.​316-​322.​1996.

	44.	 Xu HB, Luo X, Qian J, Pang XH, Song JY, Qian GR, et al. FastUniq: a fast de 
novo duplicates removal tool for paired short reads. Plos One. 2012;7(12). 
https://​doi.​org/​10.​1371/​journ​al.​pone.​00522​49.

	45.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btu170.

	46.	 Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new ver-
satile metagenomic assembler. Genome Res. 2017;27(5):824–34. https://​
doi.​org/​10.​1101/​gr.​213959.​116.

	47.	 Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via suc-
cinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6. https://​doi.​org/​
10.​1093/​bioin​forma​tics/​btv033.

	48.	 Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS, Li C, et al. 
Hybrid metagenomic assembly enables high-resolution analysis of 
resistance determinants and mobile elements in human microbi-
omes. Nat Biotechnol. 2019;37(8):937–44. https://​doi.​org/​10.​1038/​
s41587-​019-​0191-2.

	49.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9(4):357–9. https://​doi.​org/​10.​1038/​nmeth.​1923.

	50.	 Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 
2014;30(14):2068–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu153.

	51.	 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA 
ribosomal RNA gene database project: improved data processing and 
web-based tools. Nucleic Acids Res. 2012;41(D1):D590–6. https://​doi.​org/​
10.​1093/​nar/​gks12​19.

https://doi.org/10.1016/j.scitotenv.2020.142459
https://doi.org/10.1016/j.scitotenv.2020.142459
https://doi.org/10.1007/s00792-018-1012-0
https://doi.org/10.1007/s00792-018-1012-0
https://doi.org/10.1038/s41467-022-32503-w
https://doi.org/10.1038/s41467-022-32503-w
https://doi.org/10.1038/s41579-021-00648-y
https://doi.org/10.1038/s41579-021-00648-y
https://doi.org/10.1016/j.seares.2020.101957
https://doi.org/10.1016/j.seares.2020.101957
https://doi.org/10.3389/fmicb.2013.00291
https://doi.org/10.1016/S0146-6380(98)00124-7
https://doi.org/10.1016/S0146-6380(98)00124-7
https://doi.org/10.1016/j.jseaes.2020.104495
https://doi.org/10.1016/j.jseaes.2020.104495
https://doi.org/10.1038/ngeo2069
https://doi.org/10.1038/ngeo2069
https://doi.org/10.1111/1755-0998.13589
https://doi.org/10.1111/1755-0998.13306
https://doi.org/10.1111/1755-0998.13306
https://doi.org/10.1093/bioinformatics/bty741
https://doi.org/10.1093/bioinformatics/bty741
https://doi.org/10.1146/annurev-ecolsys-120213-091540
https://doi.org/10.1038/s41396-020-00757-1
https://doi.org/10.1038/ismej.2014.208
https://doi.org/10.1038/35036572
https://doi.org/10.1038/35036572
https://doi.org/10.1016/j.watres.2021.117490
https://doi.org/10.1016/j.watres.2021.117490
https://doi.org/10.1016/j.scitotenv.2021.145464
https://doi.org/10.1016/j.scitotenv.2021.145464
https://doi.org/10.1007/s00253-016-8026-2
https://doi.org/10.1016/j.dsr2.2008.10.024
https://doi.org/10.1002/2018JG004418
https://doi.org/10.1002/2018JG004418
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1111/1462-2920.15147
https://doi.org/10.7717/peerj.5614
https://doi.org/10.7554/eLife.26580
https://doi.org/10.7554/eLife.26580
https://doi.org/10.1007/s11802-020-4490-5
https://doi.org/10.1016/j.dsr.2014.10.013
https://doi.org/10.1111/mec.16786
https://doi.org/10.1111/mec.16786
https://doi.org/10.1128/aem.62.2.316-322.1996
https://doi.org/10.1128/aem.62.2.316-322.1996
https://doi.org/10.1371/journal.pone.0052249
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1038/s41587-019-0191-2
https://doi.org/10.1038/s41587-019-0191-2
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219


Page 16 of 16Wang et al. Microbiome          (2023) 11:276 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	52.	 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer 
K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 
2009;10(1):421. https://​doi.​org/​10.​1186/​1471-​2105-​10-​421.

	53.	 Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software 
Version 7: Improvements in Performance and Usability. Mol Biol Evol. 
2013;30(4):772–80. https://​doi.​org/​10.​1093/​molbev/​mst010.

	54.	 Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. MACSE v2: 
Toolkit for the alignment of coding sequences accounting for frameshifts 
and stop codons. Mol Biol Evol. 2018;35(10):2582–4. https://​doi.​org/​10.​
1093/​molbev/​msy159.

	55.	 Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likeli-
hood trees for large alignments. Plos One. 2010;5(3). https://​doi.​org/​10.​
1371/​journ​al.​pone.​00094​90.

	56.	 Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool 
for phylogenetic tree display and annotation. Nucleic Acids Res. 
2021;49(W1):W293–6. https://​doi.​org/​10.​1093/​nar/​gkab3​01.

	57.	 Feng K, Zhang Z, Cai W, Liu W, Xu M, Yin H, et al. Biodiversity and species 
competition regulate the resilience of microbial biofilm community. Mol 
Ecol. 2017;26(21):6170–82. https://​doi.​org/​10.​1111/​mec.​14356.

	58.	 Wang Q, Garrity George M, Tiedje James M, Cole JR. Naïve Bayesian 
classifier for rapid assignment of rRNA sequences into the new bacterial 
taxonomy. Appl Environ Microbiol. 2007;73(16):5261–7. https://​doi.​org/​
10.​1128/​AEM.​00062-​07.

	59.	 Alberdi A, Gilbert MTP. hilldiv: an R package for the integral analysis of 
diversity based on Hill numbers. bioRxiv. 2019:545665. https://​doi.​org/​10.​
1101/​545665.

	60.	 Li D. hillR: taxonomic, functional, and phylogenetic diversity and similarity 
through Hill Numbers. J Open Source Softw. 2018;3:1041. https://​doi.​org/​
10.​21105/​joss.​01041.

	61.	 Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and 
qualitative & #x3b2; diversity measures lead to different insights into 
factors that structure microbial communities. Appl Environ Microbiol. 
2007;73(5):1576–85. https://​doi.​org/​10.​1128/​AEM.​01996-​06.

	62.	 McMurdie PJ, Holmes S. phyloseq: an R package for reproducible 
interactive analysis and graphics of microbiome census data. Plos One. 
2013;8(4). https://​doi.​org/​10.​1371/​journ​al.​pone.​00612​17.

	63.	 Ginestet C. ggplot2: elegant graphics for data analysis. J R Stat Soc A 
Stat Soc. 2011;174(1):245–6. https://​doi.​org/​10.​1111/j.​1467-​985X.​2010.​
00676_9.x.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/msy159
https://doi.org/10.1093/molbev/msy159
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1093/nar/gkab301
https://doi.org/10.1111/mec.14356
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1101/545665
https://doi.org/10.1101/545665
https://doi.org/10.21105/joss.01041
https://doi.org/10.21105/joss.01041
https://doi.org/10.1128/AEM.01996-06
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1111/j.1467-985X.2010.00676_9.x
https://doi.org/10.1111/j.1467-985X.2010.00676_9.x

	Phylogenetic diversity of functional genes in deep-sea cold seeps: a novel perspective on metagenomics
	Abstract 
	Background 
	Results 
	Conclusion 

	Background
	Results
	REMIRGE and the online platform

	Characteristics and microbial communities of the Haima cold seep
	Geographically different functional genes in cold seeps
	Divergent functional genes in different sediment depth
	Coupling between specialized gene sequence clusters
	Functional pathway preferences in the cold seep and the non-seep site
	Discussion
	Conclusions
	Materials and methods
	Experimental design
	Quality control and assembly
	Fast profiling of functional genes
	REMIRGE improvements and applications
	Phylogenetic tree construction
	Diversity and correlation analysis
	Online analysis platform of REMIGE

	Anchor 24
	Acknowledgements
	References


