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Abstract 

Background Infant gut microbiota is highly malleable, but the long‑term longitudinal impact of antibiotic exposure 
in early life, together with the mode of delivery on infant gut microbiota and resistome, is not extensively studied.

Methods Two hundred and eight samples from 45 infants collected from birth until 2 years of age over five time 
points (week 1, 4, 8, 24, year 2) were analysed. Based on shotgun metagenomics, the gut microbial composition 
and resistome profile were compared in the early life of infants divided into three groups: vaginal delivery/no‑antibi‑
otic in the first 4 days of life, C‑section/no‑antibiotic in the first 4 days of life, and C‑section/antibiotic exposed in first 
4 days of life. Gentamycin and benzylpenicillin were the most commonly administered antibiotics during this cohort’s 
first week of life.

Results Newborn gut microbial composition differed in all three groups, with higher diversity and stable composi‑
tion seen at 2 years of age, compared to week 1. An increase in microbial diversity from week 1 to week 4 only in the 
C‑section/antibiotic‑exposed group reflects the effect of antibiotic use in the first 4 days of life, with a gradual increase 
thereafter. Overall, a relative abundance of Actinobacteria and Bacteroides was significantly higher in vaginal delivery/
no‑antibiotic while Proteobacteria was higher in C‑section/antibiotic‑exposed infants. Strains from species belonging 
to Bifidobacterium and Bacteroidetes were generally persistent colonisers, with Bifidobacterium breve and Bifidobacte-
rium bifidum species being the major persistent colonisers in all three groups. Bacteroides persistence was dominant 
in the vaginal delivery/no‑antibiotic group, with species  Bacteroides ovatus and Phocaeicola vulgatus found to be 
persistent colonisers in the no‑antibiotic groups. Most strains carrying antibiotic‑resistance genes belonged to phyla 
Proteobacteria and Firmicutes, with the C‑section/antibiotic‑exposed group presenting a higher frequency of antibi‑
otic‑resistance genes (ARGs).

Conclusion These data show that antibiotic exposure has an immediate and persistent effect on the gut microbi‑
ome in early life. As such, the two antibiotics used in the study selected for strains (mainly Proteobacteria) which were 
multiple drug‑resistant (MDR), presumably a reflection of their evolutionary lineage of historical exposures—leading 
to what can be an extensive and diverse resistome.
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Background
Early life is a crucial window for the development of the 
neonate as the foundations for later life are laid. The tim-
ing and source of colonisation of the microbiota play an 
indispensable role in developing optimal health. These 
initial colonisers perform important functions such as 
the breakdown of complex compounds, e.g., the role of 
bifidobacteria in the breakdown of human milk oligo-
saccharides (HMOs) to harvest energy and synthesise 
vitamins and metabolites such as vitamins B and K and 
short-chain fatty acids (SCFAs) [1]. They protect against 
pathogen colonisation—a phenomenon referred to as 
colonisation resistance [2], and they are involved in neu-
ral development and immune programming as the neu-
rocognitive and immunity maturation occur during this 
period [3–5].

Infants have a simple gut microbial structure compris-
ing fewer bacterial species than adults, stabilising by 3 to 
4 years of age towards adult life. This early-life gut micro-
biota is influenced by several factors that include but are 
not limited to gestational age [6], mode of delivery (vagi-
nal vs C-section) [7], feeding habits (breastfeeding vs 
formula feeding) [8], and antibiotic uptake, both by the 
infant and the mother [9–12].

The infant gut is considered an antibiotic resistance 
gene (ARG) reservoir [13, 14]. This high ARG abundance 
is associated with Gammaproteobacteria, owing to their 
intrinsic resistance and high colonisation levels in early 
life [15–20]. C-section (CS) born infants are colonised by 
a high abundance of opportunistic pathogens belonging 
to taxa such as Escherichia coli, Klebsiella, and Entero-
bacter, often resulting in higher antibiotic use and ARG 
carriage in these infants [21, 22]. Antibiotic resistance is 
a global health concern [23]. Septic infections caused by 
antibiotic-resistant bacteria are responsible for 214,000 
neonatal deaths each year, of which multi-drug resist-
ant (MDR) bacteria cause 30% [24]. The immediate effect 
after antibiotic treatment is generally an overall decrease 
in gut microbiota diversity, including commensals, ben-
efiting the colonisation of antimicrobial-resistant (AMR) 
strains due to selective pressure [25]. Increasing evidence 
has demonstrated the association between antibiotic use 
and altered microbiota in early life, the rise in ARGs [11, 
26], and its linkage to the development of disease condi-
tions in later life [27].

CS and antibiotic use are common medical practices 
[28, 29], but both disturb the natural microbial coloni-
sation process, impacting the long-term health of the 

host [30, 31]. However, there are still important gaps 
in the understanding of how disruption of microbiota 
by differing modes of delivery and antibiotic use can 
enhance or reduce the gut resistome as the infant ages. 
In this study, the combined effects of CS birth mode 
and antibiotic uptake on the meta-taxonomic diver-
sity, and frequency of ARGs over the first few weeks 
of life were investigated by comparing it to CS-born 
and vaginally delivered control groups without anti-
biotics. Furthermore, the effect of antibiotic exposure 
in early life on the resistome and functional profile of 
infant gut microbiota longitudinally up to 2  years of 
age was investigated. CS delivery and antibiotic expo-
sure in early life were seen to pose a twofold disadvan-
tage, resulting in significantly lower microbial diversity 
carrying a higher ARG frequency with antibiotic use 
being the dominant influencing factor. Furthermore, 
the impact of antibiotic use in early life resonated up to 
2 years of age with amplified resistome profile observed 
in antibiotic-exposed infants.

Methods
Study group participants
In this study, DNA extracted from faecal samples from 
full-term infants from two study cohorts—INFANT-
MET and MYNEWGUT—were used to investigate the 
evolution of the infant gut resistome using shotgun 
metagenomics throughout the first 24  weeks of life 
up to 2  years of age. MYNEWGUT (MNG) recruited 
full-term CS-born infants administered antibiotics 
in the first 4  days of life. INFANTMET (IM) included 
infants born at full term via CS and vaginal delivery 
and were not administered antibiotics in the first week 
of life [32]. A subset of subjects from these two studies 
(n = 45) were selected randomly and divided into three 
groups. Group 1 (MNG + ab/CSab) (n = 10) included 
infants born by CS and given antibiotics during the first 
week of life. Group 2 (IM-Ab/CSnoab) (n = 17) contains 
infants born by CS, not administered antibiotics, and 
group 3 (IM-Ab/VDnoab) (n = 18) has infants born via 
vaginal delivery (VD) not administered antibiotics in 
the first few days of life. The cohorts and control groups 
were matched by gestational age (> 35  weeks of gesta-
tion), birth mode (CS and VD), antibiotic treatment (i.e. 
benzylpenicillin and gentamicin), diet (mostly breast-
fed or combination of breast and formula feeding), and 
time points of sample collection. The demographics for 
these three infant groups are as follows (Table 1).
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DNA extraction
Metagenomic DNA was extracted from fecal samples 
using the QIAmp Fast DNA Stool Mini kit (Qiagen, UK) 
with a modified protocol combined with a repeated bead 
beating method [33]. Briefly, 1  ml of lysis buffer was 
added to the stool sample in the bead-beating tube. The 
samples were homogenised with the lysis buffer using a 
mini beadbeater, incubated at 70 °C for 15 min with mix-
ing at regular intervals, followed by another 15-min incu-
bation at 37 °C, and then centrifuged at 4 °C for 5 min at 
16,000 × g. The supernatant was then treated with ammo-
nium acetate to remove impurities and incubated on ice 
for 5  min. This was followed by another centrifugation 
step at 16,000 × g at 4 °C for 10 min, and then, the DNA 
was precipitated by combining with an equal volume of 
isopropanol and stored overnight at − 20  °C. The next 
day, the DNA was pelleted by centrifugation at 16,000 × g 
at 4 °C for 15 min, washed with ethanol and Tris–EDTA, 
and treated with Proteinase  K, RNAse, and purified 
according to the manufacturer’s instructions (QIAmp 

Fast DNA Stool Mini kit; Qiagen, UK). The DNA was 
quantified using Qubit and stored at − 30 °C until further 
use.

Shotgun sequencing library preparation
The concentration of DNA was determined using Qubit 
and diluted to 0.2  ng/µl as per the manufacturer’s 
instructions. Library prep for shotgun sequencing was 
performed using a Nextera XT kit following the Nex-
tera XT DNA Library Preparation Guide from Illumina. 
Briefly, genomic DNA (0.2 ng/µl) was tagmented in 20 µl 
PCR reaction (containing 5  µl of gDNA, 10  µl of tag-
ment DNA buffer, and 5  µl of Amplicon Tagment Mix) 
volume at 55 °C. The tagmented DNA was then amplified 
using Illumina index primers, following which the librar-
ies were cleaned using AMPure beads. The quality of the 
library was then evaluated by running it on the Bioana-
lyzer using the Agilent High Sensitivity DNA chip. The 
DNA was quantified using Qubit, normalised, pooled, 
and outsourced to the Teagasc sequencing facility for 

Table 1 Clinical metadata for infants included in this study

Summary statistics (n = 45)
Characteristics MNG-CS (CSab) IM-CS (CSnoab) IM-VD (VDnoab)

Number of infants, n (%) 10 (22.22) 17 (37.77) 18 (40)

Number of samples, n (%) 50 (24) 78 (37.5) 80 (38.4)

Time points, n
 Week 1 10 (%) 17 18

 Week 4 10 15 17

 Week 8 10 17 15

 Week 24 10 17 17

 Year 2 10 12 14

Gender, n (%)
 Male 4 (40) 9 (52.9) 9 (50)

 Female 6 (60) 8 (47) 9 (50)

Mode of delivery, n (%)
 Vaginal 0 0 18 (100)

 C‑section 10 (100) 17 (100) 0

Gestational age (days) *280 (273,287) *273 (272,28) 278 (277,287) 1 missing

Birth weight (g) 4002 +—646.61 3543.5 + ‑463.88 3499.4 + ‑402.9

Antibiotic uptake in the first 4 days of life Yes No No

Feeding, n (%)
 Breast 1 (1) 3 (17.6) 4 (25)

 Combine 8 (8) 10 (58.8) 14 (77.7)

 NA 1 (1) 4 (23.5) 0 (0)

Maternal age at infant birth (years) – average NA 34 33

Gravidity 1.5(1,2) 2(2,4) 2(1.25,2.75)

Parity 1(1,1) 2(2,3) 2(1,2.75)

APGAR score
 Initial 9(8.25,9) 9(9,9) 9(8.75,9)

 Second 10(9,10) 10(9,10) 10(9,10)
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sequencing. Samples were sequenced as part of three 
sequencing runs along with one single sample (I159) ran 
on a new run making it part of a fourth sequencing run.

Filtering, taxonomic, and functional analysis 
of metagenomics reads
The quality of raw reads from metagenomic sequenc-
ing was assessed using FastQC (v0.11.8) and MultiQC 
(v1.9). Further, trimming, filtering, and host genome 
decontamination of the metagenomics reads were done 
using Trimmomatic (v0.39) and bowtie2 with Homo 
sapiens reference genome using the default parameters 
via the KneadData (v0.7.2) program from Huttenhower 
lab (https:// github. com/ bioba kery/ knead data). Further 
HUMAnN3 (v3.0) was used for the functional assign-
ment of the reads, providing microbial gene and path-
way abundance information [34], while MetaPhlAn3 
was used to provide the taxonomic assignment to the fil-
tered and trimmed reads using default parameters. Met-
aPhlAn3 output was processed using the microbiomics 
(v0.0.0.9000) and phyloseq (v1.38.0) package in R (v4.2.1), 
and relative abundance and mean relative abundance 
data were used for plotting figures in R. To check for pos-
sible batch-effects based on our grouping and sequencing 
plate variable, we used the R package MBECS v1.4.0 with 
ComBat as the batch effect correcting algorithm [35]. 
Briefly, ComBat uses a non-parametric empirical Bayes 
framework to correct for batch effects. Then, we deter-
mined beta-diversity using the Bray–Curtis distance and 
a PCoA with the corrected batch-effect data. We further 
calculated the PERMANOVA for all our study variables 
and compared them with the PERMANOVA based on 
uncorrected data. We obtained p values and R2 within a 
0.0001% range of variation, so we considered that batch 
effects are negligible.

Metagenomics assembly and contig binning
Post-KneadData filtering, the quality-filtered sequencing 
reads were first fixed and sorted using bbmap (v38.22). 
The metagenomes were then assembled using metaS-
PAdes (v3.14) [36] with default parameters. The scaffolds 
generated were filtered to obtain resulting scaffolds with 
a minimum length of 1000 bp (1kbp). Metagenomic bins 
were generated from the filtered scaffolds using three 
binning tools (MetaBAT v2.12.1, MaxBin v2.2.622, and 
CONCOCT v1.0.023) using metaWRAP (v1.3.1) [37] 
with default parameters. The bins were then refined with 
Bin_refinement module of metaWRAP with options ‘-c 
50—× 10,’ corresponding to the criterion of medium-
quality draft metagenome assembled genomes (MAGs). 
The quality (estimated completeness and contamination) 
of bins was evaluated with CheckM (v1.0.18) [38], imple-
mented in metaWRAP. This resulted in the formation of 

1449 medium-quality MAGs which were used for further 
analysis.

Taxonomic and functional annotation of MAGs
The resulting MAGs were then provided taxonomic 
annotation with GTDB-Tk (v1.5.0) using ‘classify_wf ’ 
workflow with default settings [39]. The phylogenetic 
tree for the 1449 MAGs was generated using PhyloPhlAn 
(v3.0.2) with options ‘-diversity low’ and ‘-fast’ [40]. The 
protein-coding genes from MAGs were predicted using 
Prokka (v1.14) using default parameters. dbCAN (v3.0.1) 
[41] (run_dbcan.py) was used to assign carbohydrate-
active enzymes (CAZymes) to all the MAGs using default 
parameters. Only certain CAZymes as reported to be 
involved in HMO and FOS metabolism were filtered and 
examined in downstream analysis. inStrain [42] was used 
for the identification of identical strains from MAGs, 
briefly, MAGs were dereplicated using drep (v3.2.0) 
resulting in 598 unique MAGs which were then mapped 
on filtered and trimmed shotgun reads using the inStrain 
profile command using Bowtie2 (v2.3.4). The inStrain 
profiles are then processed with inStrain compare, where 
the profiles are compared and those with 99.99% popu-
lation level—average nucleotide identity (popANI) are 
termed to be the same strain, belonging to the same clus-
ter and thus considered belonging to the same sample. 
The resulting strains were then classified as early or late 
colonisers, if they appeared during the first 8 weeks (early 
colonisers, t ≤ 8  weeks) of life or later (late colonisers, 
t > 8  weeks). Early colonisers were further classified as 
persistent colonisers and non-persistent colonisers. The 
definition for persistent colonisers was adapted from Lou 
et al. [43] and persistent colonisers were defined as early 
colonisers that persisted for 24 weeks (6 months) or more 
(t ≥ 24 weeks); otherwise, the strain was termed as non-
persistent coloniser (t < 24 weeks).

To look for possible contaminants, we examined 
strains (i.e. same strain with popANI > 99.99%) detected 
in the same inStrain cluster (set of genomes having pop-
ANI > 99.99%) coming from different individuals (sup-
plementary Table S1). If the samples where these strains 
were detected as identical came from different sequenc-
ing plates, we did not classify them as contaminants. 
These could be individuals living in the same household 
or siblings (e.g. I08 and I18). Only three samples (M15, 
M20, M25) from the same sequencing plate and corre-
sponding to different (n = 3) individuals were detected 
as containing the same strains (n = 2). These strains were 
classified as possible contaminants and removed from the 
analysis. We also looked at possible contaminants using 
the blanks included in the sequencing runs. No contami-
nation was found using this method.

https://github.com/biobakery/kneaddata
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Resistome and virulence analysis
MAGs generated were then processed through ABRicate 
(https:// github. com/ tseem ann/ abric ate) using default 
settings with CARD (Comprehensive Antibiotic Resist-
ance Database) [44], VFDB (Virulence Factor Database) 
[45], and plasmid finder [46] databases. Results from 
CARD and VFDB were used further unless otherwise 
specified. RGI-bwt and CARD (v3.1.4) [47] were used 
to predict ARGs in the clean and filtered metagenomics 
reads using default parameters. The RGI-bwt read map-
ping results at the gene level were normalised by the read 
counts per sample, converted to copies per million (cpm) 
of ARGs per sample, and used for downstream analysis. 
ARG names from ABRicate and RGI output were curated 
to antibiotic class names based on phenotype from 
CARD. Any gene that conferred resistance to three or 
more antibiotic classes was termed MDR in downstream 
analysis. However, when the antibiotic classes of interest 
in the study (classes of antibiotics administered to infants 
in the first week of life in the CSab group—Aminoglyco-
side and or Penams) appeared, we spelled them out along 
with MDR for better visualisation purposes.

Differential abundance analysis
Analysis of which taxa or ARG classes drive the differ-
ence between the three groups in the present study was 
done using MaAsLin2 [48] and Songbird [49]. The MaAs-
Lin2 model was fit with overall data, and at week 1 and 
week 4, treating the group as a fixed effect with each of 
the three study groups (VDnoab, CSnoab, CSab) used 
as a reference with min_prevalance = 0.1 and min_abun-
dance = 0. For differential abundance analysis of lon-
gitudinal data, Songbird was performed using default 
parameters to study the bacterial species most associated 
with each group and driving the differences in the groups 
(Formula: C(Group, Treatment(’VDnoab’)) and C(Group, 
Treatment(’CSnoab’))). Only the top 10 associations 
(both positive and negative top 10) were used for further 
analysis.

Statistical analysis and data representation 
Downstream analysis of the data was done in R (v4.1.0) 
using packages including Vegan (v2.5.7) [50], Phyloseq 
(v1.38.0) [51], ggplot2 (v3.3.5) [52], microbiome utilities 
(v1.0.16), and ggpubR (v0.4.0). Statistical analysis was 
performed in R using Permanova to check the propor-
tion of explained variance and significance of each vari-
able using pairwiseAdonis (v0.4). Wilcoxon sum tests, 
paired t tests, Dunn test, and ANOVA as mentioned 
throughout the text were used to verify statistical sig-
nificance. Spearman correlation coefficient was used to 
determine the correlation between relative abundance 
over time for species for each group, and the top 10 

positive and negative results were plotted in R. Statisti-
cal significance was determined by 999 permutations, 
and p values were corrected using FDR; p values below 
0.05 were considered significant. To assess the power 
of the study, we carried out a post hoc statistical power 
analysis. We used the ‘simr’ package (v1.0.7) and ‘lme4’ 
package (v1.1) in R, which determines the power for lin-
ear mixed effects models based on Monte Carlo simula-
tions. Briefly, we first fitted the model using the function 
‘lmer’ on the second axis of the PCoA with Bray–Cur-
tis distance (Fig.  1B), with the following parameters: 
‘Axis.2 ~ Group*time + (1|id)’, where ‘Axis.2’ is the second 
axis of the PCoA, ‘Group’ is the grouping variable in our 
study, and ‘id’ is the identity of the infant (i.e., the random 
variable). Then, we created a fitted lmer model using the 
function ‘makeLmer’ with the above formula and used 
the output of lmer. Finally, we assessed statistical power 
for delivery mode using the ‘powerSim’ function as fol-
lows: ‘powerSim(model, nsim = 1000, test = fcompare(Ax
is.2 ~ time))’, where ‘model’ is the fitter lmer model. We 
obtained a statistical power of 96.10% with alpha = 0.05 
and 1000 simulations.

Results
To characterise the microbiome and resistome devel-
opment in early life, metagenomic data of two hundred 
and  eight stool samples from 45 infants were divided 
into three groups based on their mode of delivery and 
antibiotic exposure in the first week of life, i.e., vaginal 
delivery/no-antibiotic (VDnoab); C-Section/no-antibi-
otic (CSnoab); C-Section/antibiotic (CSab). This study 
included samples at five time points from week 1, week 4, 
week 8, week 24, and year 2 of age. Altogether 10 infants 
were born by CS and administered antibiotics in the first 
4 days of life, with gentamycin and benzylpenicillin being 
the most commonly administered. Gestational age and 
birth weight were similar across all groups (Table 1).

Antibiotic use affects microbial composition and decreases 
diversity
Metagenomics analysis revealed increased richness and 
alpha-diversity (Shannon index) over time in all groups 
(Fig.  1A, 1B), with significant differences between all 
early time points (week 1, week 4, week 8, and week 24) 
and the final time-point, year 2. The significant difference 
(p.adj-value = 0.029 Wilcoxon test with BH) in alpha-
diversity (Shannon index) observed between week 1 and 
week 4 in the CSab group, which was not observed in the 
other groups, shows an increase in microbial diversity 
in very early life possibly due to the effect of antibiotic 
administration (Fig.  1A). The CSab group had low ini-
tial microbial diversity (Shannon index) when compared 
with the other groups (Figure S1A), with a significant 

https://github.com/tseemann/abricate
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difference observed at week 1 between CSab and CSnoab 
(p.adj-value = 0.03, Wilcoxon test with BH) groups and at 
week 24 between CSab and CSnoab (p.adj-value = 0.039, 
Wilcoxon test with BH); however, no significant differ-
ences were observed otherwise (Figure S1A).

We then calculated beta-diversity using Bray–Curtis 
dissimilarity and Unifrac distance and visualised it using 
principal coordinate analysis (PCoA) to look at differences 
between microbial profiles (Fig.  1B). Using Bray–Cur-
tis distances, the CSab group showed a distinct micro-
bial composition compared to CSnoab (p value = 0.0105, 
PERMANOVA) and VDnoab (p value = 0.0060, PER-
MANOVA) groups. Beta-diversity also varied between 

time points (p value = 0.001, R2 = 0.11; Adonis2), by 
mode of delivery (p value = 0.003, R2 = 0.013; Adonis2), 
by duration of breastfeeding (p value = 0.001, R2 = 0.06), 
and antibiotic use (p value = 0.002, R2 = 0.016; Adonis2) 
in early life; with antibiotic use explaining slightly higher 
variation between the groups after the time and feeding 
variables. Microbial communities were mainly structured 
by time-point, and significant differences were observed 
between the CSab and VDnoab groups at week 1, week 
4, and week 8 (p values = 0.024, 0.048, 0.018, respectively, 
Adonis2) and between VDnoab and CSnoab groups 
at week 1 (p value = 0.075) (Figure S1B). To determine 
the effect of delivery mode and antibiotic use on the 

Fig. 1 A Alpha‑diversity as measured by Shannon’s diversity index between all time points in the three study groups. P values were calculated 
using the Wilcoxon test, with p.adjusted values < 0.05 used as the significance threshold. B PCoA plot using Bray–Curtis and unweighted UniFrac 
distance metrics; with ellipses drawn with each grouping variable namely time‑point, antibiotic, delivery, and study groups (confidence interval: 
90%). P value and R2 values were obtained from PERMANOVA using pairwiseAdonis. C Taxonomic distribution of infant gut microbiota at class level 
using relative abundance for each group over time from week 1 to year 2
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microbial composition, PERMANOVA was performed 
using pairwiseAdonis in R on microbial composition data 
at each time-point. At week 1, delivery mode and antibi-
otic usage caused significant variations in the microbial 
composition of infants, with delivery mode explaining 
higher variance (pairwiseAdonis). The effect of the mode 
of delivery decreased over time, but antibiotic use in 
the first week of life was a significant variable affecting 
microbial composition in infants up to week 24 (Figure 
S2B).

Microbial composition of infants in early life evolves 
with age
Given the significant effect of delivery mode and early 
antibiotic exposure on microbial diversity, the coloni-
sation pattern in the three groups was examined. The 
phyla Firmicutes and Proteobacteria were prevalent in 
CS-born infants, with the highest relative abundance 
in the CSab group (Figure S2A). Actinobacteria abun-
dance was relatively high in VD infants, with high rela-
tive abundance in the no-antibiotic-treated groups and 
lowest in the CSab group from week 1 (At week 1: p.adj 
value: VDnoab to CSab = 0.0005, Dunn test with BH). 
A detailed look at each time point demonstrated the 
absence of phylum Bacteroidota in the CS-born infants 
at week 1 with higher relative abundance in the no-anti-
biotic groups (p.adj-value: VDnoab to CSnoab = 0.003, 
VDnoab to CSab = 0.008, Dunn test with BH). At weeks 
1 and 4, Firmicutes were relatively higher in the CS-born 
infants (CSnoab) (Figure S2A) (at week 1: p.adj-value: 
CSnoab to VDnoab = 0.009, at week 4: p.adj-value: CSab 
to CSnoab = 0.005 and CSab to VDnoab = 0.002, Dunn 
test with BH).

We further examined the mean relative abundances of 
the classes (Fig. 1C) and the top 10 most abundant spe-
cies for all groups longitudinally (Fig.  2A). Commensals 
such as Bifidobacterium species including B. bifidum, B. 
breve, B. longum, B. kashiwanohense, Bacteroides/Pho-
caeicola (Phocaeicola vulgatus), Collinsella aerofaciens, 
and E. coli abundances were highest in the VDnoab 
group at week 1 and week 4, and generally, an increas-
ing trend was seen for all groups until week 24. Interest-
ingly, Bifidobacterium dentium abundance was highest 
in the CSab group, granting this species an undisclosed 
benefit in adverse circumstances like the administra-
tion of antibiotics. A low prevalence of commensals was 
observed in CS-born infants, with higher initial relative 
abundance of opportunistic bacteria in the CSab group 
belonging to Proteobacteria and Firmicutes such as Kleb-
siella pneumoniae, Ruminococcus gnavus, Veillonella 
parvula, Raoultella ornithinolytica, and Enterobacter 
cloacae complex, which decreased over time (Fig. 2A, C). 

The prevalence of the top 10 species occurring over time 
in the three groups is provided in Table 2.

Stronger association and colonisation of CS-born babies 
with pathobionts
To further determine the association of each group 
and time with bacterial taxa, microbial relative abun-
dance (species) data were associated with longitudinal 
time-point using Spearman correlation for each group 
(Fig.  2C). The top 10 positive and negative coefficients 
derived after filtering for significant p.adjusted values 
were then plotted (Wilcoxon test and BH method). In 
general, facultative anaerobes (such as Staphylococcus, 
Streptococcus, Enterococcus) known to colonise the gut 
in the first week of life showed a decreasing trend over 
time, while obligate anaerobes (Blautia, Bifidobacterium, 
Anaerostipes, Bacteroides, Eggerthella, Ruminococcus, 
Eubacterium) showed a growing trend with time [53]. 
The taxa B. bifidum, Faecalibacterium prausnitzii, Blau-
tia (Blautia wexlerae), Bacteroides (Bacteroides fragilis), 
Eubacterium (Eubacterium rectale, Eubacterium hallii), 
Anaerostipes (Anaerostipes hadrus), and Ruminococ-
cus (Ruminococcus bromii) were found to have positive 
associations and increased in all three groups over time 
(Fig. 2C).

Species that were significantly different between any 
two groups overall were identified using the Songbird 
differential abundance analysis tool. Briefly, Songbird 
results showed a stronger association of Bifidobacte-
rium species to the VDnoab group, but when CSnoab to 
CSab were compared, Bifidobacterium species were more 
associated with the CSnoab group (Table S2). When the 
VDnoab group was used as a reference (Fig. 2B), several 
commensals with high relative abundance and prevalence 
(Fig.  2A and Table  2) were associated with it, some of 
which are involved in folate, lactate, and butyrate produc-
tion such as Bifidobacterium adolescentis, Ruthenibacte-
rium lactatiformans, Erysipelatoclostridium ramosum, 
B. longum, Lactobacillus paragasseri, B. kashiwanohense, 
C. aerofaciens, B. fragilis, Parabacteroides distasonis, and 
Phocaeicola dorei. Conversely, a mix of opportunistic 
bacteria and commensals including Clostridium perfrin-
gens, Veillonella (sp seminalis and parvula), Bifidobac-
terium pseudocatenulatum, Streptococcus salivarius, E. 
coli, Enterococcus faecalis, and R. bromii was associated 
with the CSnoab group. Similarly, the CSab group was 
more associated with B. dentium, Ruminococcus gnavus, 
E. faecalis, V. parvula, Faecalibacterium prausnitzii, and 
K. pneumoniae.

When comparing associations between CSnoab vs 
CSab groups (Figure S2C), we observed similar results as 
above where B. dentium, V. parvula, K. pneumoniae, F. 
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prausnitzii, B. breve, E. faecalis, and R. gnavus showed a 
stronger association to the CSab group (Figure S2C).

Antibiotic administration in early life is strongly associated 
with the resistome profile
To further analyse the data from a genome perspec-
tive, we reconstructed a total of 1448 medium-quality 

prokaryotic MAGs corresponding to eight phyla, 1441 
known species (GTDB-k), and 49 unknown species. 
Using universal markers, we reconstructed a phyloge-
netic tree using PhyloPhlan (Fig. 3).

We annotated the MAGs using the CARD data-
base with ABRicate. The presence of 213 ARGs was 
detected in 1024 MAGs. Resistance was observed 

Fig. 2 A Relative abundance (%) showing the top 10 species per group over time from week 1 up to year 2, where time is in weeks. B Plots show 
differential abundance analysis using Songbird with VDnoab group as reference run using the formula C(Group, Treatment(’VDnoab’)). The plot 
on the left side corresponds to the CSnoab group as treatment while that on the right depicts the CSab group as treatment against the reference 
group. In both cases, negative values (blue bars) represent the association to the reference group (here VDnoab) while positive values (red bars) 
represent the association to the treatment group; here CSnoab (on left plot) and CSab (right side plot). C Heatmap representing the association 
of bacterial abundance with time. Results from Spearman correlation analysis using the relative abundance of species for each group to time‑point. 
P values were adjusted using BH, those < 0.05 were considered significant, and corresponding species and their coefficients were plotted. In 
the plot, blue bands denote decreasing with time (negative coefficient), red bands denote positive coefficient which means increasing over time, 
while grey means NA denoting not detected significantly as top 10 in that group
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against 26 different classes of antibiotics in the infant 
cohort, which included antimicrobials belonging to 
‘critically important’, ‘highly important’, and ‘impor-
tant’ categories (as categorised by WHO: https:// 
apps. who. int/ iris/ bitst ream/ handle/ 10665/ 312266/ 
97892 41515 528- eng. pdf ). The highest ARG distribu-
tion was in the phylum Proteobacteria followed by 
Actinobacteria and Firmicutes (Fig.  3), with Proteo-
bacteria possessing the highest abundance of unique 
ARGs (182). The majority of genera contributing to 
this ARG abundance included several taxa belonging 
to Gammaproteobacteria namely Escherichia, Kleb-
siella, Enterobacter, Raoultella, Citrobacter, and others 
including Enterococcus, Staphylococcus, Streptococcus, 
and Bifidobacterium. Interestingly, species belonging to 

Escherichia contributed to the largest number of ARG 
abundance accounting for 56% of the total number of 
ARGs detected (146 different ARGs present out of 213 
detected) (Figure S3 A). Results from the read-based 
approach using RGI with CARD further confirmed the 
resistome profile distribution in infants with a high 
abundance of resistance genes observed for amino-
glycoside, MDR, macrolide, beta-lactam, tetracycline, 
and fluoroquinolone antibiotics (Fig.  4A). Functional 
characterisation of ARGs showed that antibiotic tar-
get alteration was the most common type, followed by 
antibiotic inactivation and antibiotic efflux as mecha-
nisms for antibiotic resistance. The distribution and 
abundance pattern of ARGs in the study’s three groups 
was investigated, and a decrease in alpha-diversity from 
week 1 to year 2 (p.adjusted values using Wilcoxon test 
with BH: for CSab = 0.01, for CSnoab = 0.012, and for 
VDnoab = 0.0005), week 4 to year 2 for CSab group only 
(p.adjusted value = 0.01, Wilcoxon test with BH), week 
8 to year 2 (p.adjusted values using Wilcoxon test with 
BH: for CSnoab = 0.01 and for VDnoab = 0.00031) and 
week 24 to year 2 (p.adjusted values: for CSab = 0.03, 
for CSnoab = 0.00026, and for VDnoab = 0.00052, Wil-
coxon test with BH) was observed; however, no other 
differences were seen (Fig.  4B). PERMANOVA dem-
onstrated discrete clustering between the CSab and 
VDnoab groups (p value = 0.03, PERMANOVA) using 
a non-metric multidimensional scaling (NMDS) plot 
with Bray–Curtis distance matrix (Figure S3 B). Anti-
biotic use in early life and time both had a significant 
impact on the ARG diversity (antibiotic exposure: p 
value = 0.007, time: p value = 0.001, PERMANOVA) but 
no significant effect of mode of delivery was seen.

When looking at antibiotic resistance for all the classes 
with VDnoab as reference (Figure S4), the CSab group 
showed resistance to several antibiotic classes over-
all and at week 1 and week 4 including aminoglycoside, 
beta-lactams and penams, MDR including aminoglyco-
sides, which were drugs administered to the infants dur-
ing the first week of life. Interestingly, at week 4, CSab 
showed significantly high resistance to several antibiotic 
classes with reference to the VDnoab group while the 
CSnoab group showed none. These differences could be 
due to the transient nature of the many taxa that colo-
nised during early life in the CSnoab group, which might 
have reduced in abundance over time. However, in the 
CSab group, antibiotic exposure in the first 4  days of 
life resulted in selective pressure that might result in the 
presence of these ARG-containing bacteria, which were 
detected at week 4, and then possibly decreased over 
time (Figure S4).

Additionally, 20 classes of differentially abundant anti-
biotic resistance classes were detected using MaAsLin2. 

Table 2 Prevalence of the top 10 species per group over time

VDnoab Prevalence

s__Bifidobacterium_longum 0.219614

s__Bifidobacterium_breve 0.151354

s__Escherichia_coli 0.090879

s__Bifidobacterium_bifidum 0.078704

s__Veillonella_parvula 0.034615

s__Bifidobacterium_kashiwanohense 0.032284

s__Bifidobacterium_pseudocatenulatum 0.028567

s__Phocaeicola_vulgatus 0.023586

s__Collinsella_aerofaciens 0.022992

s__Enterobacter_cloacae_complex 0.018023

CSnoab
s__Bifidobacterium_longum 0.157771

s__Bifidobacterium_breve 0.111949

s__Escherichia_coli 0.104861

s__Bifidobacterium_bifidum 0.072274

s__Veillonella_parvula 0.038586

s__Bifidobacterium_pseudocatenulatum 0.036361

s__Bifidobacterium_adolescentis 0.022993

s__Clostridium_perfringens 0.021653

s__Enterococcus_faecalis 0.021367

s__Ruminococcus_bromii 0.021031

CSab
s__Bifidobacterium_breve 0.138188

s__Bifidobacterium_longum 0.081597

s__Bifidobacterium_dentium 0.069409

s__Bifidobacterium_bifidum 0.062468

s__Escherichia_coli 0.050663

s__Veillonella_parvula 0.048931

s__Enterococcus_faecalis 0.040728

s__Ruminococcus_gnavus 0.033023

s__Raoultella_ornithinolytica 0.029764

s__Klebsiella_pneumoniae 0.024008

https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf
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MaAsLin2 was run using fixed effect as a group variable 
with each group (VDnoab, CSnoab, CSab) as a refer-
ence each time and subject number as a random effect 
for the overall dataset. Overall, at week 1, and at week 
4, the CSab group was strongly (positively) associated 
with genes conferring resistance to aminoglycoside, beta-
lactams, penams, MDR, elfamycin, fluoroquinolone, tet-
racycline, and macrolide when compared with the other 
groups. Some of these antibiotic classes such as penams, 
and aminoglycosides are the same class as those adminis-
tered to infants in this group during the first 4 days of life 
(Fig. 4 C). Interestingly, infants in the other two groups, 
CSnoab and VDnoab also showed positive associations to 
certain antibiotic classes even at week 1 and week 4 when 
no antibiotics were administered during the first week of 
life.

Strain persistence is increased in vaginal delivery 
and antibiotic naïve groups
To understand the prevalence patterns of the resistome in 
the infants gut, the antibiotic resistance observed due to 
early life antibiotic exposure was investigated to check if 
it persists in bacterial strains up to 2 years of age. inStrain 
was used with MAGs to identify identical strains and 
examine their persistence in infants in early life. Briefly, 

bins were dereplicated at 98% whole-genome aver-
age nucleotide identity (gANI) to obtain unique strains, 
which were mapped onto shotgun reads. If the genomic 
region demonstrated more than 99.99% population-
level ANI (popANI) identity in two samples, the strains 
were considered identical in the two samples. Based on 
the classification of persistent, non-persistent, and early 
colonisers (adapted from [43]), a higher number of early 
colonisers were present in the no-antibiotic groups, with 
the highest detected in the VDnoab group (Fig. 5B). Fur-
ther, 98% of the detected strains were early colonisers, of 
which 45% were non-persistent colonisers. Of the early 
colonisers, 38% in the CSnoab group, 50% in the VDnoab 
group, and 48% in the CSab group were non-persistent 
colonisers (Fig.  5B). The highest number of persistent 
colonisers that remained until two years of age was in the 
VDnoab group, which could be due to the higher num-
ber of strains inherited maternally by vertical transmis-
sion such as those belonging to the Bacteroidota phylum 
in this group. Overall, due to their abundant appearance 
in early life in healthy infants and critical role in carbohy-
drate metabolism in early life, bifidobacteria constituted 
the genera that contributed to the maximum percent-
age of persistent colonisers. Bacteroides were gener-
ally persistent colonisers, with very few non-persistent 

Fig. 3 Phylogenetic tree created using Phylophlan from 1448 medium‑quality MAGs generated in this study. Each branch represents a MAG 
with (from innermost to outermost ring): phylum level distribution of the MAGs, antibiotic use in early life and delivery mode, groups variable 
in study, succeeded by time‑point and log‑transformed genome counts of ARG abundance per MAG as examined using ABRicate with CARD
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colonisers, while majorly, Proteobacteria along with 
some Actinobacteria and Firmicutes were among the top 
non-persistent colonisers (Figure S5, S6, and S7). Based 
on the stringent criteria to define strains, we consider 
that ARG abundance detected within persistent colon-
isers are the same genes that appeared in early life and 
persisted until year 2. Investigating the top 10 strains car-
rying ARGs revealed that all strains in the no-antibiotic 

groups belonged to the genera Escherichia, while those in 
the CSab group belonged to a mixture of taxa from Gam-
maproteobacteria, including Escherichia, Klebsiella, and 
Raoultella; with none persisting up to 2  years of age. A 
closer look at the top 10 strains per group and antibiotic 
class showed a wide variety of early colonisers belong-
ing to genera Escherichia, Enterococcus, Bifidobacterium, 
Streptococcus, Collinsella, Phocaeicola, and Bacteroides 

Fig. 4 A Box plot representing the total resistome profile of the infants included in this study, with antibiotic class names of penams 
and aminoglycosides retained in MDR classes to facilitate understanding, as these are the classes of antibiotics administered to infants in the CSab 
group. Antibiotic classes were detected using RGI with CARD. The abundance of antibiotic classes was normalised to cpm and log‑transformed. B 
Alpha‑diversity plot using Shannon diversity index for ARG diversity for each group between all the time points. P value of < 0.05 was considered 
significant (Wilcoxon test). C MaAsLin2 differential abundance analysis coefficients obtained by running MaAsLin2 overall and at week 1 and week 
4 using Group as a fixed effect with each group (VDnoab, CSnoab, and CSab) as reference per run along with the parameters min_prevalence = 0.1 
and min_abundance = 0
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among others; the majority of these strains were non-
persistent colonisers, with most present until week 8 and 
some until week 24 (Fig. 5A).

Functional profiles of the microbiota in infants are 
influenced by antibiotic exposure and age
Differences in microbial composition, relative abundance, 
and resistome might infer variation in the functional 
capabilities of the microbiota. Thus, we investigated 

differences in the functional ability of gut microbiota in 
the three study groups VDnoab, CSnoab, and CSab from 
both the MAGs and reads perspectives. Carbohydrate 
metabolism including HMO and galactooligosaccharides 
(GOS) degradation are important functions for infant 
gut microbiota in early life especially when fed breast 
milk. Overall CAZyme glycoside hydrolase  (GH) abun-
dance inferred from the MAGs was significantly higher 
in the VDnoab group as compared to CSnoab and CSab 

Fig. 5 A Persistence of strains carrying the top 10 highest abundance of AMR per group and class in infants up to 2 years of age. The right side 
of the plot depicts abundance as detected by ABRicate in the form of a heatmap. The strains are colour coded based on the phylum to which they 
belong, as detected by GTDB. B Bar plot showing the percent distribution of the genera Bifidobacterium, Bacteroides/Parabacteroides/Phocaeicola, 
and others as early colonisers (further divided into persistent colonisers and non‑persistent colonisers) and late colonisers for each of the three 
groups in the study
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groups (p.adj =  < 0.0001 and 0.015, respectively; Wil-
coxon test using BH method) and CSnoab group had 
higher GH abundance compared to the CSab group (p 
value = 0.0033) at week 1. At week 4, a significant differ-
ence was observed between VDnoab and CSnoab and 
VDnoab and CSab (p value = 3.3e − 06, 9.7e − 06, respec-
tively). CAZyme analysis was also performed for selective 
GH related to HMO, GOS, and fructooligosaccharides 
(FOS) degradation enzyme families due to their impor-
tance in early life. We observed that the VDnoab group 
had significantly different overall CAZyme composi-
tion (p.adj = 0.012, PERMANOVA) while no other dif-
ferences were observed otherwise between groups for 
overall or selective GH composition. Further, CAZyme 
composition differed significantly based on time with all 
early time points clustering separately from year 2 for 
both overall and selective CAZymes (PERMANOVA). 
Furthermore, delivery mode had a significant impact on 
the overall and selective GH composition (p.adj = 0.019 
and 0.039, respectively, PERMANOVA), while anti-
biotic use only affected the overall GH composition 
(p.adj = 0.019). The phyla Actinobacteria and Bacteroi-
dota had the highest percent contribution to GH abun-
dance and it was highest in the VDnoab group. At the 
same time, Firmicutes and Proteobacteria contributed 
to a higher percentage in the CS-born infants (Fig. 6A). 
GH abundance related to HMOs and GOS decreased 
over time in all three groups, and the VDnoab group had 
significantly higher abundance than the CSnoab group (p 
value = 0.0035, Wilcoxon test).

Pathway relative abundance from HUMAnN3 was ana-
lysed by clustering pathways to higher order MetaCyc 
pathways. Based on MetaCyc pathways (unstratified) 
from HUMAnN3 results (Fig. 6B), only aldehyde degra-
dation was observed to be significantly different (lower) 
in the CSab group compared to the VDnoab group. The 
antibiotic-treated infants showed a stronger association 
with pyrimidine nucleotide biosynthesis, ubiquinol (elec-
tron carrier biosynthesis), and aromatic compound deg-
radation (toluene, catechol, protocatechuate) pathways, 
with essential pathways such as glycolysis, phospholipid 
biosynthesis, nucleic acid processing, carbohydrate deg-
radation, and amino acid biosynthesis increased over 
time (Table 3). Similarly, NMDS analysis with Bray–Cur-
tis showed a significant difference between week 1 and all 
later time points, and year 2 and all earlier time points (p 
values < 0.05, Adonis2).

A closer look at the stratified counterpart of pathway 
abundance data from HUMAnN3 showed study vari-
ables including groups, delivery mode, antibiotic expo-
sure in early life, and time-point having an effect on 
pathway abundance with significant clustering observed 
between VDnoab and CSab and between CSnoab and 

CSab groups (Fig. 6C) (pairwise Adonis, PERMANOVA: 
p values = 0.003 and 0.045, respectively, for groups, p 
value = 0.01 by mode of delivery, p value = 0.001 by early 
antibiotic exposure, and p value = 0.001 by time point, 
PERMANOVA). Based on R2 values from Adonis, time 
variable and early antibiotic exposure (R2: 0.15, 0.015, 
respectively) had the highest influence on separating 
samples based on pathway abundance; this along with 
distinct clustering of the CSab group from the no-anti-
biotic groups point towards the impact of antibiotics in 
early life on the functionality of the microbiota. Many 
pathways including those related to sugar metabolism, 
purine and pyrimidine biosynthesis, and amino acid 
biosynthesis were associated with the antibiotic-treated 
group. These differentially abundant pathways were 
mostly driven by B. dentium species, Ruminococcus, and 
Faecalibacterium species (Table S3).

Discussion
We analysed the longitudinal resistome and taxonomic 
profiles of infants in early-life grouped by early antibi-
otic use and delivery mode. Results from this study show 
that the resistome diversity decreases over age from week 
1 to year 2, while the microbial diversity increases over 
time. This is in congruence with previous studies; how-
ever, most studies report these profiles only up to year 
1 and not many study the resistome profiles as early as 
week 1. These data also showed the presence of selective 
antibiotic resistance classes which were administered 
to the infants in the antibiotic-exposed group at week 
1 and week 4. Although the antibiotic in question was 
only administered in the first 4 days of life, the effect was 
seen further as age progressed, highlighting the impor-
tance of further development of strong stewardship 
programmes in early life. Additionally, our data also sug-
gest that antibiotic use in early life results in amplifica-
tion of the resistome profile by selecting MDR bacteria. 
In this study, antibiotic exposure in early life and mode 
of delivery were seen to influence microbial diversity and 
richness between samples longitudinally, with antibiotic 
exposure having the greatest effect.

A stronger association and higher prevalence of Bifi-
dobacterium and Bacteroides were detected in vaginally 
delivered infants, while CS-born infants had higher rela-
tive abundance of potential pathogens including Entero-
coccus spp. and species of Enterobacteriaceae which was 
similar to previous reports [7, 19, 21, 22, 54]. CS-born 
infants are more prone to negative health outcomes such 
as allergy, asthma, obesity, and diabetes development 
in later life [55, 56]. Additionally, colonisation patterns 
of CS infants with bacteria belonging to the category 
of ESKAPE (E. faecium, S. aureus, K. pneumoniae, Aci-
netobacter baumannii, Pseudomonas aeruginosa, and 
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Enterobacter species) pathogens are of concern as most 
bacteria in this group are MDR and are known to act 
as potential pathogens or are pathobionts [57, 58], thus 
making any futuristic treatments more difficult to curtail 
in later life. Many Bifidobacterium and Bacteroidota spp. 
showed lower or delayed colonisation in CS-born infants, 

with a pronounced effect in the CSab group, which is 
analogous to previous reports [19, 59, 60], except for B. 
dentium which was seen to have high relative abundance 
in the CSab group. Recent studies have shown B. dentium 
in high abundance in infants belonging to the intrapar-
tum antibiotic prophylaxis (IAP) group [61, 62] or those 

Fig. 6 A Bar plot depicting percent contribution of each of the detected phyla to cpm normalized abundance of CAZymes important for HMO, 
GOS, and FOS degradation in infants. The plot presents the percent distribution for each phyla for cpm normalized abundance at each time point 
for all three groups VDnoab, CSnoab, and CSab. B Pathway abundance data for unstratified pathways as detected from HUMAnN3 was categorised 
into higher MetaCyc pathways. cpm abundance was log‑transformed, and a significant difference in abundance between the groups 
was calculated using the Wilcoxon test with BH using the VDnoab group as a reference. P.adj‑values (as denoted by *) < 0.05 are considered 
significant. C PCoA plot using Bray–Curtis distance for stratified pathway abundance data from HUMAnN3, showing distinct clustering of CSab 
from the other two groups
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fed with donor breast milk [63]. Our result showing high 
B. dentium in the CSab group is in agreement with these 
reports and further studies are needed to understand the 
advantageous growth of this Bifidobacterium spp. under 
sub-optimal circumstances. The beneficial and protec-
tive roles of Bifidobacterium and Bacteroidota spp. in the 
infant gut, such as fermenting HMOs, maintaining bar-
rier function, enhancing immune responses, colonisation 
resistance, and competing for nutrients against patho-
gens are well established [60–62, 64–67]. Decreased colo-
nisation of these beneficial taxa is associated with adverse 
outcomes such as necrotising enterocolitis and late-onset 
sepsis in the preterm population [68, 69], thus demand-
ing further attention for studies in infants born by CS and 
exposed to antibiotics.

A diverse range of ARGs and MDR bacteria was 
detected in all three groups, with decreasing ARG 
diversity seen over time. The most common antibiotic 
classes observed were MDR, which includes resistance 
to penams, fluoroquinolones, peptides, aminocoumarin, 
aminoglycosides, and tetracyclines. This is in line with 
many reports suggesting the infant gut microbiota is a 
reservoir for ARGs [11, 12,  70]. The top abundance of 
ARGs was detected in Escherichia, Klebsiella, Enterobac-
ter, Bifidobacterium, Raoultella, and other Proteobacteria 

and Firmicutes species, with the highest association 
of antibiotic classes to the CSab group. Our findings 
are consistent with previous studies that report a high 
abundance of ARGs in several taxa belonging to Gam-
maproteobacteria [12, 17, 71–73]. The CSab group also 
showed the presence of ARGs and stronger associations 
with classes of antibiotics administered to the infants in 
this group, clustering separately from the no-antibiotic 
groups, further pointing towards the fact that antibiotic 
exposure contributed to ARG abundance more than the 
delivery mode.

This study found a higher frequency of ARGs in the 
CSab group, followed by the CSnoab and VDnoab 
groups, primarily due to this group’s antibiotic exposure 
in early life. This can be attributed to the fact that sev-
eral commensals and pathobionts harbour a set of ARGs, 
which could be inherited or transferred by horizontal 
gene transfer in the highly populated environment in the 
gut. Additionally, the use of antibiotics in early life alters 
the microbial composition and results in the selection of 
bacteria whose ARG reservoir includes genes capable of 
conferring resistance to the class of antibiotic in ques-
tion. The selection of such bacteria resistant to the antibi-
otic in question may possess several other ARGs leading 
to the presence and detection of MDR bacteria. These 

Table 3 Table presenting significant p values obtained from MaAsLin2 differential abundance analysis for unstratified data from 
HUMAnN3

MaAsLin2 was run using default parameters using min_abundance = 0.00 and min_prevalance = 0.01 with antibiotic as a fixed-effect and sample as random effect

Feature Antibiotic Coef p value

PWY.7211..superpathway.of.pyrimidine.deoxyribonucleotides.de.novo.biosynthesis Yes 961.594 0.00019

PPGPPMET.PWY..ppGpp.biosynthesis Yes 759.515 0.00064

PWY.6545..pyrimidine.deoxyribonucleotides.de.novo.biosynthesis.III Yes 750.848 0.00117

CATECHOL.ORTHO.CLEAVAGE.PWY..catechol.degradation.to..beta..ketoadipate Yes 194.333 0.00614

PROTOCATECHUATE.ORTHO.CLEAVAGE.PWY..protocatechuate.degradation.II..ortho.cleavage.
pathway

Yes 278.919 0.00382

PWY.5181..toluene.degradation.III..aerobic…via.p.cresol Yes 218.475 0.00547

PWY.5417..catechol.degradation.III..ortho.cleavage.pathway Yes 246.549 0.00621

PWY.5431..aromatic.compounds.degradation.via..beta..ketoadipate Yes 246.549 0.00621

PWY.5855..ubiquinol.7.biosynthesis..prokaryotic Yes 359.876 0.00680

PWY.5856..ubiquinol.9.biosynthesis..prokaryotic Yes 359.876 0.00680

PWY.5857..ubiquinol.10.biosynthesis..prokaryotic Yes 359.876 0.00680

PWY.6318..L.phenylalanine.degradation.IV..mammalian..via.side.chain Yes 320.314 0.00409

PWY.6562..norspermidine.biosynthesis Yes 68.1263 0.00334

PWY.6708..ubiquinol.8.biosynthesis..prokaryotic Yes 359.876 0.00680

PWY.7210..pyrimidine.deoxyribonucleotides.biosynthesis.from.CTP Yes 638.424 0.00441

PWY0.1297..superpathway.of.purine.deoxyribonucleosides.degradation Yes 937.509 0.00576

PWY.6182..superpathway.of.salicylate.degradation Yes 190.901 0.00862

ECASYN.PWY..enterobacterial.common.antigen.biosynthesis Yes 380.688 0.01017

P185.PWY..formaldehyde.assimilation.III..dihydroxyacetone.cycle Yes 453.982 0.01145

PWY.7199..pyrimidine.deoxyribonucleosides.salvage Yes 918.564 0.01226
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pathobionts can switch to their opportunistic pathogenic 
side and can lead to infections that are difficult to treat 
due to the plethora of ARGs they contain. Disturbed 
microbial colonisation due to delivery mode and early 
antibiotic exposure can lead to colonisation by more 
hospital-acquired strains. These nosocomial strains are 
enriched with a diverse resistome profile [74–77]. Fur-
thermore, the high frequency of ARGs found in this study 
was associated with their high abundance in Proteobac-
teria. Increased abundance of specific taxa in this group 
(such as some Klebsiella, Enterobacter, Raoultella spe-
cies) is reported to be associated with several functional 
variations and difficult-to-treat infections [78–81].  The 
establishment of such strains from infancy in the gut can 
lead to complications in treatment in later life. Highly 
regulated antibiotic stewardship programmes are thus 
necessary along with probable therapeutic administration 
of probiotics where possible. Due to the stringent param-
eters used to define a strain, we were able to examine the 
persistence of resistance in the strains and observed that 
the top 10 strains per class and group showed very lit-
tle to no persistence up to two years of age. Strains that 
carried the highest ARG abundance mostly belonged to 
the genera Enterococcus, Escherichia, Veillonella, Strep-
tococcus, Bifidobacterium, and Bacteroidetes. Moreover, 
Bifidobacterium strains and Bacteroidota strains were 
observed to be major persistent colonisers, which sustain 
up to two years of age with more persistence observed in 
the non-antibiotic groups with the highest in the vagi-
nally delivered infants.

Though overall GH abundance was significantly dif-
ferent and higher in the VDnoab group and lowest in 
the CSab group at week 1 and week 4, this difference 
was not prominent when selective GH related to HMO, 
FOS, and GOS enzyme families were considered. Fur-
ther, the percent contribution of various phyla to select 
GH functions was observed to vary between groups, 
prominently seen in early time points. This could be 
because functions like HMO degradation are essen-
tial and redundant in early life and colonisation is not 
solely dependent on feeding habits, mode of delivery, or 
antibiotic exposure. While Bifidobacterium and Bacte-
roides are recognised as proficient HMO degraders [82, 
83], their scarcity or non-existence in infants does not 
negate the critical role of HMO degradation, which can 
still be performed by other bacterial species present in 
these infants. Similarly, unstratified metaCyC pathways 
did not show significant differences when the CS-born 
infant groups were compared to the VDnoab group 
while based on stratified pathway abundance data CSab 
was significantly different from the other two groups. 
This could be because the specific microbial composi-
tion of each group contributes to similar functional 

attributes. Furthermore, strong associations of perina-
tal factors such as antibiotic treatment with aromatic 
compound degradation pathways, amino acid biosyn-
thesis, cofactor and coenzyme biosynthesis, nucleotide 
biosynthesis (both purine and pyrimidine), and carbo-
hydrate degradation pathways were observed. Similar 
associations such as increased nucleotide biosynthesis 
pathways and carbohydrate degradation were reported 
earlier in antibiotic-treated groups [84, 85]. Such 
changes in metabolic potential can affect children’s 
health in later life, and detailed studies will help under-
stand these changes and their influence.

Some strengths of this study include examining sev-
eral factors such as delivery mode, antibiotic use in 
early life, and age on the dynamic nature of micro-
bial colonisation pattern with read- and assembly-
based approaches using shotgun sequencing. We also 
inspected and observed the taxa in infants that act as 
persistent colonisers and colonise the gut up to 2 years 
of age. This study was limited due to a small cohort of 
45 infants and limited sample numbers between time 
points. Further, clinical metadata of antibiotic exposure 
relating to all time points of sample collection or simi-
lar data from the mothers were missing, which narrows 
down the hypotheses that could be validated in the 
study. Thus, future studies with detailed clinical meta-
data and more time points with smaller intervals will 
help unfold the complex relationship between study 
variables, microbial and resistome profile and function-
ality of the microbiota.

Conclusion
This study highlights the effects of antibiotic exposure in 
early life and mode of delivery on infant gut microbiota 
in a longitudinal setting. Treatment with a combina-
tion of benzylpenicillin and gentamicin in early life has 
a stronger influence over the type and order of micro-
bial colonisation in infants in early life than delivery 
mode. Such disturbed colonisation, along with a diverse 
resistance reservoir impact the functional capability 
of the infant gut microbiota, including but not limited 
to the impairment that can be caused to other crucial 
functional capacities such as colonisation resistance, 
metabolism, maintaining gut permeability, and a healthy 
immune response. Thus, more studies with larger cohorts 
are needed to better understand ARGs’ persistence and 
impact on microbial functional capability with more cer-
tainty. Moreover, new alternatives/strategies need to be 
developed and used where needed to restore the micro-
bial ecosystem, maintain a healthy microenvironment, 
restore their functional powers, and reduce the use of 
prophylactic antibiotics during the crucial infancy stage.
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Additional file 1: Figure S1. A. Microbial diversity of the infant gut as 
measured using Shannon diversity index between all three groups at each 
time‑point in this study. Significant difference in diversity was observed 
between CSab and Csnoab at week 1 and 24. B. Beta‑diversity using 
unweighted Unifrac distance as depicted using PCoA at each time point. 
Figure S2. A. Relative abundance plot showing phylum level distribution 
in all the study groups at each time‑point. B. Percent variance for each 
time point plotted using R2 values as generated from PERMANOVA for 
Antibiotic and Mode of delivery variables in the study using unweighted 
Unifrac distance. C. Plots shows differential abundance analysis using 
Songbird with CSnoab group as reference run using the formula C(Group, 
Treatment(’CSnoab’)). Plot on the left side corresponds to VDnoab group 
as treatment while that on right depicts CSab group as treatment against 
the reference group. In both cases negative value (Blue bars) represent 
association to the reference group (here CSnoab) while positive values 
(red bars) represent association to the treatment group; here VDnoab (on 
left plot) and CSab (right side plot). Figure S3. A. Plot showing top 10 spe‑
cies possessing highest abundance (cpm normalised) of ARGs as detected 
using ABRicate. B. Beta‑diversity computed for ARG distribution from RGI 
using Bray–Curtis distance metrics and plotted using PCoA shows distinct 
clustering between 1. Groups, 2. Samples based on antibiotic exposure 
in first four days of life and 3. study time‑points. Figure S4. All antibiotic 
classes as detected using RGI, depicting correlation of each group to AMR 
class abundance at A. Overall, B. week 1 and C. at week 4. Fluoroquinolone 
is abbreviated to FQ in the above plot. P‑values < 0.05 were considered 
significant and were generated using Wilcoxon test with VDnoab group 
as reference. Figure S5. Persistence of all unique strains as observed from 
inStrains for VDnoab group. Right side of the plot depicts abundance of 
ARGs as detected by ABRicate in the form of heatmap. Left side of the plot 
depicts persistence of strains up to two years of age. The strains are colour 
coded based on the phylum which they belong to, as detected by GTDB. 
Figure S6. Persistence of all unique strains as observed from inStrains 
for CSnoab group. Right side of the plot depicts abundance of ARGs as 
detected by ABRicate in the form of heatmap. Left side of the plot depicts 
persistence of strains up to two years of age. The strains are colour coded 
based on the phylum which they belong to, as detected by GTDB. Figure 
S7. Persistence of all unique strains as observed from inStrains for CSab 
group. Right side of the plot depicts abundance of ARGs as detected by 
ABRicate in the form of heatmap. Left side of the plot depicts persistence 
of strains up to two years of age. The strains are colour coded based on 
the phylum which they belong to, as detected by GTDB. Table S1. Table 
shows possible contaminants as flagged from inStrains results. Table S2. 
Table shows coefficients obtained by running differential abundance 
analysis using Songbird with CSnoab group as reference run using the 
formula C(Group, Treatment(’CSnoab’)). Table S3. Table presenting signifi‑
cant p‑values obtained from MaAsLin2 differential abundance analysis for 
stratified data from HUMAnN3. MaAsLin2 was run using Antibiotic as Fixed 
effect and Sample as random effect with default parameters of min_abun‑
dance = 0.00 and min_prevalance = 0.01.
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