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Abstract 

Background Our previous study revealed marked differences in tongue images between individuals with gastric 
cancer and those without gastric cancer. However, the biological mechanism of tongue images as a disease indica-
tor remains unclear. Tongue coating, a major factor in tongue appearance, is the visible layer on the tongue dorsum 
that provides a vital environment for oral microorganisms. While oral microorganisms are associated with gastric 
and intestinal diseases, the comprehensive function profiles of oral microbiota remain incompletely understood. 
Metaproteomics has unique strength in revealing functional profiles of microbiota that aid in comprehending 
the mechanism behind specific tongue coating formation and its role as an indicator of gastric cancer.

Methods We employed pressure cycling technology and data-independent acquisition (PCT-DIA) mass spec-
trometry to extract and identify tongue-coating proteins from 180 gastric cancer patients and 185 non-gastric 
cancer patients across 5 independent research centers in China. Additionally, we investigated the temporal stability 
of tongue-coating proteins based on a time-series cohort. Finally, we constructed a machine learning model using 
the stochastic gradient boosting algorithm to identify individuals at high risk of gastric cancer based on tongue-coat-
ing microbial proteins.

Results We measured 1432 human-derived proteins and 13,780 microbial proteins from 345 tongue-coating sam-
ples. The abundance of tongue-coating proteins exhibited high temporal stability within an individual. Notably, we 
observed the downregulation of human keratins KRT2 and KRT9 on the tongue surface, as well as the downregulation 
of ABC transporter COG1136 in microbiota, in gastric cancer patients. This suggests a decline in the defense capacity 
of the lingual mucosa. Finally, we established a machine learning model that employs 50 microbial proteins of tongue 
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coating to identify individuals at a high risk of gastric cancer, achieving an area under the curve (AUC) of 0.91 
in the independent validation cohort.

Conclusions We characterized the alterations in tongue-coating proteins among gastric cancer patients and con-
structed a gastric cancer screening model based on microbial-derived tongue-coating proteins. Tongue-coating 
proteins are shown as a promising indicator for identifying high-risk groups for gastric cancer.

Keywords Tongue coating, Metaproteomics, Gastric cancer, Noninvasive screening

Background
Gastric cancer is one of the most common gastrointes-
tinal malignancies in the world. According to statistics 
from the Global Cancer Observatory (GLOBOCAN), 
in 2020, gastric cancer accounted for over one million 
new cases and an estimated 769,000 deaths worldwide, 
making it the fifth most prevalent cancer and the fourth 
leading cause of cancer-related mortality [1]. Advanced 
gastric cancer’s prognosis remains unsatisfactory due to 
its high heterogeneity and aggressiveness. In contrast, 
early gastric cancer can achieve a favorable prognosis 
with standard treatment [2]. Endoscopy is one of the 
most reliable invasive screening methods for gastric can-
cer diagnosis [3, 4]. However, the widespread adoption of 
endoscopy is hindered by the need for specialized equip-
ment and experienced medical professionals, as well as 
people’s reluctance due to the associated discomfort. 
Hence, there is an immediate requirement for a precise 
and widely applicable method to identify individuals at a 
high risk of developing gastric cancer.

The oral cavity is directly linked to the digestive tract, 
providing a valuable perspective for assessing the stom-
ach’s condition. The tongue coating is a visible layer that 
adheres to the tongue dorsum and comprises deceased 
epithelial cells, blood metabolites, microorganisms, 
secretions from the postnasal area and the gingiva, and 
saliva [5]. Traditional Chinese medicine has a rich history 
of using the colors and thickness variations in tongue 
coating as indicators of an individual’s health status, aid-
ing in the prediction or diagnosis [6] of conditions such 
as gastritis [7], nonalcoholic fatty liver disease [8], and 
colorectal cancer [9]. Our previous study revealed nota-
ble distinctions in tongue images between individuals 
with gastric cancer and those without gastric cancer. 
Moreover, the AI-based (artificial intelligence-based) 
gastric cancer screening model, leveraging tongue image 
features, exhibited precise identification of high-risk 
groups for gastric cancer [10]. However, the mechanism 
behind the development of distinct tongue coating in 
gastric cancer patients remains incompletely understood.

Microorganisms play an important role in the forma-
tion of tongue coating [11, 12]. The oral cavity hosts a 
vast array of microorganisms and is regarded as the sec-
ond most intricate microbial community in the human 

body [13]. In recent years, increasing attention has been 
given to the relationship between oral microorganisms 
and digestive system malignancies. Porphyromonas gin-
givalis and Actinobacteria are associated with a higher 
risk of pancreatic cancer [14]. The gingival pathogen 
Streptomyces forsythiae is associated with a higher risk of 
esophageal cancer [15]. The oral pathogens Treponema 
intermedia and Prevotella intermedia are associated with 
an increased risk of colorectal cancer [16]. To date, sev-
eral studies have revealed the oral microbial composition 
and function of gastric cancer patients by metagenomic 
or 16S rRNA sequencing, exploring the relationship 
between the oral microbiome and gastric cancer at the 
genomic level [17–20]. However, the presence of genes 
does not guarantee protein expression. Proteomics offers 
a promising approach to uncovering the functional pro-
files of oral microorganisms and the host, as it enables 
the simultaneous measurement of both the human and 
microbial proteins that are actively expressed. This ena-
bles the deciphering of host–microbe interactions in 
complex oral ecosystems [21, 22]. At present, research on 
oral metaproteomics is still in its infancy, most of which 
focuses on dental caries or oral malignancies. Only one 
study revealed the relationship between oral metaprot-
eomics and lung cancer [23], and there is no research on 
oral metaproteomics for gastric cancer patients. Analyz-
ing tongue-coating proteins of gastric cancer patients is 
crucial for investigating the connection between oral 
microorganisms and the onset and progression of gastric 
cancer.

Here, we carried out diagnostic research by collecting 
tongue coating from 180 individuals with gastric cancer 
and 185 individuals without gastric cancer, all gathered 
from five independent research centers located in China. 
We measured 1432 human proteins and 13,780 microbial 
proteins in these tongue-coating samples based on PCT-
DIA mass spectrometry (MS). We validated the temporal 
stability of microbial proteins and human tongue-coating 
proteins based on a time-series cohort. We also found 
similar functional and taxonomic profiles of tongue-
coating microbiota across different cohorts. Moreo-
ver, we discovered that the Aminipila genus exhibited a 
higher risk of gastric cancer with a medium odds ratio 
(OR) of 1.38 and 5.07 in two independent cohorts, which 
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has not been previously reported. Notably, we observed 
the downregulation of keratins KRT2 and KRT9 on the 
tongue surface, as well as the ABC transporter COG1136 
in microbiota, in gastric cancer patients, suggesting a 
decrease in lingual mucosa defense ability. Finally, we 
established a machine learning model using 50 microbial 
proteins from tongue coating to classify gastric cancer 
patients and non-gastric cancer individuals, achieving an 
AUC of 0.91 in the independent validation cohort.

Methods
Tongue coating sample collection
The study stipulated that patients aged 18 to 80  years 
with histologically confirmed adenocarcinoma of the 
stomach or gastroesophageal junction were eligible. Any 
patients who had previously been treated for gastric can-
cer (including with medication, radiation, or surgery) or 
had oral diseases were excluded. The noncancer samples 
were donated by healthy volunteers with no history of 
cancer, negative screening for gastrointestinal tumors, 
and no oral diseases.

The tongue coating of gastric cancer patients was col-
lected on the morning of the operation day. The tongue 
coating of non-cancer volunteers was collected in the 
morning 1 week after gastroscopy. Disposable swabs were 
used to collect tongue-coating samples from participants 
before the consumption of breakfast or water. Before 
taking tongue-coating samples, participants used sterile 
water to rinse their mouths three times. The tongue was 
scraped from the root to the tip 15 times (each swab was 
rolled 5 times, for a total of 3 swabs) by simultaneously 
rolling the swab with a professional operator (Fig.  1A). 
Then, the swab was immediately placed into a storage 
tube and transferred to the freezer at − 80 °C.

Construction of the tongue‑coating protein database
Due to differences in regions, diets, and health condi-
tions, the existing public protein databases cannot fully 
reflect the proteome characteristics of the tongue coat-
ing of gastric cancer patients. Therefore, we constructed 
a tongue-coating protein database through metagenomic 
sequencing to support DIA-MS protein identification and 
quantification. We randomly selected 20 tongue-coating 
samples from healthy individuals, patients with gastri-
tis, patients with stage I–II tumors, and patients with 
stage III–IV tumors, respectively. DNA was extracted 
from each sample, and then, DNA samples from the 
same group were subsequently pooled for metagenomic 
sequencing. Consequently, metagenomic sequencing was 
carried out on four mixed DNA samples, each represent-
ing one of the four groups mentioned above (Fig.  1B, 
Supplemental Fig.  1A). The detailed protocol of DNA 

extraction and metagenomic sequencing is described as 
follows.

DNA from different tongue-coating samples was 
extracted using the E.Z.N.A.® Stool DNA Kit (D4015-
02, Omega, Inc., USA) according to the manufacturer’s 
instructions. The reagent, specifically designed for the 
detection of DNA in trace sample amounts, has proven 
to be effective in extracting DNA from the majority of 
bacteria. Sample blanks included unused swabs that 
underwent the DNA extraction process and were con-
firmed to contain no DNA amplicons. The total DNA was 
eluted in 50  µl of elution buffer using a modification of 
the manufacturer’s procedure (QIAGEN) and then stored 
at − 80 °C.

The DNA library was constructed using the TruSeq 
Nano DNA LT Library Preparation Kit (FC-121–4001). 
DNA was fragmented by dsDNA Fragmentase (NEB, 
M0348S) and incubated at 37  °C for 30  min. Blunt-end 
DNA fragments were generated using a combination of 
fill-in reactions and exonuclease activity. Size selection 
was performed with the provided sample purification 
beads. An A-base was then added to the blunt ends of 
each strand, preparing them for ligation to the indexed 
adapters. Each adapter contains a T-base overhang for 
ligating the adapter to the A-tailed fragmented DNA. 
These adapters encompass the complete set of sequenc-
ing primer hybridization sites for single, paired-end, 
and indexed reads. Single- or dual-index adapters were 
ligated to the fragments, and the ligated products were 
amplified with PCR by the following conditions: initial 
denaturation at 95 °C for 3 min; 8 cycles of denaturation 
at 98 °C for 15 s, annealing at 60 °C for 15 s, and exten-
sion at 72  °C for 30 s; and a final extension at 72  °C for 
5  min. Finally, we performed 2 × 150  bp paired-end 
sequencing (PE150) on an Illumina NovaSeq™ 6000 (LC-
Bio Technology Co., Ltd., Hangzhou, China) following 
the vendor’s recommended protocol.

Raw sequencing reads were processed to obtain valid 
reads for further analysis. First, sequencing adapters 
were removed from sequencing reads using cutadapt 
v1.9. Then, low-quality reads were trimmed by fqtrim 
v0.94 using a sliding-window algorithm. The clean reads 
were assembled using MEGAHIT [24] (v1.2.9) with the 
parameters “min contig = 100, Kmer = 21, 33, 55, 77.” 
Cd-hit [25] (V4.8.1) was used for sequence redundancy 
(sequence identity threshold: 0.95, alignment coverage 
for the shorter sequence: 0.9). Finally, MMseqs2 [26] 
(v13.45111, default parameter) was used for protein 
annotation against the UniProt database (UniRef90). 
We combined the human protein data from the UniProt 
database (UP000005640) and the tongue-coating micro-
bial database to construct the tongue-coating protein 
database (Fig. 1B, Supplemental Fig.1A).
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Fig. 1 Schematic view of the study. A The main components of tongue coating and cohort information included in this study. B Process 
of constructing the tongue-coating protein database. C Construction of the spectral library of tongue-coating proteins. D Tongue-coating protein 
identification and quantification workflow based on PCT-DIA
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Sample preparation assisted by PCT
We constructed and optimized a tongue-coating protein 
extraction process for proteomic analysis. After snipping 
the tip of the swab containing the tongue coating, it was 
immersed in a lysis buffer. The protein was then lysed 
in a constant temperature metal bath set to 30℃ and 
1200  rpm for 60  min. Subsequently, the proteins were 
precipitated with prechilled acetone and then transferred 
to a solution containing 30 μL lysis buffer (6 M urea, 2 M 
thiourea), 5 μL Tris (2-carboxyethyl) phosphine (TECP, 
10 mM), and 2.5 μL iodoacetamide (IAA) (800 mM). In 
PCT-MicroTubes (Pressure Bioscience Inc., USA), sam-
ples were lysed, reduced, and hydroxylated at 30 °C using 
PCT (90 cycles, 45 000 psi, 25  s on-time, and 10  s off-
time). Trypsin (enzyme-to-substrate ratio, 1:50; Hualishi 
Scientific, China) and LysC (enzyme-to-substrate ratio, 
1:40; Hualishi Scientific, China) were then added, fol-
lowed by PCT-assisted digestion (120 cycles, 20,000 psi, 
50  s on-time, and 10  s off-time). Trifluoroacetic acid 
(TFA, 10%) was added to terminate the digestion process. 
The resulting peptides were desalted with 2% acetonitrile 
(ACN) and 0.1% TFA and reconstituted. Peptide concen-
trations were measured with a Nanoscan (Analytic Jena, 
Germany) at A280, and samples were stored at 4  °C for 
further analysis. Unless otherwise specified, all chemical 
reagents were obtained from Sigma‒Aldrich.

DDA mass spectrometry acquisition for library generation
Peptides were first loaded onto the pre-column 
(5  mm*300  μm i.d.) at a pressure of 217.5  bar, then 
entered the analytical column (1.9  μm, 120  Å, 
150  mm*75  μm i.d.) at a flow rate of 300 nL/min, and 
were analyzed using a 60-min liquid chromatography 
gradient (0 ~ 50  min, 5 ~ 27% mobile phase B phase; 
50 ~ 60  min, 27 ~ 40% mobile phase B phase). The scan-
ning parameters of mass spectrometry were PASEF MS 
and MS/MS (Q Exactive HF-X hybrid Quadrupole-
Orbitrap, Thermo Fisher Scientific) mass scan range from 
100 to 1700 m/z, 1/k0 scan range from 0.6 to 1.6, mobil-
ity peak detection threshold of 5000, PASEF MS/MS scan 
number of 10, charge range from 0 to 5, and peak detec-
tion threshold of 2500 cts/s.

Spectral library construction
We used FragPipe (version 19.1, Nesvizhskii lab) and a 
two-step database search strategy to generate a spectral 
library specific to the tongue coating of gastric cancer 
individuals [27, 28]. In the first step, each DDA raw file 
was searched against the tongue-coating protein data-
base with a false discovery rate (FDR) of 0.01. The sim-
plified protein database for each raw file was generated 
by extracting the proteins in the PSM matrices. Then, 
all the simplified protein databases and human protein 

database (UniProt date: February 26, 2020) were merged 
as the combined database for the second step. In the sec-
ond step, all the DDA raw files were searched against the 
combined database with an FDR of 0.01 to generate the 
final spectral library (Fig. 1C, Supplemental Fig. 1B). We 
show the characteristics of the spectral library in Supple-
ment file 2 and Supplemental Fig. 1C-H.

Quantitative analysis of tongue‑coating samples 
by PulseDIA
The PulseDIA [29] acquisition of the sample was per-
formed on a nanoflow DIONEX UltiMate 3000 RSLC-
nano System (Thermo Fisher Scientific, San Jose) 
coupled to a Q Exactive HF-X hybrid Quadrupole-Orbit-
rap (Thermo Fisher Scientific, San Jose). The number 
of MS injections is two. For each PulseDIA acquisition, 
0.5  μg of peptides was injected and separated across a 
30-min LC gradient (from 3 to 28% buffer B) at a flow rate 
of 300 nL/min (pre-column, 3 μm, 100 Å, 20 mm × 75 μm 
i.d.; analytical column, 1.9  μm, 120  Å, 150  mm × 75  μm 
i.d.). Buffer A was HPLC-grade water containing 2% ACN 
and 0.1% FA, while buffer B was ACN containing 2% 
 H2O and 0.1% FA. The total time for re-equilibration and 
sample loading was approximately 15 min. The raw data 
acquired by PulseDIA was searched against the spectral 
library using DIA-NN to identify and quantify tongue-
coating proteins [30] (Fig. 1D).

Taxonomic annotation of microbial‑derived peptides
Taxonomic annotation was performed using the pep-
tide-centric taxonomic annotation software, Unipept 
[31] (version 3.0.2). Since missed cleavages cannot be 
directly matched with the Unipept database, we initiated 
an in silico digestion of the peptides using the “Advanced 
missed cleavage handling” rule in Unipept. Subsequently, 
we filtered out peptides with fewer than 5 or more than 
50 amino acids before annotating them using Unipept, 
applying the “Equal I and L” rule. When dealing with 
peptides that corresponded to multiple filtered peptides 
and filtered peptides annotated to different taxa, we first 
determined if the taxa belonged to the same branch. If 
the filtered peptides were annotated to the same branch, 
we retained the narrowest taxa. Otherwise, we retained 
the broadest taxa.

Functional annotation and enrichment of differentially 
expressed proteins
To explore the functions of tongue coating proteins, we 
used eggNOG-mapper [32] (version 2.0) for Clusters of 
Orthologous Groups of proteins (COG) annotation and 
GhostKOALA [33] (version 2.0) for KEGG orthologue 
(KO) annotation. Statistical analysis was performed 
using R software (version 4.2.0). Wilcoxon tests were 
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performed for differential protein (DEP) analysis, with 
a threshold of P value less than 0.05 or BH-adjusted P 
value less than 0.05. Fisher’s exact test was used for the 
significance analysis of pathway enrichment, and a P 
value < 0.05 was considered statistically significant.

Machine learning for gastric cancer classification
We randomly divided the training cohort into 75% train-
ing data and 25% internal validation data. A stochastic 
gradient boosting model (GBM) based on microbial pro-
teins was constructed to classify individuals with gastric 
cancer and those without gastric cancer. The machine 
learning stochastic GBM algorithm was performed using 
the R package gbm (version 2.1.8.1) with the parameters 
“interaction.depth = 3, n.trees = 150, shrinkage = 0.1, 
n.minobsinnode = 10.” This approach estimated the pre-
diction error by performing tenfold cross-validation in 
the training data. Subsequently, the top 50 features were 
used as inputs into the GBM to predict the performance 
of the features in classification in training data and inter-
nal validation data. Finally, the independent validation 
data were used to verify the robustness of the model.

Results
Study design and clinical characteristics
A total of 417 tongue-coating samples from 180 indi-
viduals with gastric cancer and 185 individuals without 
gastric cancer from five independent research centers 
were collected in this study (Fig.  1A). Fifty-seven sam-
ples of five individuals from the ZUGC-Lab (Key Labo-
ratory of Prevention, Diagnosis, and Therapy of Upper 
Gastrointestinal Cancer of Zhejiang Province) constitute 
the time-series cohort. This cohort was used to investi-
gate the stability of the tongue-coating proteome over 
time. The tongue-coating samples of 120 gastric cancer 
patients and 120 noncancer individuals were collected 
from Zhejiang Cancer Hospital (ZJC) to form the ZJC 
cohort. This cohort was used to explore the character-
istics of tongue-coating proteins and construct the gas-
tric cancer screening model. In addition, tongue-coating 
samples from 60 gastric cancer patients and 60 noncan-
cer individuals from the First Affiliated Hospital of Wen-
zhou Medical University (WZ), Zhejiang Hospital of 
Traditional Chinese Medicine (ZJT), and Sichuan Can-
cer Hospital (SCC) constituted the Multi-center cohort, 
which was used to verify the protein characteristics 
found in the ZJC cohort and to validate the robustness 
of the screening model (Fig. 1A, Supplemental Fig. 2A). 
Across different cohorts, there were no significant dif-
ferences in terms of sex, age, drinking history, smoking 
history, etc., between the gastric cancer group and the 
non-cancer group (Supplemental Table 1). Clinical infor-
mation for all individuals involved in the study is shown 

in Supplemental File 1. Quality control of tongue coating 
proteomics is shown in Supplemental Fig. 2. We excluded 
samples with fewer than 800 identified human-derived 
proteins or fewer than 2000 identified microbial-derived 
proteins. Finally, 233 samples from the ZJC cohort and 
112 samples from the multi-center cohort were included 
in the follow-up analysis.

The stability of the tongue‑coating proteome over time
To investigate the stability of the tongue-coating pro-
teome over time, we designed a time-series cohort with 
temporal longitudinal sampling. These samples were 
donated by 5 healthy volunteers and collected on days 
0, 3, 6, and 9, with three samples obtained on each occa-
sion. One volunteer did not participate in the last sam-
pling due to oral bleeding. A total of 57 samples were 
finally included in the time-series cohort (Fig. 2A).

A total of 12,839 (90.19%) microbial-derived proteins 
and 1396 (9.81%) human-derived proteins were identified 
(Fig. 2B). We observed that the ratio of protein intensity 
derived from human versus microbiota in tongue coat-
ing fluctuates over time (Fig.  2C). This variation can be 
ascribed to the instability of both human and microbiota 
protein intensities. Within an individual, human proteins 
exhibited a stronger correlation than microbial proteins 
 (rSpearman human 0.968 ± 0.012, microbial 0.896 ± 0.040) 
over time (Fig. 2D–E). Additionally, at the phylum level, 
we observed a slightly lower degree of stability within 
an individual over time  (rSpearman phylum 0.839 ± 0.085) 
(Supplemental Fig. 3A–B). This variation may be attrib-
uted to the uneven distribution of microorganisms on 
the tongue and the randomness of the sampling loca-
tion. Nevertheless, we observed that microbial functional 
COGs within an individual exhibited remarkable stability 
over time  (rSpearman intra-individual 0.959 ± 0.017) (Sup-
plemental Fig. 3C–D).

Among different individuals, human proteins still 
exhibited a high level of consistency  (rSpearman human 
0.968 ± 0.012, Fig.  2D–E). Taxonomic results are con-
sistent with those of intra-individual  (rSpearman phylum 
0.838 ± 0.089, Supplemental Fig. 3A–B). However, micro-
bial proteins and COG displayed variability among dif-
ferent individuals  (rSpearman protein 0.896 ± 0.040, COG 
0.831 ± 0.089, Fig.  2 D–E, Supplemental Fig.  3C–D). 
Therefore, microbial proteins may serve as a reliable indi-
cator for characterizing an individual, given their tempo-
ral stability and variability among individuals.

Functional characteristics of the tongue‑coating proteome
Next, we compared the proteomic data of the ZJC 
cohort and the multi-center cohort. At the peptide 
level, a total of 37,970 peptides were identified in the 
two cohorts. A total of 7082 peptides were derived from 
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humans, of which 6740 (95.2%) were identified in both 
cohorts. There were 30,889 peptides from microbiota, 
of which 29,062 (94.1%) were identified in both cohorts 

(Fig.  3A). For each sample, 4866 ± 598 human peptides 
and 15,298 ± 3,768 microbial peptides were identified in 
the ZJC cohort, while 5496 ± 535 human peptides and 

Fig. 2 Stability of the tongue-coating proteome over time. A Collection and sample processing of the samples in the time-series cohort. B The 
number of human-derived proteins and microbial-derived proteins in the time-series cohort. C The ratio of the abundance of human-derived 
proteins and microbial-derived proteins at different time points. D The correlation of the abundance of human-derived proteins 
or microbial-derived proteins between interindividuals and intraindividuals in the time-series cohort. E Correlation coefficient of the abundance 
of human-derived proteins (left) and microbial-derived proteins (right) in the time-series cohort
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16,652 ± 3536 microbial peptides were identified in the 
multi-center cohort (Supplemental Fig.  4A, C). In both 
cohorts, the number of identified microbial peptides was 
approximately four times higher than that of the human 
peptides (Fig. 3B–C).

At the protein level, a total of 15,212 proteins were 
identified in the two cohorts. Of these, 1432 proteins 

were of human origin, and 1378 (96.2%) were shared 
between the two cohorts. The remaining 13,780 pro-
teins were of microbial origin, and 13,006 (94.4%) were 
shared between the two cohorts (Fig. 3A). The number 
of identified microbial proteins was approximately nine 
times higher than that of the human proteins (Fig. 3D–
E). For each sample, 1113 ± 120 human proteins and 

Fig. 3 Functional characteristics of the tongue-coating proteome. A Comparison of identified human-derived peptides, human-derived proteins, 
microbial-derived peptides, microbial-derived proteins, COGs, or KOs in the ZJC cohort and multicentre cohort. B The number of human-derived 
peptides and microbial-derived peptides identified in the ZJC cohort and multi-center cohort. C The proportion of human-derived peptides 
to microbial-derived peptides in the ZJC cohort and multi-center cohort. D The number of human-derived proteins and microbial-derived proteins 
identified in the ZJC cohort and multi-center cohort. E The proportion of human-derived proteins to microbial-derived proteins in the ZJC cohort 
and the multi-center cohort. F–G Functional enrichment analysis of human-derived proteins (F) and microbial-derived proteins (G) of the ZJC 
cohort
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7393 ± 1709 microbial proteins were identified in 
the ZJC cohort, while in the multi-center cohort, 
1154 ± 115 human proteins, and 7661 ± 1827 micro-
bial proteins were identified per sample (Supplemental 
Fig.  4B–C). A total of 1485 COGs and 1426 Kos were 
annotated, 96.5% and 96.9% of which were commonly 
annotated by the two cohorts. (Fig.  3A). When com-
paring the two cohorts, it became evident that despite 
individuals hailing from different cities, the peptides, 
proteins, COGs, and KOs present in tongue coating 
exhibited a high degree of similarity.

Finally, to characterize the functional pathway profiles, 
we performed KEGG pathway enrichment on human 
proteins and microbial proteins in the ZJC cohort. 
Human proteins were mainly enriched in pathways such 
as cellular response to stress and neutrophil degranula-
tion (Fig.  3F). Microbial proteins were mainly enriched 
in pathways such as carbon metabolism, biosynthesis of 
amino acids, and biosynthesis of cofactors (Fig. 3G). We 
also compared the functions of the 100 highest expressed 
proteins and the lowest 100 proteins in the two cohorts. 
The highly expressed proteins in both cohorts were 
enriched in pathways such as ribosome, carbon metab-
olism, clycolysis/cluconeogenesis, and carbon fixation 
in photosynthetic organisms (Supplemental Fig.  6A–B). 
The functions of highly expressed microproteins in the 
two cohorts were similar. However, there is a large func-
tional difference in the low-abundance proteins between 
the two cohorts (Supplemental Fig. 6C–D). This may be 
related to the fact that low-abundance proteins are not 
easily detected, resulting in a large difference in the low-
abundance proteins between the two cohorts.

Taxonomy of the tongue‑coating microbiota
Using Unipept, we annotated the microbes present in 
all tongue-coating samples to gain a preliminary under-
standing of the bacterial diversity and quantity on the 
tongue. The tongue-coating microorganisms are mainly 
bacteria, with only one archaea, one eukaryote, and 
one virus species. Twenty-five phyla were identified in 
the ZJC cohort, among which Bacillota, Bacteroidota, 
Pseudomonadota, Actinomycetota, and Fusobacteriota 
included the most species (Fig. 4A). Next, we compared 
the bacteria identified in the ZJC cohort and the multi-
center cohort. The number of bacteria identified by the 
multi-center cohort was similar to that in the ZJC cohort 
(Fig.  4B). At the species level, a total of 175 species of 
bacteria were identified, 167 of which were commonly 
identified by both cohorts (Fig. 4C). In summary, the two 
cohorts have similar tongue-coating microbial diversity 
at phylum, class, order, family, genus, and species levels 
(Supplemental Fig. 7).

Microbiota structural alterations of tongue coating 
in patients with gastric cancer
We first compared the identified peptides, proteins, and 
functional profiles between gastric cancer and non-can-
cer groups, as well as between stage I–II and stage III–IV 
cancer patients in both cohorts. Similar diversity (over 
95%) was found between cancer and non-cancer groups 
(Supplemental 5A–B), as did samples from stage I–II and 
stage III–IV cancer patients (Supplemental 5C–D).

Next, we conducted a regression analysis to investi-
gate the efficacy of tongue-coating species in indicat-
ing the risk of gastric cancer (Methods). At the species 
level, we found that Schaalia odontolytica (OR (95% 
CI) = 1.01–2.59, p = 0.047) was associated with higher 
gastric cancer risk, while Acetatifactor (OR (95% 
CI) = 0.30–0.95, p = 0.032) and Stomatobaculum longum 
(OR (95% CI) = 0.27–0.97, p = 0.039) was associated with 
lower gastric cancer risk in the ZJC cohort (Fig. 4D). In 
the multi-center cohort, Neisseria brasiliensis (OR (95% 
CI) = 1.16–6.74, p = 0.022) was found to be a risk fac-
tor for gastric cancer. And Jeotgalibace porci (OR (95% 
CI) = 0.17–0.94, p = 0.035) was associated with lower gas-
tric cancer risk (Fig. 4D).

Functional changes in tongue‑coating microbiota 
in gastric cancer patients
To further investigate the changes in tongue-coating pro-
teins in gastric cancer patients, we first performed dif-
ferential protein analysis of human proteins in the ZJC 
cohort and the multi-center cohort. A total of 12 proteins 
were upregulated, and 9 proteins were downregulated in 
gastric cancer patients from the ZJC cohort (|log2 (fold 
change)|> 1 and p value < 0.05) (Supplemental Fig.  8A). 
In the multi-center cohort, we identified 9 upregulated 
proteins and 35 downregulated proteins (Supplemental 
Fig.  8B). A total of 5 proteins, including KRT2, KRT9, 
DCD, EWSR1, and CACNA1G, were downregulated in 
gastric cancer patients in both cohorts (Fig.  5A). KRT2 
and KRT9 are crucial keratins that comprise the tongue 
coating [34]. Next, we performed functional enrich-
ment of all downregulated human proteins of the tongue 
coating in gastric cancer patients. We found that these 
proteins were mainly related to the growth and differ-
entiation of tongue epithelium, which meant that the 
physical barrier on the tongue surface of gastric cancer 
patients was weakened (Fig. 5B).

To investigate the interaction between human pro-
teins and microbial proteins, we performed a Spearman 
correlation analysis between the abundance of KRT2, 
KRT9, and all identified COGs in the two cohorts. Both 
KRT2 and KTR9 were highly positively correlated with 
COG1136 (Fig.  5D–F). COG1136 was expressed at 
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Fig. 4 Taxonomy overview and microbiota structural alterations of tongue coating in patients with gastric cancer. A Taxonomic tree 
of the tongue-coating microbiome in the samples from the ZJC cohort. B The number of identified bacteria in the ZJC cohort and multi-center 
cohort. C Comparison of the total bacterial species identified in the ZJC cohort and multi-center cohort. D Bacteria associated with gastric cancer 
risk in the ZJC cohort and multi-center cohort
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significantly lower levels in the tongue coating of gastric 
cancer patients than in that of healthy volunteers in both 
cohorts (Fig. 5G–H, Supplemental Fig. 8C–D). COG1136 
is a class of proteins that constitute the ABC transporter, 
which is involved in cell protection and excreting endog-
enous compound production during cell metabolism and 
resisting environmental toxins, acting as a protective 
mechanism for bacteria [35–37]. The decrease in these 

proteins in the tongue coating of patients with gastric 
cancer suggested the decreased defense ability of the lin-
gual mucosa.

Finally, we conducted KEGG pathway enrichment for 
the down-regulated and upregulated microbial proteins 
in gastric cancer patients. In gastric cancer patients, 
the downregulated microbial proteins were mostly 
enriched in the biosynthesis of cofactors, oxidative 

Fig. 5 Functional changes in the microbiota of the tongue coating in gastric cancer patients. A Human-derived downregulated proteins 
in the ZJC cohort and the multi-center cohort. B Functional enrichment analysis of human-derived downregulated proteins in the ZJC cohort 
and the multi-center cohort. C–F The abundance correlation between COG1136 and KRT9 (C) or KRT2 (D) in the ZJC cohort. Abundance correlation 
between COG1136 and KRT9 (E) or KRT2 (F) in the multi-center cohort. G–H The intensity of COG1136 in gastric cancer and nongastric cancer 
samples in the ZJC cohort (G) and the multi-center cohort (H), respectively. I Functional enrichment analysis of microbial-derived downregulated 
proteins in the ZJC cohort and the multi-center cohort
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phosphorylation, and biosynthesis of amino acid path-
ways (Fig.  5I). The two-component system, carbon 
metabolism, and butanoate metabolism pathways were 
upregulated in gastric cancer patients (Supplemental 
Fig. 8E).

A gastric cancer screening model based 
on microbial‑derived tongue‑coating proteins
In the above analysis, we found that taxonomy-based 
gastric cancer indicators were not well validated in the 
multi-center cohort (Fig.  4D) [38]. However, the intra-
individual stability and the inter-individual variability of 
tongue-coating microbial proteins showed the potential 
to identify gastric cancer patients (Fig.  2D–E). There-
fore, we used microbial proteins to generate a classifica-
tion model for gastric cancer. To do so, we divided the 
ZJC cohort into a training dataset and a test dataset at 
a 3:1 ratio. Then, we used the stochastic gradient boost-
ing model (GBM) to select the most important microbial 
proteins in the training dataset (Fig. 6A, Methods).

The top 50 microbial proteins were selected to iden-
tify patients with gastric cancer (Supplemental Fig. 9A). 
The t-distributed stochastic neighbor embedding (t-SNE) 
analysis based on the 50 microbial proteins showed that 
most patients with gastric cancer have a distinct t-SNE 
distribution from non-cancer individuals (Fig.  6B). In 
addition, the Euclidean distances between any two indi-
viduals in the two cohorts were calculated. We observed 
that the distance between healthy controls and gastric 
cancer patients in stages I–II or stages III–IV was greater 
than the distance between healthy controls and gastritis 
patients (Supplemental Fig. 9B).

The model achieved 89.6% (95% CI 84.7–93.5%) accu-
racy, 87.1% sensitivity, 91.92% specificity, and a 0.96 
AUC in the classification of gastric cancer patients and 
healthy individuals in the training dataset. Furthermore, 
these 50 microbial proteins achieved 81.3% (95% CI 
69.5–89.9%) accuracy, 83.8% sensitivity, 78.8% specific-
ity, and 92% AUC in the internal test dataset. Finally, we 
tested the performance of the features in the independent 
validation cohort (multi-center cohort). These microbial 
proteins achieved 81.1% (95% CI 73.3–87.4%) accuracy, 
72.6% sensitivity, 91.5% specificity, and an 87% AUC 

in the independent cohort (Fig.  6C–E, Supplemental 
Fig.  9C–E). These results demonstrated that the micro-
bial proteins of the tongue coating can be used as effec-
tive biomarkers in gastric cancer patient classification.

KEGG enrichment suggested that these 50 proteins 
were mostly associated with ribosomes, a multiunit 
complex that converts mRNA into proteins and plays a 
critical role in cell proliferation, differentiation, apopto-
sis, development, and transformation [39]. The changes 
in microbial ribosome proteins in the tongue coating of 
patients with gastric cancer suggested important changes 
in microbial protein synthesis.

Discussion
In our previous study, we found that the tongue coat-
ing of gastric cancer patients was notably thicker than 
that of healthy individuals [10]. The underlying causes of 
this distinction remain inadequately elucidated. There is 
some indication that microbes may hold a pivotal role in 
accounting for this variation [19, 40, 41]. The oral cavity 
is the second largest microbial ecosystem in the human 
body, with more than 700 species and phylotypes [42]. 
Both traditional wisdom and contemporary scientific 
investigations have confirmed that shifts in the equi-
librium of oral bacterial composition might serve as 
indicators of pathological transformations. These trans-
formations encompass not only oral disorders like hali-
tosis, dental caries, and periodontitis but also systemic 
conditions affecting the respiratory system [43], circula-
tory [44], endocrine systems [45], and even malignancies 
[46].

Most previous studies characterized tongue coating at 
the genomic level based on metagenomics [19, 20]. Nev-
ertheless, proteins play a crucial role in biological func-
tion. With the advent of metaproteomics, researchers are 
now able to analyze the contribution of microorganisms 
in disease processes at the protein level. Metaproteom-
ics provides the opportunity to quantify protein intensity, 
elucidate biodiversity, and understand biological func-
tions at the protein level. Additionally, the joint analysis 
of microbial and human proteomes can shed light on the 
interplay between microbes and hosts.

Fig. 6 A gastric cancer screening model based on microbial-derived tongue-coating proteins. A Construction workflow of the gastric cancer 
screening model based on microbial-derived tongue-coating protein. B The t-distributed stochastic neighbor embedding (t-SNE) visualization 
of gastric cancer and nongastric cancer samples in the training dataset based on the top 50 tongue-coating microbial proteins selected by the GBM 
model. C The performance of the receiver operating characteristic curve (ROC) to classify patients with gastric cancer and healthy individuals 
using the 50 microbial protein features in the training data, test data, and multi-center cohort. D The distribution ratio and correspondence 
between different cohorts and samples. E Accuracy, sensitivity, and specificity of our screening model in different datasets. F Functional enrichment 
analysis of 50 microbial-derived proteins included in the screening model

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Quantitative proteomic characterization of the tongue-
coating microbiome is particularly difficult due to the 
ultrahigh complexity of the samples. In our experi-
ment, we employed the PCT-DIA method to identify 
and quantify both human proteins and microbial pro-
teins in tongue-coating samples. This allowed us to elu-
cidate the protein-level factors contributing to changes 
in tongue coating observed in gastric cancer patients. 
Given the possibility of specific microorganisms in the 
tongue coating of gastric cancer patients, we performed 
metagenomic sequencing on a subset of samples within 
the training set to establish a comprehensive database. 
To ensure the broadest sample coverage, we included 
healthy individuals, chronic gastritis patients, and those 
with both stage I–II and stage III–IV gastric cancer in 
our sample collection. This approach allowed us to create 
a comprehensive database encompassing various sam-
ple types. Furthermore, we combined the human pro-
teins from the UniProt database with our tongue-coating 
microbial protein database to ensure precise peptide 
classification during the library search. This comprehen-
sive approach led to the identification of a total of 1432 
human-derived and 13,780 microbial-derived proteins. 
In another proteomic study conducted by Rabe et  al., a 
total of 1857 human proteins and 3969 bacterial proteins 
were identified in 24 tongue coating and saliva samples 
from healthy individuals using Data-Dependent Acqui-
sition (DDA) technology [11]. Based on the number of 
identified proteins, particularly the microbial-derived 
proteins, our method appears to offer distinct advan-
tages. Hence, employing metagenomic sequencing to 
build a protein database and combining it with the PCT-
DIA method for the study of tongue-coating proteomics 
is a viable approach.

Previous studies have not addressed the stability of 
tongue-coating proteins. Therefore, we designed a time-
series cohort with continuous sampling and discovered 
that tongue-coating proteins remain stable over time 
within the same individual. This stability extends to the 
functionality of microbial proteins. Moreover, the lower 
correlation in microbial protein intensity among differ-
ent individuals suggests that microbial-derived proteins 
exhibit significant variability between individuals, mak-
ing them promising markers for individual identification.

To delve deeper into the characteristics of tongue-coat-
ing proteins in gastric cancer patients, we conducted a 
comparative analysis of the proteomic data from the ZJC 
cohort and the multi-center cohort. Surprisingly, despite 
the diverse geographical origins of these cohorts, we 
observed a high degree of diversity similarity in terms of 
peptides, proteins, COGs, and KOs. Additionally, when 
we compared tongue-coating protein characteristics 
between gastric cancer and non-cancer samples, as well 

as among samples with different cancer stages, we again 
found substantial similarities. Therefore, when examin-
ing protein profiles alone, the proteins present in tongue 
coating across various groups appear highly alike, pre-
senting a challenge for differentiation.

Protein functional analysis revealed that human-
derived proteins are predominantly associated with 
pathways like “cellular response to stress” and “neutro-
phil degranulation.” The tongue’s microenvironment is 
notably intricate, subject to a variety of stimuli such as 
mechanical forces, temperature fluctuations, and the 
presence of microorganisms [47]. The activation of these 
pathways may be linked to the external pressure on the 
lingual mucosa. On the other hand, microbial-derived 
proteins are predominantly associated with pathways like 
“carbon metabolism,” “biosynthesis of amino acids,” and 
“biosynthesis of cofactors,” which play crucial roles in 
microbial growth and metabolism.

In the bacterial profile analysis, Schaalia odontolytica 
and Neisseria brasiliensis were detected as the indicators 
of gastric cancer risk in the ZJC cohort and the multi-
center cohort, respectively. Schaalia odontolytica and 
Neisseria brasiliensis belongs to the genus Schaalia and 
Neisseria, respectively. Schaalia and Neisseria are the 
major  NO2−-producing bacteria in our oral [48], which 
can convert ammonia into nitrite and N-nitroso com-
pounds. The elevated levels of nitrite or N-nitroso com-
pounds may contribute to the development of gastric 
cancer [49]. In addition, Herreros-Pomares et al. reported 
that Schaalia odontolytica is enriched in the oral cavity of 
patients with proliferative verrucous leukoplakia (PVL), 
a high-risk precancerous lesion that easily develops into 
oral squamous cell carcinoma [50]. Xu et  al. reported 
that Schaalia is a high-risk factor for young-onset colo-
rectal cancer patients [51]. Li et al. found that Neisseria 
was significantly increased in the saliva of esophageal 
adenocarcinoma patients [52]. However, in this study, 
Schaalia odontolytica and Neisseria brasiliensis could not 
be mutually verified in the two cohorts. It is not unusual 
for different studies to report inconsistent or even con-
tradictory bacterial spectra [20], and regional disparities 
play a significant role in contributing to this outcome 
[38]. The ZJC cohort was predominantly collected from 
coastal cities in eastern China, while a substantial portion 
of the samples in the multi-center cohort originated from 
the central region of China. These areas vary in terms of 
dietary and lifestyle habits. Consequently, regional dis-
parities could introduce biases if disease analysis is solely 
reliant on the bacterial spectrum. Remarkably, the genus 
Aminipila demonstrated the most notable odds ratio 
(OR) for gastric cancer, registering at 5.75 in the ZJC 
cohort and 5.06 in the multi-center cohort. Aminipila has 
not been previously investigated in the context of cancer 
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studies, but our data indicate that it warrants further 
exploration.

In our analysis of human-derived proteins in tongue 
coating, we observed a significant downregulation of 
KRT2, KRT9, and DCD in the tongue coating of gastric 
cancer patients. KRT2 and KRT9 are essential keratins 
that constitute the structural components of the tongue 
coating [34]. The reduction in keratin content within the 
tongue coating diminishes the physical barrier effect of 
the tongue surface [53–55]. Reduced keratin levels can 
lead to dyskeratosis of the tongue coating, causing it to 
accumulate and become thicker in patients with gastric 
cancer compared to healthy individuals. DCD is a natu-
rally occurring polypeptide with potent antibacterial 
activity against E. coli, E. faecalis, S. aureus, and C. albi-
cans [56]. The reduction in DCD levels within the tongue 
coating implies reduced bacterial resistance in patients 
with gastric cancer. Downregulation of KRT2, KRT9, and 
DCD collectively indicates a decreased microbial resist-
ance in the oral cavity of gastric cancer patients. Corre-
spondingly, we observed a significant positive correlation 
between the abundance of microbial ABC transporters 
and keratin. Notably, microbial-derived proteins linked 
to ABC transporters exhibited a substantial reduction in 
the tongue coating of gastric cancer patients. ABC trans-
porters are recognized as crucial elements that enable 
bacteria to withstand adverse environments [35–37]. We 
speculate that the decreased bacteriostatic ability of the 
oral cavity of patients with gastric cancer reduces the sur-
vival pressure of bacteria, which leads to the downregu-
lation of ABC transporter expression. Previously, Bobes 
et al. reported that human-derived ABCC4 and ABCG2 
are highly expressed in proliferating keratinocytes [57], 
but no research has reported the effect of microbial-
derived ABC transporters on human epidermal kerati-
nization. Our findings may offer new insights into the 
interaction between microorganisms and the human oral 
epithelium.

Gastric cancer is characterized by a poor prognosis, 
limited treatment options, and a tendency for metastasis, 
recurrence, and drug resistance. There is a critical need 
for a dependable tool for early gastric cancer screening. 
While endoscopy is considered the gold standard for gas-
tric cancer screening, it is a relatively costly and invasive 
procedure associated with varying degrees of patient 
discomfort. Clinical markers such as carcinoembryonic 
antigen (CEA), carbohydrate antigen (CA) 199, CA724, 
CA125, CA242, pepsinogen, and alpha-fetoprotein are 
commonly used for gastric cancer screening. Neverthe-
less, these markers exhibit low specificity and sensitivity 
and lack the required specificity. Leveraging the stabil-
ity of microbial-derived proteins within individuals and 
their significant variation between individuals in tongue 

coating, we developed a gastric cancer screening model 
based on 50 microbial proteins. This model demonstrated 
an accuracy of 81.1% (95%CI 73.3–87.4%), with 72.6% 
sensitivity, 91.5% specificity, and an impressive 87% AUC 
in the independent validation cohort. In comparison to 
gastroscopy, this tongue-coating protein-based screening 
method is non-invasive, offers convenient sampling, and 
overcomes the limitations of gastroscopy, which neces-
sitates specialized equipment and expert medical per-
sonnel. Moreover, when compared to serum pepsinogen 
detection, it exhibits higher specificity.

This method has the potential for large-scale applica-
tion. We have discovered that tongue images and pro-
teins can be used to identify gastric cancer. To validate 
these findings on a broader scale, we have launched a 
large prospective clinical study involving 20,000 tongue-
coating samples (NCT05794841).

Conclusions
Our study has developed a quantitative tongue-coating 
proteomics method based on PCT-DIA. We identified 
distinctive changes in tongue-coating proteins among 
patients with gastric cancer and built a highly precision 
gastric cancer screening model using microbial-derived 
tongue-coating proteins. Our research represents a step 
towards a potential noninvasive biomarker for gastric 
cancer that is objective and suitable for long-term moni-
toring. Nonetheless, further investigation is required to 
uncover the influence of dietary habits and geographic 
disparities before deploying tongue-coating protein 
profiling as a biomarker for larger cohorts. Moreover, 
in more complex clinical contexts, where there is a sub-
stantial overlap of microbial proteins across different 
diseases, distinguishing disease-specific alterations from 
the identified tongue-coating proteins becomes a formi-
dable task. Therefore, we look forward to future research 
endeavors aimed at addressing this challenge.
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