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Proportion-based normalizations 
outperform compositional data transformations 
in machine learning applications
Aaron Yerke1,2  , Daisy Fry Brumit1   and Anthony A. Fodor1*   

Abstract 

Background Normalization, as a pre-processing step, can significantly affect the resolution of machine learning anal-
ysis for microbiome studies. There are countless options for normalization scheme selection. In this study, we exam-
ined compositionally aware algorithms including the additive log ratio (alr), the centered log ratio (clr), and a recent 
evolution of the isometric log ratio (ilr) in the form of balance trees made with the PhILR R package. We also looked 
at compositionally naïve transformations such as raw counts tables and several transformations that are based 
on relative abundance, such as proportions, the Hellinger transformation, and a transformation based on the loga-
rithm of proportions (which we call “lognorm”).

Results In our evaluation, we used 65 metadata variables culled from four publicly available datasets at the amplicon 
sequence variant (ASV) level with a random forest machine learning algorithm. We found that different common pre-
processing steps in the creation of the balance trees made very little difference in overall performance. Overall, we 
found that the compositionally aware data transformations such as alr, clr, and ilr (PhILR) performed generally slightly 
worse or only as well as compositionally naïve transformations. However, relative abundance-based transformations 
outperformed most other transformations by a small but reliably statistically significant margin.

Conclusions Our results suggest that minimizing the complexity of transformations while correcting for read depth 
may be a generally preferable strategy in preparing data for machine learning compared to more sophisticated, 
but more complex, transformations that attempt to better correct for compositionality.

Keywords Metagenomics, Statistical data interpretation, Compositional data, Machine learning, Random forest, 
High-throughput nucleotide sequencing, Transformation, Normalization, PhILR

Background
Machine learning application to metagenomic data has 
been used to successfully predict a variety of phenomena 
from states of human health, such as cancer [1] and gas-
trointestinal diseases [2], to environmental and ecological 
conditions such as soil health [3] and carbon dynamics 
[4]. Improving the accuracy of these predictions would 
therefore provide benefits to multiple fields of research. 
The goal of data transformations is to improve accuracy 
by reducing artifacts and noise in the data. Two notori-
ous sources for artifacts are compositionality and the 
arbitrary nature of sequence read depth [5, 6].
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Compositionality is a well-known problem in sequenc-
ing experiments [5]. Compositional data are any data that 
are considered to be parts of a whole [7]. As such, inde-
pendence between values cannot be assumed because if 
one part increases in value, another must decrease due to 
the constraint of all parts summing to a fixed constant. 
In the case of current DNA sequencing technologies such 
as Illumina Miseq, the fixed amount that sequences sum 
to is the read depth, which varies from sample to sample 
[5]. This is a problem for inference statistics because they 
assume independence and vectors of features that sum to 
a constant are, by definition, not independent.

Compositionally aware transformations attempt to 
address this problem such that the transformed data can 
be used with inference statistics. Three compositionally 
aware transformations that we explore in this article are 
the additive log ratio (alr), the centered log ratio (clr), and 
the isometric log ratio (ilr). Each of these transformations 
is based on the principle that the product of a log ratio 
is transformed to real space, breaking the sample space 
of the compositional data out of a constrained hyper-
plane and making it appear independent. The alr accom-
plishes this by selecting a single feature and using it as the 
denominator in the ratio [7]. The output of this transfor-
mation is n-1 in size where the number of features is n, as 
the feature used in the denominator is never used in the 
numerator. In the case of sequencing data, the features 
are the taxa or amplicon sequence variants (ASVs). The 
clr is very similar to the alr but uses the geometric mean 
of all the features as the denominator in the log ratio [7]. 
The ilr uses ratios of arbitrarily selected features in its log 
ratio; thus, input and output cannot be assumed to be 
directly related to single features [8].

The number of possible ilr implementations increases 
factorially with the features in the dataset [9]. Thus, 
for highly dimensional datasets, such as those used in 
metagenomics, it becomes essentially impossible to cal-
culate every possible ilr variation. A solution to the very 
large number of ilr transformations was independently 
proposed by two groups who utilized phylogenetic data 
to guide the ilr transformations [10, 11]. PhILR is a 
popular R package for creating such ilr transformations, 
which are sometimes referred to as balance trees. PhILR 
additionally offers two weighting schemes; however, the 
benefits of these weighting schemes to machine learning 
remain unclear.

Numerous previous studies have used compositionally 
aware transformations to transform data prior to analy-
sis with machine learning algorithms (MLAs) [12–16]. 
However, it is unclear if these transformations offer ben-
efits to machine learning and, if so, which transformation 
or weighting schemes should be utilized. In this article, 
we examine 4 publicly available 16S rRNA sequencing 

datasets containing a total of 1798 samples and 65 meta-
data features to compare popular transformations that 
are compositionally aware to transformations that are 
compositionally naïve (i.e., treat sequence data as raw 
counts or unconstrained proportions). These transforma-
tions include raw counts tables, rarefaction, proportions, 
the Hellinger transformation, and a procedure we call 
“lognorm,” which is based on the log-proportion scaled 
to the average sequencing depth and an added pseudo-
count of 1. The latter three are all based on creating a rel-
ative abundance using read depth as a reference.

We show that no weighting scheme or combination 
of weighting schemes is more consistently effective than 
another for balance trees. We find, somewhat surpris-
ingly, that using read depth-based relative abundances 
reliably produces small but statistically significant 
improvements over compositional data transformations. 
Also surprisingly, not transforming the data at all (i.e., 
utilizing raw count tables not correcting for read depth) 
also consistently outperformed compositionally aware 
transformations. We conclude that, while the reason-
ing behind compositional transformation is compelling, 
more straightforward transformations appear to often 
be more effective for machine learning classification of 
many metadata variables.

Materials and methods
For this project, we chose four publicly available 16S 
rRNA gene sequencing datasets for our analysis with 
sample sizes ranging from 233 to 700 (Table  1). From 
each dataset, we dropped sample metadata features that 
were sparse (< 1/4 total samples) yielding a total of 65 
metadata categories across all 4 datasets (Table 1) (addi-
tional details at Project additional information in supple-
mental files).

Sequence processing
For 16S sequencing, we only used the forward reads, as 
the reverse reads tend to have a higher error rate [20]. We 
filtered, trimmed, removed bimeras, and assigned tax-
onomy to the 16S sequences with version 1.0.3 of the R 
package DADA2. The resulting ASVs were aligned using 
version 2.0.2 of the R package DECIPHER.

Prevalence filtering
For the prevalence filtered datasets, we removed ASVs 
that were found in only 10% of the samples or less before 
downstream transformations.

Tree building for PhILR
The purpose of our study was to compare composition-
ally naïve and aware transformations. There were many 
steps taken to create all the transformations used in this 
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project. We have provided a sketch of how each transfor-
mation was generated from raw counts tables (Fig. 1) and 
prevalence filtered counts tables (Supplementary B).

Balance trees made from sequencing data are an imple-
mentation of the ilr that is guided by bifurcating phyloge-
netic trees. The inputs for a balance tree are therefore a 
counts table and a phylogenetic tree. To determine how 
the choice of phylogenetic tree impacts the ability of the 
transformed data to train a random forest algorithm, 

we chose two de novo trees and one curated reference 
tree, the SILVA’s Living Tree Project (LTP) [21]. To use 
SILVA’s LTP reference tree, for each dataset in our study, 
we removed the taxa that were not present in that data-
set from the SILVA LTP tree. For our de novo trees, 
we utilized both a simple “naïve” method Unweighted 
Pair Group Method with Arithmetic Mean clustering 
(UPGMA) that ignores variation in biological clocks 
and a more computationally intensive, sophisticated 

Table 1 Datasets used in this study

Name, reference, 
and accession 
number

Number 
of 
samples

Metadata categories

Vangay [17]
PRJEB28687

634 Recruitment.Location, Researcher, Sub.Study, Birth.Year, Age, Highest.Education, Ethnicity, Religion, Birth.Location, 
Type.Birth.Location, Arrival.in.US, Years.in.US, Location.before.US, Type.location.before.US, Years.lived.in.Location.
before.US, Tobacco.Use, Alcohol.Use, HeightWeight, Waist, BMI, BMI.Class, Breastfed, Age.at.Arrival, Sample.Group, 
Waist.Height.Ratio

Jones [18]
PRJNA397450

233 Age, BMI, Genotype, sex, Treatment, Visit, type

Zeller [13]
PRJNA397450

226 Age, host_subject_id, geographic_location_(country_and/or_sea region), Collection_date, AJCC_Stage, localiza-
tion, tissue_type

Noguera-Julian [19]
PRJNA307231

700 Host_Age, ETHNICITY, geo_loc_name_country, HIV_RiskGroup, HIV_serostatus, host_other_gender, host_sex, HIV_
Profile, PCR_human_papilloma_virus, host_allergy, host_deposition_frequency_per_day, host_abdominal_tran-
sit_alterations, host_Residency_Area, HCV_coinfection, Anal_cytology, host_sexual_orientation, Syphilis_serology, 
HBV_coinfection, PCR_Neisseria_gonorrhoeae, PCR_Chlamydia_trachomatis, HIV_viral_load, CD4 + _Tcell_counts, 
leukocytes, stool_consistency, lymphocytes, host_body_mass_index

Fig. 1 Schematic representation of workflow for the creation of data transformations from the raw Dada2 counts tables. This schematic starts 
with the raw Dada2 counts tables and each step in the workflow (grey arrows with white bubbles) lead to trees (grey blocks) or final datasets (blue 
boxes) as described in the methods section. Datasets with random node shuffles were recreated at least 3 times
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method -IQTREE. UPGMA is a method that clusters 
the sequences based on distance matrices [22]. Hierar-
chical clustering is often considered to be an overly sim-
ple approach, but we felt that it would be useful as a de 
novo control. IQTREE by contrast infers trees by maxi-
mum likelihood. A disadvantage of de novo methods, 
compared to the LTP tree, is that it will use all of the 
sequences available to it and will force branches between 
nodes based on limited data. Therefore, it will contain 
more nodes than the trees we made through subtractive 
process that we used for the Silva LTP trees. For every 
dataset, the SILVA trees were an order of magnitude 
smaller than the UPGMA and IQTEE trees (Table  2). 
Images of unfiltered SILVA LTP tree, the high variance/
low abundance filtered SILVA LTP tree, the UPGMA, 
and IQTREE can be found in Supplementary A in the 
supplemental files.

For each phylogenetic tree that we used for PhILR, we 
made 3 random shuffles of the nodes and included them 
as controls. The shuffled trees have the same number of 
nodes and tips, but their nodes do not match to the same 
tips as the true trees and their branch-lengths will be 

incorrect. This tests how important this information is to 
weighting schemes that use it.

UPGMA tree
To build the UPGMA trees de novo from the sequenc-
ing data, we used version 2.9.0 of the phangorn R package 
[23].

IQTREE
The alignment file from the DADA2 sequence process-
ing was processed through the IQ-TREE version 2.1.2 for 
Linux 64-bit. We allowed the modelFinder to run for 48 h 
on the Jones dataset using 1 core and then selected the 
highest scoring model for subsequent runs. The highest 
scoring model was “GTR + F + R5,” which is a combina-
tion of a general time reversible model with unequal rates 
and unequal base, empirical amino acid frequencies, and 
the R5 free-rate model.

The resulting customized reference trees and the de 
novo trees were then available for building phyloseq 
objects using version 1.16.2 of the phyloseq R pack-
age. A phyloseq object consists of a single object that 

Table 2 Tree descriptions

Tree name Num. nodes Num. tips Ave. branch 
length

Variance branch 
length

Ultrametric (root-tip 
distance equal for all 
tips)

Jones SILVA 1132 1133 0.0311 0.0012 FALSE

Filtered_SILVA 75 76 0.0556 0.0032 FALSE

Filtered_UPGMA 227 228 0.0307 0.0015 TRUE

UPGMA 28,025 28,026 0.0384 0.0104 TRUE

IQTREE 28,024 28,026 0.1205 0.1798 FALSE

Filtered_IQTREE 227 228 0.0840 0.0191 FALSE

Vangay SILVA 906 907 0.0344 0.0012 FALSE

Filtered_SILVA 35 36 0.1038 0.0130 FALSE

Filtered_UPGMA 70 71 0.1300 0.0642 FALSE

UPGMA 6821 6823 0.0521 0.3193 FALSE

IQTREE 6821 6823 0.0202 0.0299 FALSE

Filtered_IQTREE 70 71 0.0813 0.0144 FALSE

Zeller SILVA 1490 1491 0.0309 0.0009 FALSE

Filtered_SILVA 121 122 0.0606 0.0044 FALSE

Filtered_UPGMA 207 208 0.0332 0.0012 TRUE

UPGMA 11,077 11,078 0.0154 0.0007 TRUE

IQTREE 11,076 11,078 0.0298 0.0409 FALSE

Filtered_IQTREE 207 208 0.0792 0.0136 FALSE

Noguera-Julian SILVA 1233 1234 0.0330 0.0011 FALSE

Filtered_SILVA 52 53 0.0840 0.0089 FALSE

Filtered_UPGMA 122 123 0.0273 0.0025 TRUE

UPGMA 20,365 20,366 0.0509 0.0180 TRUE

IQTREE 20,364 20,366 0.1204 0.1501 FALSE

Filtered_IQTREE 122 123 0.0668 0.0295 FALSE
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holds sequencing data, sequence metadata, a taxon-
omy, and a tree. The phyloseq objects were later used 
for the philr function from version 1.24.0 of the PhILR 
R package.

SILVA Living Tree Project
The reference tree comes from SILVA’s Living Tree 
Project, 16S rRNA-based LTP release 132 [21]. The 
reference tree lists the GenBank locus at each tip, so 
we used this information to download the sequences 
from GenBank using the ape package (Fig. 1). We then 
built a blast database out of the sequences and blasted 
the sequences from our study datasets using custom 
BASH scripts. If the resulting matches had e-value 
greater or equal to 10−10 , we culled them from the tips 
of the reference tree using custom R scripts to get a 
customized reference tree (LTP tree). Though the 
exact value of 10−10 was chosen arbitrarily, we believe 
that it is an appropriate conservative threshold. We 
hypothesized that though the PhILR transformations 
made from SILVA LTP trees were smaller, they would 
perform better due to a filtering effect.

Variance and low abundance filtration and the PhILR 
transform
Corresponding pairs of trees and counts tables were low 
abundance filtered using the following criteria as men-
tioned in PhILR’s vignette:

And then high variance samples meeting the following 
criteria were filtered:

where x is the sequence in the counts table, sd is stand-
ard deviation, and the length is the number samples—the 
sequences were also dropped from the tips of thecorre-
sponding tree. Without this, the UPGMA and IQTREE 
trees were too large for PhILR; thus, we only used the 
filtered version of each of these trees in our experi-
ments (Fig.  2). The sample counts were then given a 
pseudo count of 1 to eliminate the zeros that would 
impede PhILR. Finally, the phyloseq objects were pro-
cessed through PhILR to create the ILR transform of our 
sequencing data tables.

sum(x > 3) > 0.2∗length(x)

sd(x)/mean(x) > 3.0

Fig. 2 The low abundance/high variance filtered trees are less cluttered than the unfiltered originals in the Jones dataset. The unfiltered SILVA LTP 
reference tree (A) shows more taxa than the filtered version (B). The UPGMA (C) and IQTREE (E) algorithms are both greedy and thus the trees are 
too dense and were only used after low abundance/high variance filtering (D and F, respectively)
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Randomly shuffled trees
The phylogenetic trees consist of nodes and tips. The 
tips are the unique sequences of the DADA2 output, 
and their counts are provided by the counts tables. The 
nodes of the tree are a hierarchical cluster showing the 
ancestry of the sequences. All of the tips connected to 
that node share a common ancestor. The nodes are used 
by PhILR to group the ratios when creating balances. 
Thus, as a further control in this experiment to test how 
the quality of the phylogenetic tree affects PhILR, we 
created 3 randomly generated trees that have the same 
number of nodes and tips as the “true” trees. In these 
randomly generated trees, nodes on trees were con-
nected to other nodes or tips irrespective of true phylo-
genetic distance or ancestry. This meant that the ratios 
used in the PhILR transform were no longer guided by 
an accurate phylogeny. The random trees are meant to 
examine how the phylogenetic trees affect the resolu-
tion of the PhILR transformed data.

The random trees were generated using the rtree 
function from version 5.6–2 of the ape R package [24].

PhILR weighting schemes
PhILR offers two weighting schemes—branch length 
weighting with four options and taxon weighting with 
six options. This gives a total of 24 combinations. The 
taxon weighting options are no weight, the geometric 
mean, the Aitchison norm, the Euclidean norm, and 
the geometric mean multiplied by either the Aitchison 
norm or the Euclidean norm. The authors of PhILR 
prefer the geometric mean multiplied by the Euclid-
ean norm, as this performed well in their preliminary 
benchmarks [10].

The second weighting scheme weights the branches 
of the tree. Each balance can either be weighted by the 
sum of its children’s branch lengths, the square root of 
the sum of the children’s branch lengths, or the sum of 
children’s branch lengths plus the mean descendants 
each child’s mean distance to its descendent tips. These 
weights enable the PhILR transform to differentiate 
itself from a pure ilr transform [10].

Non-tree CODA transformations
The alr and clr transformations of the ASV tables were 
done using the alr and clr functions, respectively, of 
version 2.0–6 of the R package called “compositions” 
[25]. For the denominator of that alr, the taxa that was 
present in the most samples, was selected. To prevent 
zeros in the denominator for both of these transfor-
mations, counts tables were augmented with a pseudo 
count of 1.

Read depth-based transformations
Relative abundance or simple proportion is the simplest 
read depth-based transformation, which was imple-
mented with a custom R script as per the formula:

We implemented square root of relative abundance 
(Hellinger transformation) as per the following formula:

The lognorm transformation was implemented as a 
custom R script as per the formula:

where RC = raw counts in a cell, n = number of sequences 
in a sample, Σx = total number of counts in the table, 
N = total number of samples, PC = pseudo-count, for this 
project was equal to 1. The 

∑

x

N
 term in the lognorm equa-

tion is a constant that is the same for each element in the 
table. It serves to normalize dispersion between datasets. 
The pseudo count allows for the application of the loga-
rithm to the sparse data.

Rarefaction
Rarefaction was performed using the rrarefy function 
from version 2.6–2 of the R package vegan. The rarefac-
tion depth of 1000 bp was determined visually using the 
elbow method for each project by plotting the read depth 
against the number of samples below that read depth.

Statistical tests
The Wilcoxon test was calculated using the wilcoxon func-
tion from version 1.9.1 of the Python library SciPy [26].

Machine learning algorithm selection
From version 1.1.2 of the scikit-learn Python library, 
we selected the following MLAs to compare: logis-
tic regression, linear discriminant analysis, k-near-
est neighbors, decision tree, random forest classifier, 
Gaussian naïve Bayes, and support vector machines 
[27]. The SILVA LTP reference tree transformation with 
each of PhILR’s 24 weighting scheme combinations 
was tested with tenfold cross-validation for each of the 
selected metadata features of each of the datasets.

Random forest comparisons
To create training and testing datasets, we randomly 
assigned ¾ of our data to training and ¼ to testing 

RC

n

√

RC

n

log10

(

RC

n
×

∑

x

N
+ PC

)
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for processing by the random forest algorithm. We 
employed this shuffle/analysis cycle 20 times for each 
feature of each dataset.

The random forest models were created using version 
1.1.2 of the scikit-learn Python library, and the in-built 
scoring methods were used to record accuracy [27]. For 
categorical features, scikit-learn reports the accuracy as 
the correct number of predictions over the total num-
ber of predictions. For numeric data, scikit-learn reports 
the accuracy score as the coefficient of determination  r2, 
defined as (1 − uv), where u is the residual sum of squares 
and v is the total sum of squares.

Results
Our test platform consists of 65 metadata features across 
4 publicly available datasets. These features include 10 
binary categories (such as sex in the Jones dataset), 37 
categories with multiple levels (such as ethnicity in the 
Vangay dataset), and 18 quantitative variables (such as 
BMI in Jones dataset). For categorical data, we report 
scikit-learn’s accuracy, and for quantitative variables, we 
used scikit-learn’s reported r2 (see methods). We used 
this platform to evaluate the accuracy of selected com-
positionally aware and compositionally naïve data trans-
formations. Our compositionally aware transformations 
included the alr, the clr, and PhILR’s implementation 
of the ilr. Our compositionally naïve transformations 
included rarefaction, simple proportions, Hellinger, log-
norm, and raw counts tables (see Materials and methods 
and Background). Our criteria for evaluating the per-
formance of each transformation were simply the r2 and 
accuracy scores returned by the random forest for each 
metadata feature. Each transformation was given the 
same training and testing sets for each metadata feature, 
and each metadata feature was given equal weight in our 
evaluation.

Random forest is an effective untuned MLA for our data 
across weighting schemes
Previous literature has suggested that random forest is 
reliably among the most accurate MLAs for microbi-
ome datasets [4, 28, 29]. To confirm this is the case for 
our datasets, we compared the random forest classifier 
with six other algorithms available in Python’s scikit-
learn: logistic regression, linear discriminant analysis, 
k-nearest neighbors, decision tree, Gaussian naïve Bayes, 
and support vector machines using tenfold cross valida-
tion. For PhILR, we also sought to find a suitable weight-
ing scheme for downstream analysis. We tested all 7 of 
the MLAs with each of the 24 combinations of the PhILR 
weighting schemes using only our unfiltered SILVA LTP 
tree from each dataset on their respective categorical 
metadata. We found that no individual weighting scheme 

gave consistently good results across all features (Supple-
mentary C). However, consistent with the previous litera-
ture, we found that random forest was reliably among the 
highest performing algorithms and generally gave con-
sistent results across different PhILR weighting schemes. 
We chose to reduce the scope of downstream analyses 
by only considering random forest and the “blw.sqrt” 
(branch length weight square root) for phylogenetic dis-
tance weighting and “enorm” (Euclidean norm) for taxon 
weighing. To include quantitative data in our evaluation, 
for downstream analysis, we also used random forest 
regressor for quantitative features.

Proportion-based transformations have the highest 
average accuracy across all metadata categories
Having selected the random forest classifier and regres-
sors as our MLA and blw.sqrt and enorm as our PhILR 
weighting schemes for downstream analysis, we tested 
each transformation against each of the 65 metadata fea-
tures of our datasets. For each transformation and each 
metadata category, we performed 20 iterations randomly 
dividing the data into 75% of the data for training and 
25% for testing. This created 20 accuracy scores for each 
transformation and each metadata feature. We repeated 
this analysis twice, once where we created transforma-
tions starting with an unfiltered counts table and then 
again where we started with a prevalence filtered counts 
table that removed features that were not found in at 
least 10% of the samples. The exception to this was the 
raw count-based UPGMA and IQTREE PhILR transfor-
mations, which required filtering before tree building, 
as the number of sequences was more than the R pack-
ages could handle. For these, we used a high variance/low 
abundance filter. As controls to our PhILR transforma-
tions, we created 3 random shuffles of the nodes of each 
tree and made PhILR transformations with them. The 
results of these analyses are captured as 65 sets of box-
plots, each with 49 transformations. However, to reduce 
the clutter in our figures, we chose to show only the high-
est performing PhILR transformation for each filtering 
type, which was the Silva PhILR. As an example, we con-
sider r2 for a BMI and accuracy from “stool vs swab” from 
the unfiltered counts table-based Jones datasets (Fig. 3). 
We see that the lognorm transformations in this exam-
ple (green bars) have a higher r2 than most of the other 
transformations.

To summarize performance across all 49 transforma-
tions, we averaged each transformation across all of the 
65 metadata features. When looking at the transforma-
tions that started from an unfiltered table, the proportion-
based transformations such as proportions, Hellinger, 
and lognorm on average yield a small improvement when 
compared to every other transformation (Fig. 4). For the 
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transformations that started from a prevalence filtered 
counts table, the proportion-based transformations also 
have the highest median accuracy (Supplementary Fig-
ure  D). Surprisingly, the alr and the clr have noticeably 
worse average scores for both filtering strategies.

To begin to address the statistical significance of the 
differences between different transformations, we com-
pared all 49 transformations pairwise to each other by 
creating accuracy vs accuracy plots. To do this, we plot-
ted the average score for each metadata feature for a 

Fig. 3 Typical box and whiskers plots of random forest scores for single features and selected transformations. This plot shows the scores 
of the random forest regressions and classifiers on BMI (A) and “stool vs swab” (B) in the Jones dataset, respectively. The x-axis shows each 
transformation and the y-axis shows the score, which was r2 for the quantitative BMI and accuracy for the categorical stool vs swab (type). 
For the sake of simplicity, only the transformations made from the unfiltered counts table are shown and the Silva/LTP PhILR transformations are 
shown as the lone representative of the various PhILR transformations we examined

Fig. 4 For unfiltered tables, proportion-based transformations have the highest accuracy. These box and whisker plots show the average of all 
the points in each metadata feature for each transformation (65 points for each transformation). The red bars represent the median for each 
transformation and the brown line represents the median of the entire dataset platform



Page 9 of 13Yerke et al. Microbiome           (2024) 12:45  

given transformation against the average score of each 
metadata for another transformation—for this, we 
included both the accuracy and r2. This yields 1176 (49 
choose 2) pairwise comparisons. In general, different 
transformations yielded highly similar performance: 
among the 1176 separate pairwise comparisons, r2 values 
ranged from 0.94 to 0.9997 and had a median of 0.986. In 
general, across different choices of PhILR inputs includ-
ing shuffled trees, and the different methods for making 
phylogenetic trees to feed into PhILR, these transforma-
tions made little difference to performance and yielded 
scatter plots of accuracy with high r2 values. However, we 
noticed that scatter plots involving the proportion-based 
transformations showed a small but consistent improve-
ment across most of the 65 metadata categories when 
compared to the other transformations. Lognorm exem-
plifies the small improvements over other types of trans-
formations (Fig. 5).

In order to assess patterns of statistical significance 
and compare the small effect-sizes, we next calculated 
pairwise Wilcoxon p-value across each of the 65 meta-
data variables comparing each of the selected transfor-
mation against the other 48 transformations. In order to 
record which transformations performed better at each 

Wilcoxon test, we recorded the p-value with a positive 
sign if the selected transformation performed better and 
a negative sign if it performed worse. This allowed us to 
plot the significance and the performance of each trans-
formation. For the transformations (Fig.  6), we assessed 
a null hypothesis that each selected transformation has 
similar performance to the other normalization schemes. 
From this, we can see that proportion-based transforma-
tions are clearly outperforming the other transformation 
and that the alr and clr are among the worst performing 
transformations. Furthermore, we can see that rarefac-
tion provides no advantage and that normalizing to read 
depth as is done by proportions, Hellinger, and lognorm 
provides the highest accuracy for unfiltered data. When 
compared to each other, proportion-based transforma-
tions do not show any significant difference, and the fil-
tering does not provide a great benefit (Supplementary 
Figure A4).

Discussion
Our chosen platform for testing consisted of 65 meta-
data categories from 4 publicly available datasets. These 
four datasets included various metadata categories that 
varied from demographics, diet information, and sexual 

Fig. 5 Accuracy vs accuracy plots show how lognorm provides better accuracy for random forest than non-proportion-based transformations. 
Points for each plot represent scores of random forest classifier (accuracy) and random forest regressor (r2). Lognorm of raw DADA2 counts tables 
performs favorably compared to filtered alr (A), clr (B), raw DADA2 (C), filtered IQTREE PhILR (D), filtered SILVA DADA2 counts table (E), filtered 
SILVA DADA2 PhILR (F), filtered UPGMA PhILR (G), SILVA DADA2 counts table (H), and SILVA DADA2 PhILR (I). Each metadata feature of each dataset 
is shown in K 
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histories to a variety of disease states and case/control sta-
tuses (Table 1). Many of these metadata categories within 
each dataset are correlated with each other, and we did 
not explore methods to remove these potential redundan-
cies in the datasets. In our visualizations, we combined 
information from quantitative variables (such as BMI) and 
categorical variables (such as case/control) by utilizing 
scikit-learn’s reported r2 accuracy value for quantitative 
variable and simple accuracy for categorical variables. In 
general, the numeric features where random forest regres-
sion was used had lower scores than ones where random 
forest classification was used, but since we compared all 
49 normalizations schemes across the same set of 65 cat-
egories, these differences do not bias our results.

Overall, we tested 49 transformations 20 times against 
the 65 metadata categories for a total of 63,700 random 
forest trials. We believe that our study represents the 
one of the most exhaustive analysis of normalization 
transformations in terms of both the number of schemes 
considered and the number of metadata categories. Our 
metadata categories spanned a wide range of effect sizes 
with some categories that allowed for nearly perfect clas-
sification (such as classifying a geographic location of a 
sample in the Zeller dataset) to others where accuracy 
was near zero (such as BMI in the Noguera-Julian data-
set). This range of effect sizes is a strength of our study as 
it allows us to evaluate the performance of different nor-
malization schemes across a wide range of signal/noise 
ratios. One of the interesting results of our study was that 
differences between normalization schemes were only 

apparent at intermediate effects sizes (Fig. 5). This makes 
intuitive sense as for features with large effect sizes, all 
the MLAs can effectively classify regardless of the small 
differences produced by different normalization schemes, 
while for very small effect sizes, there is essentially no 
signal for the MLAs to latch onto, so normalization 
transformations make little difference. Plots in Fig. 5 tend 
to have a bulge of data points near the center of the plot. 
Thus, a greater variance in the scores occurs where the 
signal is intermediate—not at the top where the features 
with the strong signals nor at the bottom where features 
with a weak signal. Considerations of the strength of the 
signal are therefore important but have not consistently 
been explicitly considered in previous studies.

We began our assessment of MLAs by comparing fre-
quently used MLA toolkits including random forest, 
logistic regression, k-nearest neighbor, and support vec-
tor machines. Consistent with previous literature [4, 28, 
29], we found that random forest was reliably among the 
best performing algorithms, and we therefore chose it as 
our base algorithm for testing. We also assessed the best 
weighting scheme for PhILR input and found that the 
choice of weighting scheme made little overall difference 
to MLA performance. This is consistent with the obser-
vation made by Silverman et. al. that random forest is 
robust to the PhILR transform [10]. In order to limit the 
scope of our downstream experiments, we chose blw.sqrt 
and enorm as our two weighting schemes.

In terms of which compositional transformation is best, 
we found that the PhILR transform is an improvement on 

Fig. 6 Pairwise p-values indicate that lognorm performs significantly better than every other transformation. The y-axis shows log10 of the p-value, 
and the x-axis shows how well each transformation performed against the other 11 transformations. A positive value indicates that the average 
accuracy of the given transformation is higher than others, and a negative p-value indicates that the average accuracy is lower than the others. The 
area above the solid green line represents the sample space where the transformation is significantly better, and the area below the solid red line 
represents the area where points are significantly worse
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the alr and clr but still underperforms transformations 
that normalize to read depth for use with random forest 
(Fig. 4). PhILR is also sensitive to the filtering techniques 
used on its input. We noted that the median score for 
each “true” PhILR transform in Fig.  5 was either about 
as good as or slightly higher than the median score for 
the counts table from which it was made. This indicates 
that the PhILR transform may improve the counts tables 
from which it is directly made or at least will not cause 
worse performance. Our results using ASVs may differ 
from those using OTUs or those using different filtering 
techniques.

Somewhat surprisingly, our results indicate that the 
quality of trees used for the PhILR transform do not 
matter for either the ilr transformation or the weighting 
schemes, as no “true” tree consistently outperformed the 
series of randomly generated trees in which nodes were 
joined independently of actual sequence. We had similar 
results wth UPGMA and IQTEE2 for each different filter-
ing method. The PhILR transformations that come from 
the high variance and low abundance filtered datasets all 
gave similar performance despite the differences in the 
trees. We conclude that the quality of the tree used for a 
transformation such as PhILR and the weighting scheme 
used are much less important for MLA than the quality 
of the counts table.

There are a very large number of possible unique com-
binations of preprocessing steps, transformations, and 
MLAs that could potentially be used in microbiome 
studies, and we cannot test all possible combinations. 
This inevitably leads to potentially important transfor-
mations that we did not explore. For example, there are 
as many alr transformations as there are taxonomic fea-
tures or ASVs in each dataset. There are therefore many 
more alr’s available than the one that we tested, which 
was simply using the taxa with the fewest zero entries as 
the reference taxa in the denominator. While we found 
that this choice for alr was our worst overall performing 
transformation, it is possible that future work could bet-
ter tune the alr. This space has been explored by others 
who have suggested that variance and covariance and 
Procrustes analysis can aid in finding the best reference 
taxa [30]. Another option that we did not explore with 
these datasets was to use a spike-in control sequence of 
known abundance as our denominator [31]. We believe 
that this method would have likely improved the perfor-
mance of the alr.

Another limitation of our study is that we have 
included only gut microbiome datasets in our sample 
data. Our choice here reflects the broad interest in the 
scientific community in using the gut microbiome to pre-
dict the occurrence of inflammation-mediated diseases. 
While there is no reason to think that our observations 

would not extend to other microbial environments, this 
will need to be directly established by future research. 
Finally, we also only looked at classification at the ASV 
level. A previous study has argued that ASVs gener-
ally provide better resolution than OTUs for 16S gene 
sequencing experiments [3], although this view is not 
universally shared [1].

Conclusions
Our study suggests that simple compositionally naïve 
transformations such as log-normalization or even not 
normalizing data at all can outperform more sophisticated 
compositionally aware transformations in machine learn-
ing applications in the human gut microbiome. A straight-
forward interpretation of our results is that the random 
forest algorithm is robust to many artifacts in microbial 
sequence data, and therefore, the simplest possible trans-
formations to the data that incorporate sequence depth 
information, such as our lognorm transformation, give the 
random forest algorithm the clearest view of the classifi-
cation task to be achieved. Future studies will determine if 
these observations are general and can be applied to other 
microbial environments and other genomic datasets such 
as transcriptomics and GWAS studies.
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