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Abstract 

Background Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability 
of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We 
recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individu‑
als tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investi‑
gated in this secondary analysis of the randomized placebo‑controlled parallel intervention study (ClinicalTrials.gov registra‑
tion: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, 
seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes.

Results Forty females were enrolled for this 6‑week trial, receiving either 100 ml natural aronia juice (verum, V) twice 
daily or a polyphenol‑free placebo (P) with a similar nutritional profile, followed by a 6‑week washout. Within V, indi‑
viduals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome 
diversity, as analyzed by 16S rRNA gene‑based next‑generation sequencing, remained unaltered in Vc but changed 
significantly in Vt. A MICOM‑based flux balance analysis revealed pronounced differences in the 40 most predictive 
metabolites post‑intervention. In Vc carbon‑dioxide, ammonium and nine O‑glycans were predicted due to a shift 
in microbial composition, while in Vt six bile acids were the most likely microbiota‑derived metabolites. NMR metabo‑
lomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post‑intervention, reverting after wash out. 
Stool samples maintained a stable metabolic profile.

Conclusion In linking aronia polyphenol tolerance to gut microbiota‑derived metabolites, our study explores adap‑
tive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal 
gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individ‑
ualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia 
juice, and emphasize personalized responses in polyphenol interventions.
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Background
In recent years, Aronia melanocarpa (also known as 
chokeberry) has been promoted for its various beneficial 
health effects in humans. Thereby, many of the health-
promoting effects of aronia fruits have been attributed 
to their high polyphenol content [1–3] which neutral-
izes free radicals via different mechanisms and have been 
reported to lead to a decrease of several biomarkers of 
metabolic and cardiovascular diseases [4, 5].

Polyphenols occur naturally in plant foods and fulfill 
several biological functions in plants [6, 7]. They con-
tribute to attracting beneficial organisms to the plant 
through their coloring properties and they are part of 
the plants’ natural defense mechanisms against biological 
stressors [8]. Polyphenols are a large group of secondary 
plant metabolites with many hundreds of representa-
tives. They are categorized into different subgroups such 
as flavonoids (such as flavonols, flavononols, flavones, 
flavanols, flavanones, anthocyanidins, isoflavonoids) and 
non-flavonoid (such as phenolic acid, stilbenes, cou-
marins, lignans, tannins) according to their chemical 
structure [9, 10].

In the human organism, dietary polyphenols have 
been reported to have a bidirectional beneficial interac-
tion with the gut microbiota: On the one hand, they have 
been acknowledged to serve as prebiotics for certain gut 
microbes [11] by establishing symbiosis between the 
commensal gut microbes and the human organism. Poly-
phenols nourish symbiotic bacteria and promote their 
growth, thereby modulating microbial composition [12]. 
On the other hand, the metabolic utilization of polyphe-
nols is determined by microbial cleavage of the complex 
polyphenolic structures. The absorption rate of polyphe-
nols in the small intestine has been reported to be only 
5–10% [13]. The great majority of polyphenols reach the 
colon where they are broken down and metabolized by 
gut microbes into smaller bioactive metabolites [14]. 
These metabolites are absorbed more efficiently and have 
higher bioavailability than their polyphenolic precursors 
[8]. Thus, the fermentation process in the colon enables 
the bioaccessibility of larger, complex polyphenols by 
providing smaller phenolic metabolites. Additionally, 
an ecological niche for bacterial species that trophically 
utilize these phenolic breakdown products is promoted. 
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In parallel to prebiotic beneficial function, polyphenols 
inhibit the growth of pathogens in the gut, thereby con-
tributing to eubiosis. These two opposed functions make 
them so-called duplibiotics [15].

Consequently, the physiological benefit of polyphe-
nols may strongly be related to the individuals’ micro-
biome composition [3] which impacts the bioavailability 
and functionality of polyphenols in the human organ-
ism [12, 16, 17]. Furthermore, it may also be influenced 
by the individual dietary composition [18–20]. The bio-
activity of polyphenols is also influenced by accompany-
ing nutrients and food components like dietary fibers, 
carbohydrates, vitamins, and minerals that may influ-
ence the biotransformation of the phenolic compounds 
and their release from the food matrix to process them 
further [21].

Certain polyphenols have been reported to interact 
with the intestinal mucin-rich mucus layer, thus serving 
as an important factor for the mucus barrier function 
between the luminal microbiota and the intestinal wall 
with its underlying immune cells. The mucin-degrading 
capacity of the human microbiota is strongly influenced 
by nutritive factors [22, 23].

In Aronia melanocarpa, the predominant polyphenols 
are the flavonoids anthocyanins and procyanidins (which 
are condensed tannins that are formed from polymeriza-
tion of the flavan-3-ols catechin and epicatechin [24]) as 
well as non-flavonoid phenolic acids (with chlorogenic 
acid and neochlorogenic acid as the main representatives 
that both are caffeic acids belonging to hydroxy-cinnamic 
acids) [25, 26]; however, the exact composition is influ-
enced by growth conditions such as environmental and 
climate factors, such as temperature, sun exposure, and 
soil quality [27] as well as harvesting and storage condi-
tions within the course of processing [28].

The majority of literature on aronia interventions 
describes beneficial health effects. However, despite the 
high polyphenolic content of aronia products the bio-
availability of these components is described as being 
low [29] and may be dependent on personalized factors. 
Moreover, the acceptance of aronia products is inconsist-
ent mainly due to the astringent, bitter, and sour taste 
which is attributed to the phenolic components such 
as tannins [30, 31]. Additionally, we recently described 
mixed tolerability of aronia juice and found a diverse 
response to an aronia juice intervention in a cohort 
of young healthy females [32]. Half of the participants 
tolerated the aronia juice well, whereas the other half 
reported gastrointestinal complaints after aronia juice 
consumption.

The pathophysiological mechanisms leading to adverse 
responses after aronia juice consumption are currently 
unknown. In this publication, we addressed the question 

of how aronia juice ingestion affects the host physiol-
ogy and gut microbiome in healthy volunteers. Based 
on microbiome profiling, we used microbiome mod-
eling and metabolite flux prediction to link microbiome 
activity with metabolome information from host gut and 
blood. We could show that according to the metabolite 
flux model the microbiome of volunteers that reported 
on complaints produced high quantities of gasses (car-
bon dioxide and ammonium) as well as several O-glycans 
after the juice consumption. In contrast, in volunteers 
that tolerated the juice several bile acids derived from 
microbial activity were predicted, which was most likely 
affirmed by a significant increase of several plasma lipo-
protein subfractions (especially LDL- and VLDL) after 
the consumption of aronia juice.

Methods
Study design
Procedures and intervention
We conducted a to the participants single-blinded pla-
cebo-controlled human intervention study in parallel 
design to investigate the effects of aronia juice polyphe-
nols in a healthy, normal weight, female cohort to assess 
potential alterations of the gut microbiome composition 
and the metabolic profile. Since the aronia juice was tol-
erated differently in the verum group [32], we aimed to 
identify a potential mechanistic contribution of the gut 
microbiome on the tolerability of the aronia juice.

The study was conducted over 12 weeks and struc-
tured into a 6-week intervention and a 6-week wash-out 
phase. During the intervention phase, the participants 
were asked to consume 100 mL of locally produced, com-
mercially available aronia juice (verum, V) or a placebo 
drink (P), respectively, twice a day amounting to a total 
volume of 200 mL daily. This amount has been chosen 
since previous studies testing drinks with high polyphe-
nol content had been performed with this quantity [33–
35]. As assessed by the Folin-Ciocalteu micro-method 
[36], the aronia juice polyphenol concentration was 8330 
mg/L. The placebo drink was completely polyphenol-free 
and prepared according to a published recipe [37]. It was 
formulated using the average macro- and micronutri-
ent composition of aronia juice and colored and flavored 
with polyphenol-free food dyes and flavorings, thus pro-
viding a comparable nutrient profile between the study 
drinks except for the polyphenol content. The drinks 
were provided in the same containers. Primary outcome 
parameter was defined as regulatory T cells as recently 
published [32]. Secondary outcome parameters focused 
on gut microbiome and the metabolome. The study par-
ticipants were investigated at three time points: at base-
line (I), after the intervention (II), and after the washout 
period (III) (Fig.  1). The examination took place at the 
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investigation room of the Division of Immunology, Medi-
cal University of Graz.

The group assignment to V and P was randomized, 
single-blinded to the participants and stratified for age 
by applying a central computerized schedule (www. rando 
mizer. at, provided by the Institute of Medical Informat-
ics, Statistics and Documentation of the Medical Univer-
sity of Graz, Austria).

The ethical approval for this study was obtained by 
the Ethics Committee of the Medical University Graz 
(EK: 30-009 ex 17/18), the study was registered at Clini-
calTrials.gov (NCT05432362), and the study was con-
ducted in accordance with the Declaration of Helsinki. 
All participants gave their written informed consent and 
volunteered in this study. Data reporting followed the 
CONSORT 2010 Statement [38] including the considera-
tions for nutritional trials [39].

Study population
In total, 40 normal-weight females aged between 18 and 
40 years were recruited by the principal investigator for 
this study in February 2019 via the local universities, 
libraries, sports clubs, and word-of-mouth advertise-
ment. Since aronia juice is known for its bitter and astrin-
gent taste not everyone favors, the participants received 
information on the specific taste of the study drinks in 
advance to select individuals who could imagine con-
suming this specific drink for several weeks. The inclu-
sion criteria for enrollment were as follows: female sex, 
age between 18 and 40 years, preference for astringent 
flavors, and absence of exclusion criteria. The following 
exclusion criteria were applied: known fructose malab-
sorption and fructose intolerance, acute diseases within 
the previous 2 months or chronic diseases or infec-
tions (including upper respiratory tract infections, fever, 
chronic inflammatory disorders, autoimmune-disorders), 

a history of digestive diseases such as inflammatory 
bowel disease and irritable bowel syndrome, history of 
gastrointestinal surgery other than appendectomy, preg-
nancy, and period of breastfeeding, as well as antibiotic 
or antifungal treatment within the previous 2 months 
and daily or irregular intake of supplemental prebiotics 
or probiotics within the previous 2 months except for 
natural probiotic food such as yogurt and dairy products. 
Details on the enrollment procedure are depicted in the 
CONSORT diagram (Additional file 1).

Lifestyle monitoring
The participants were instructed to follow their usual diet 
and maintain their lifestyle behaviors and to avoid inten-
tional weight changes during the study participation to 
keep the general metabolic conditions largely constant. 
Anthropometric measures such as body height, body 
weight, and waist circumference were measured at all 
three time points, and the body mass index (BMI) was 
calculated according to the formula BMI = body weight 
[kg]/body height  [m]2 [40]. Information on smoking 
behavior was collected by the Fagerström test for nico-
tine dependency [41]. To assess nutritional key data, the 
participants were asked to document their food intake for 
four days prior to the three investigation appointments. 
The Vienna Food Record [42] was applied which takes 
Austrian-specific eating habits into account. The nutrient 
intake was analyzed by the Austrian specific nutritional 
software nut.s ® v1.32.95 (www. nutri tional- softw are. at, 
dato Denkwerkzeuge, Vienna Austria).

Compliance assessment, complaint questionnaire, 
and tolerability groups
To keep the compliance and motivation of the partici-
pants high and to identify any issues at an early stage, the 
participants were contacted regularly via phone calls and 

Fig. 1 Study design. The study was performed over 12 weeks and divided into two phases: during the intervention phase of 6 weeks, 
the participants were asked to consume 100 mL of aronia juice or a polyphenol‑free but similarly nutrient‑composed placebo drink, respectively, 
twice a day. The participants were investigated at baseline (time point 1), after the intervention (time point 2), and after the washout phase (time 
point 3). The study was single‑blinded to the participants and performed in parallel design

http://www.randomizer.at
http://www.randomizer.at
http://www.nutritional-software.at
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e-mails. The returned drink containers were weighted at 
investigation II after the intervention to control for com-
pliance. Additionally, the participants were asked to com-
plete a complaints and preference questionnaire (adopted 
from [43]) to assess the tolerability of the study drinks. 
As reported in Lackner et al. [32], half of the participants 
reported clear gastrointestinal complaints like nausea, 
diarrhea, obstipation, bloating, and cramps. Thus, V was 
further divided into the group that tolerated the aronia 
juice well (Vt) and the group that reported clear com-
plaints (Vc) associated with the juice ingestion.

Blood sample collection
Blood draws were performed in overnight fasted partici-
pants with food fasting of at least 12 h. Participants were 
allowed to drink tap water before the blood draw. Plasma 
and serum samples were centrifuged at 3000g for 10 min. 
Three hundred microliters of aliquots was prepared and 
stored at – 80 °C. For further analyses, the samples were 
thawed at room temperature and centrifuged for 5 min 
at 10,000g. Further sample preparation procedures are 
described in detail at the metabolomics section.

Gut microbiome
Sample collection, DNA extraction and amplicon sequencing
Approximately 1 g of stool was collected from each par-
ticipant using stool sample containers (Meus S.R.L., 
Piove di Sacco, Italy) and stored at – 20 °C until further 
processing. The microbiome sequencing protocol, based 
on Illumina Miseq sequencing, was described earlier by 
Klymiuk et al.  [44]. The protocol for these samples’ prep-
aration deviated in minor ways, like using 250 μl of Bac-
terial Lysis Buffer in the MagNA Lyser green beads tubes 
(Roche, Mannheim, Germany), adding 250 μl of a stool–
PBS buffer suspension to it, and homogenizing it two 
times 30 s at 6500 rpm with the MagNA Lyser Instrument 
(Roche, Mannheim, Germany), instead of three times. 
For the incubation step with Proteinase K (20 mg/ml), 
1 h sufficed. The Magna Pure LC DNA III Isolation Kit 
(Bacteria, Fungi) (Roche, Mannheim, Germany) was used 
to extract DNA according to the manufacturer’s instruc-
tions. The hypervariable V4 region of the bacterial 16S 
rRNA gene was amplified with polymerase-chain-reac-
tion (PCR) from the fecal total DNA using the target-spe-
cific primers 515fModified – GTG YCA GCMGCC GCG 
GTAA [45] and 806rModified – GGA CTA CNVGGG 
TWT CTAAT [46]. Two microliters of the total DNA was 
used in a 25-μL PCR reaction in triplicates with the Fast-
Start High Fidelity PCR system, dNTPack (Sigma, Ger-
many). Cycling conditions were of initial denaturation at 
95 °C for 3 min, followed by 30 cycles of 95 °C for 45 s, 
55 °C for 45 s, 72 °C for 1 min, and a final elongation step 
at 72 °C for 7 min. The resulting amplification products 

were visualized on a 1.5% agarose gel and pooled, indexed 
and purified as described in Klymiuk et al. [44], with the 
difference that 7.5 μl normalized PCR product was used 
in a 25-μl indexing PCR reaction; 9 pM of the final library 
were sequenced at ZMF Core Facility Molecular Biol-
ogy in Graz, Austria, using an Illumina MiSeq desktop 
sequencer with v3 chemistry and 600 cycles (2 × 300). 
FASTQ files were used for data analysis.

Sequence data processing
Raw reads were analyzed with QIIME2 (Quantitative 
Insights Into Microbial Ecology) version 2021.4 using 
DADA2 (Divisive Amplicon Denoising Algorithm) to 
denoise sequences [47, 48]. Briefly, paired-end reads were 
joined together before a quality check of the produced 
sequences was performed. Afterward, the taxonomic 
assignment was realized with a Naïve-Bayes classifier 
trained on the Silva138 reference database [49].

Controls and decontam
Extraction blanks and PCR negative controls were pro-
cessed in parallel. Contaminating reads were removed 
using the R package decontam [50] with the prevalence 
method and threshold set to 0.5 (https:// github. com/ 
benjj neb/ decon tam).

Data normalization
Data were normalized to 6000 reads/ sample using R 
package SRS (Scaling with ranked subsampling) [51].

Differential abundance analysis and visualization 
of microbiome data
Analyses and visualization were performed using RStu-
dio, based on R version 4.1.2 [52]. Package ALDEx2 [53] 
was used for differential relative count abundance analy-
sis for the comparison of two conditions. Used R scripts 
are provided in the GitHub repository (https:// github. 
com/ Chris tine- Moissl- Eichi nger/ aronia). Final figures 
were compiled using Inkscape [54].

Metabolic predictions
Potential metabolites were predicted with the q2-micom 
plugin (v. 0.12.1) [55]. All analyses were conducted with 
the AGORA genus model database (v1.03) [56] and the 
standard western diet gut medium. The default abun-
dance cutoff (0.0001) was used. The growth simulation 
was performed with individual settings for the tradeoff 
between community growth rate and individual taxon 
growth rate. This pressure on the model was determined 
by an evaluation of the tradeoff from 0 to 1 (zero to maxi-
mum enforced growth) and was set at 0.1 and 0.2 respec-
tively. Subsequent visualizations and analysis included 
potential metabolite consumptions, growth niches, and 

https://github.com/benjjneb/decontam
https://github.com/benjjneb/decontam
https://github.com/Christine-Moissl-Eichinger/aronia
https://github.com/Christine-Moissl-Eichinger/aronia
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metabolite fluxes in dependence on Vc and Vt for all and 
individual time points.

Metabolome stool and plasma
Metabolic quantification using NMR
Nuclear magnetic resonance spectroscopy (NMR) analy-
sis was used to analyze concentrations of acetate, succi-
nate, formate, lactate, butyrate, and propionate in stool 
samples (PMA untreated) performed at the Gottfried 
Schatz Research Center for Cell Signaling, Metabolism 
and Aging, Molecular Biology and Biochemistry, Medical 
University of Graz. To quench enzymatic reactions and 
remove proteins, methanol-water solution was added to 
the stool samples (2:1), and cells were lysed using a Pre-
cellys homogenizer and stored at – 20 °C for 1 h until fur-
ther processing. Samples were centrifuged (4 °C, 30 min, 
17949 rcf ), and supernatants were lyophilized afterwards.

Samples were then mixed with 500 μl NMR buffer in 
 D2O (0.08 M  Na2HPO4, 5 mM 3-(trimethylsilyl) pro-
pionic acid-2,2,3,3-d4 sodium salt (TSP), 0.04 (w/v) % 
 NaN3, pH adjusted to 7.4 with 8 M HCl and 5 M NaOH) 
and transferred into 5-mm NMR tubes. NMR measure-
ments were performed on an AVANCE™ Neo Bruker 
Ultrashield 600 MHz spectrometer equipped with a TXI 
probe head at 310 K and processed as described else-
where [57].

The 1D CPMG (Carr-Purcell_Meiboom_Gill) pulse 
sequence (cpmgpr1d, 128 scans, 73728 points in F1, 
11904.76 HZ spectral width, recycle delays 4 s) with 
water suppression using pre-saturation was used for 
1H 1D NMR experiments. Bruker Topspin version 4.0.2 
was used for NMR data acquisition. The spectra for all 
samples were automatically processed (exponential line 
broadening of 0.3 Hz), phased and referenced using 
TSP at 0.0 ppm using the Bruker Topspin 4.0.2 software 
(Bruker GmbH, Rheinstetten, Germany).

Spectra pre-processing and data analysis have been 
carried out using the state-of-the-art data analysis pipe-
line (group of Prof. Jeremy Nicholson at Imperials Col-
lege London) using Matlab® scripts and MetaboAnalyst 
4.0 [58]. NMR data were imported to Matlab® vR2014a 
(Mathworks, Natick, Massachusetts, USA), regions 
around the water, TSP, and remaining methanol signals 
excluded, to correct for sample metabolite dilution prob-
abilistic quotient normalization [59] as performed.

Blood plasma low molecular weight metabolites 
and lipoproteins were analyzed on a Bruker 600 MHz 
Avance Neo NMR spectrometer (Bruker, Rheinstetten, 
Germany). Among the measured analytes (in total 41) 
are amino acids and their derivatives, carboxylic acids, 
ketone bodies, and monosaccharides.  Plasma  samples 
were thawed, and 330 μl of each sample was mixed with 
330 μl of Bruker plasma buffer (Bruker, Rheinstetten, 

Germany). Following gentle mixing, 600 μl of the samples 
were transferred into 5 mm glass tubes and placed into a 
SampleJet rack (Bruker, Rheinstetten, Germany). Proton 
spectra were obtained at a constant temperature of 310 
K using a standard nuclear Overhauser effect spectros-
copy (NOESY) pulse sequence (Bruker: noesygppr1d), 
a Carr–Purcell Meiboom–Gill (CPMG) pulse sequence 
with pre-saturation during the relaxation delay (Bruker: 
cpmgpr1d) to achieve water suppression, and a fast scan 
2D J-resolved (JRES) pulse sequence (Bruker: jresgpprqf). 
Data analysis was carried out using the Bruker IVDr 
Plasma (B.I.) module of the analysis software (Topspin 
version 4.1). Univariate statistical analysis of the concen-
tration values for identifying lipoproteins and metabo-
lites of interest differing between groups was carried out 
using MetaboAnalyst [60] and the R package rstatix.

Statistical analysis
At the conceptual phase of this study, no previous ran-
domized controlled trial on the effects of dietary poly-
phenols or aronia food products on the primary outcome 
were available. Consequently, we were unable to deter-
mine the effect size. To detect an effect of 1 standard 
deviation at a significance level of 0.05 and 80% power, a 
minimum of 16 individuals per group is required. There-
fore, we opted for a sample size of n = 40, with 20 partici-
pants per group. Comparable studies employing similar 
interventions but focusing on different primary outcomes 
had sample sizes ranging from 20 to 66 individuals [33, 
61, 62]. Moreover, we conducted effect size and power 
calculations with q2-evident (https:// github. com/ bioco 
re/ evide nt) on the microbiome data and the predicted 
flux of metabolites in our study (Additional file 2).

Alpha diversity estimates were compared with t-tests 
for paired and normally distributed samples. Differential 
relative count abundance analysis was based on ALDEx2, 
Wilcoxon rank tests, and Benjamin Hochberg for multi-
ple comparison corrections. L1 penalized logistic regres-
sion was used to identify the most predictive metabolites 
for groups complaints vs. tolerated. Two- and three-way 
ANOVA analyses were applied to detect significant dif-
ferences of measured metabolites in plasma, stool, and 
lipoproteins.

Data and software availability
Raw sequencing data obtained from amplicon-based 
sequencing (technical sequences including adaptor 
sequences, linker sequences and barcode sequences were 
removed) used in this paper can be found in the Euro-
pean Nucleotide Archive (ENA) und the accession num-
ber PRJEB64786 (https:// www. ebi. ac. uk/ ena/ brows er/ 
home). Datasets (abundance table, taxonomy table, etc.) 

https://github.com/biocore/evident
https://github.com/biocore/evident
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
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are available at GitHub: https:// github. com/ Chris tine- 
Moissl- Eichi nger/ aronia.

The NMR raw data has been deposited at Metabo-
Lights under the accession number MTBLS7661 (https:// 
www. ebi. ac. uk/ metab oligh ts/). Comment: Until the data 
release on MetaboLights, the data is provided via nex-
cloud and can be accessed at the following links: Stool 
data: https:// box. medun igraz. at/s/ NAPq6 E9mTb PmF5L, 
plasma data: https:// box. medun igraz. at/s/ zomSi TNkaf 
kXRDY.

Results
Study population characteristics and tolerability groups
In total, 40 female participants were included in this 
study and randomly allocated to the verum/aronia juice 
(V) and the placebo (P) group with 20 participants each 
(Table  1). One participant of V and two participants of 
P dropped out at the first follow-up investigation after 
the intervention phase, and another two participants of 
V dropped out at the final investigation after the washout 
period (Additional file 1).

Within V, nine participants reported having tolerated 
the juice well (Vt), and 10 participants reported gastro-
intestinal discomfort and complaints (Vc) such as bloat-
ing, stomach ache, nausea, and diarrhea, whereas the 
participants of P tolerated the placebo drink with one 
exception [32]. Based on this information, the tolerabil-
ity groups have been considered for further statistics. 
Metadata information on the study population (group 
allocation, age, BMI, smoking and nicotine depend-
ency at baseline, and weight, waist circumference and 
key nutritional information of all three measurement 
points) is provided in Additional file 3.

All participants provided stool and plasma samples 
at all three measurement points and completed the 
nutritional questionnaires. Thereof, the following data 
sets were obtained: “universal” 16S rRNA gene profiles 
for all stool samples, as well as metabolomic informa-
tion of stool and plasma, and detailed dietary informa-
tion (e.g., diversity, energy, protein, fat, carbohydrates) 
(Additional file 3).

Table 1 Study population characteristics at baseline. Data are presented as median (IQR). p‑values were derived from Mann‑Whitney 
U test if not marked, from Fisher’s exact test if marked with Ɨ, and from chi‑square test if marked with Ɨ Ɨ

Study population characteristics Verum Placebo p-value
Number of participants (n) 20 20

Age (years) 25 (7) 24 (5) 0.142

Smokers 4 3 1.000Ɨ

BMI (kg/m2) 21.2 (2.9) 21.6 (3.2) 0.841

Waist circumference (cm) 68.3 (9.3) 68.5 (4.8) 0.758

Drop out before first follow up 1 2 0.307Ɨ Ɨ

Drop out before second follow up 2 0

Study drink tolerability
 Tolerated (n) 9 17 0.003Ɨ

 Complaints (n) 10 1

Characteristics tolerability groups Verum tolerated Verum complaints
Number of participants (n) 9 10

Age (years) 29 (12) 24.5 (4) 0.133

Smokers 2 2 1.000Ɨ

BMI (kg/m2) 22.0 (2.5) 20.1 (3.9) 0.043

Waist circumference (cm) 73 (9.0) 66.3 (5.4) 0.022

Dietary intakes
 Energy (kcal/day) 1875 (724) 2054 (883) 0.211

 Protein (g/d) 63 (26) 79 (18) 0.065

 Carbohydrates (g/d) 182 (90) 210 (134) 0.133

 Sugar (g/d) 75 (41) 91 (62) 0.447

 Fat (g/d) 71 (43) 82 (38) 0.905

 Saturated fat (g/d) 25 (19) 29 (14) 0.842

 Fibers (g/d) 23 (15) 23 (31) 1.000

 Polyphenols (mg/day) 450 (925) 644 (357) 0.780

https://github.com/Christine-Moissl-Eichinger/aronia
https://github.com/Christine-Moissl-Eichinger/aronia
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://box.medunigraz.at/s/NAPq6E9mTbPmF5L
https://box.medunigraz.at/s/zomSiTNkafkXRDY
https://box.medunigraz.at/s/zomSiTNkafkXRDY
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Gut microbiome composition
Shannon index increased significantly in the verum group 
over time
The diversity indices (Shannon index, richness, and even-
ness) did not differ between V and P at the three indi-
vidual time points (Fig.  2A). However, alpha diversity 
increased continuously in V from time point 1 to 3 (p 
= 0.046; normal distribution, t-test for paired samples), 
while it remained constant in P (Fig. 2B; all datasets and 
scripts available in GitHub repository, see Materials and 
Methods).

Focusing on tolerability groups, alpha diversity, and richness 
increased continuously in the verum‑tolerated group 
over time while it did not change in the complaints group
To understand the effect of the juice and its correla-
tion with tolerability, we separated the groups for toler-
ance (Vt) and complaints (Vc) after juice consumption. 
Although the two groups were not significantly different 
concerning alpha-diversity measures at all time points, 

the Vt group showed a significant increase in Shan-
non index and richness towards time point 3, while no 
changes were observed for Vc (Fig. 3, all significant p-val-
ues included; all datasets and scripts available in GitHub 
repository, see Materials and Methods). This observation 
indicates a potential adaptation by the gastrointestinal 
microbiome towards the aronia juice.

The genera Anaerostipes and Bacteroides showed 
an increasing trend in Vt
To further understand the potential adaptation of the 
gut microbiome, and the possibly involved taxa, we 
performed differential relative count abundance analy-
sis using ALDEx2 of the Vt group samples. Ribosomal 
sequence variants (RSVs) affiliated with the genus Anaer-
ostipes raised from time point 1 to 2 and dropped again 
after the washout period (Fig. 4A; RSV 8bf[…], tp 1:2 p = 
0.03, tp 1:3 p = 0.068, tp 2:3 p = 0.470; RSV b93[…], tp 1:2 
p =0.142, tp 1:3 p = 0.385, tp 2:3 p = 0.480; all: Wilcoxon 
rank test, ALDEx2), while a constant increase toward 

Fig. 2 Differences in alpha diversity between the verum (V) and the placebo (P) group. The data is based on 16S rRNA gene amplicon sequencing 
and results are shown for the whole study population of n = 40. A Diversity indicators of V and P did not differ significantly between V and P 
at the three time points (1: at baseline, 2: after the intervention, 3: after the wash‑out period). B Progression of diversity within the groups. In V, 
Shannon index increased continuously (significant difference as indicated by given p‑value from time point 1 to time point 3, based on t‑test, paired 
samples), while it remained constant in P
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time points 2 and 3 was observed for representatives of 
the genus Bacteroides (Fig.  4B; RSV 212[…], tp 1:2 p = 
0.730, tp 1:3 p = 0.042, tp 2:3 p = 0.028; RSV 95b[…], 

tp1:2 p = 0.186, tp 1:3 p = 0.056; tp 2:3 p = 0.609; RSV 
b91[…], tp1:2 p = 0.713, tp 1:3 p = 0.140, tp 2:3 p = 0.058; 
Wilcoxon rank test, ALDEx2; all datasets and scripts 

Fig. 3 Differences in alpha diversity between the verum tolerated (Vt) and the verum complaints (Vc) group. The data is based on 16S rRNA gene 
amplicon sequencing and results are shown for the verum group of n = 20. A Diversity indicators did not differ significantly between Vt and Vc 
at the three time points (1: at baseline, 2: after the intervention, 3: after the wash‑out period). B In Vt, the Shannon index and richness increased 
significantly over the study period (normal distribution, t‑test for paired samples), while no significant differences were observed for Vc

Fig. 4 Changes in Vt group only. Species of the genera Anaerostipes and Bacteroides showed an increasing trend in the Vt group (n = 9). A 
Anaerostipes increased after the intervention and dropped again in the wash‑out period. B Bacteroides started to increase after juice consumption. 
The changes did not remain significant after statistical Benjamini‑Hochberg correction for multiple testing, and therefore p‑values are not indicated. 
tp, time point; RSVs, ribosomal sequence variants. Feature ID for the RSVs is given below the genus information
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available in GitHub repository, see Materials and Meth-
ods). Of note, observed changes did not remain signifi-
cant after correction after statistical Benjamini-Hochberg 
correction for multiple testing.

At genus level, an increase from tp 1:2 was observed 
for Ruminococcus (p = 0.005), for 1:3 for [Eubacterium]_
coprostanoligenes_group (p = 0.01), Lachnospiraceae_
UCG-004 (p = 0.04), and for 2:3 for Odoribacter (p = 
0.009; all: Wilcoxon rank test, ALDEx2; all datasets and 
scripts available in GitHub repository, see Materials and 
Methods). Again, after correction for multiple testing, 
none of these remained significant.

MICOM model‑based flux balance analysis of keystone taxa 
revealed ammonium,  CO2, and several O‑glycans as likely 
metabolites in Vc after the juice consumption and several bile 
acids in Vt
The MICOM model-based flux balance analysis of key-
stone taxa revealed striking differences between the pre-
dictive production of metabolites from gut microbiota in 
Vc and Vt at time point 2 after the juice intervention. Of 
note, almost no differences in flux analysis were found 
between these two groups at baseline and at time point 
3, respectively. Strikingly, in Vc, ammonium and carbon 
dioxide were among the five most likely metabolites after 

the juice consumption, and nine of the 40 most frequently 
predicted metabolites in Vc were O-glycans, while no 
O-glycans were to be expected in Vt. On the contrary, in 
Vt, six of the top 40 metabolites were bile acids and bile 
acid anions, respectively, thus indicating a connection to 
cholesterol metabolism, while none of these metabolites 
were present in Vc (Fig. 5).

As a next step, we had a closer look at these specific 
metabolites and extracted all taxa which could have been 
involved in their production or consumption flux. This 
data was further visualized as a comparative metabolic 
network of complaints (Vc) vs. tolerated (Vt) after aronia 
juice intervention (time point 2) (Fig. 6). Both networks 
differed according to their import and export flux.

In Vc, ammonium and carbon dioxide accumulated 
due to missing consumers and led to an unbalanced flux. 
The export—in other words the production—of carbon 
dioxide was predominantly driven by Phascolarctobacte-
rium, Parasutterella, and Bacteroides as well as Prevotella 
and Blautia. For the export of ammonium, also Blautia 
appeared to be a relevant driver; however, for the occur-
rence of both fermentation products, a complex network 
of microbes was involved. The import—which means 
the consumption of substances by microbes—of ammo-
nium was mainly related to Phascolarctobacterium and 

Fig. 5 MICOM model‑based flux balance analysis of keystone taxa at time point 2. The 40 most predictive production fluxes (metabolites) are 
shown for the verum subgroup that had complaints after aronia juice consumption (Vc) on the left and the verum subgroup that tolerated the juice 
well (Vt) on the right using L1 penalized logistic regression. The analysis was based on 16S rRNA gene amplicons and the identified keystone 
taxa of the samples collected at the time point 2 which was directly after the intervention. In Vc, ammonium and carbon dioxide are highlighted 
in violet, and O‑glycans are highlighted in red. In Vt, bile acids and bile acid anions are highlighted in orange
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Fig. 6 Networks of taxa and selected metabolites for verum complaints and verum tolerated at time point 2. The metabolites have been chosen 
in accordance with Fig. 5. A In Vc (complaints), ammonium and carbon dioxide are highlighted in violet, and O‑glycans are highlighted in rose. 
B In Vt (tolerated), the predicted bile acids are highlighted in orange. In both networks, node size (metabolites and taxa) was scaled according 
to abundance; bacteria are highlighted in light grey and archaea (methanogens) in dark grey; edges were weighted according to their modeled 
flux, imported metabolites are connected by green lines, and exported metabolites are connected by pink lines. Network layout is based 
on an edge‑weighted spring‑embedded algorithm based on metabolic flux
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Bacteroides, but still consumers were overall underrepre-
sented (Fig. 6A).

The network from Vt suggests a balanced and robust 
metabolic network of bile acids (Fig. 6B). The abundance 
of the taxa Anaerostipes and Bacteroides changed during 
the study in Vt (see Fig.  4) and contributed to the net-
work of bile acid occurrence. Besides Anaerostipes and 
Bacteroides, Blautia, Faecalibacterium, and others were 
involved in the network of Vt.

In both Vc and Vt, the taxa Anaerostipes and Bacte-
roides played a role in the network. They occurred at 
divergent positions in the network for the Vc: Bacteroides 
was mainly involved in ammonium consumption and 
carbon dioxide release, while Anaerostipes was stronger 
connected to the metabolism of O-glycans. In contrast, 
in Vt Anaerostipes and Bacteroides were embedded in 
very similar metabolic networks. This adopted microbial 
community network could be linked to a better tolerabil-
ity of aronia juice consumption.

NMR analysis of plasma samples reveals changes 
in small-molecule and lipoprotein metabolism
Given the partially contradictory results on the meta-
bolic impact of aronia juice on lipoprotein metabolism in 
humans [63, 64], we carried out a comprehensive NMR-
based metabolomics analysis of plasma lipoproteins and 
metabolites of the 111 plasma samples obtained in this 
study using NMR spectroscopy.

Although we detected no significant differences in 
the plasma metabolite profiles between the placebo and 
verum groups after the intervention, we detected strong 
changes in lipoprotein profiles after the intervention 
(Additional file  4). More than 30 parameters associated 
with lipoprotein metabolism were significantly higher in 
V after the intervention compared to P (ABA1, H3A2, 
IDAB, IDCH, IDFC, IDPL, IDPN, L4AB, L4CH, L4FC, 
L4PL, L4PN, L4TG, L5AB, L5CH, L5FC, L5PL, L5PN, 
LDHD, TBPN, TPAB, V3CH, V3FC, V3PL, V3TG, V4CH, 
V4FC, V4PL, V4TG, VLAB, VLCH, VLPN). We observed 
the strongest differences in lipids and cholesterol species 
bound to VLDL, IDL and LDL sub-fractions. Of note, 5 
lipoprotein-related parameters were slightly increased in 
the verum compared to the placebo group (IDCH, IDFC, 
L4AB, L4PN, L4TG) at baseline. After 2-way ANOVA 
analysis and Bonferroni correction, ABA1 (p = 0.030), 
IDPN (p = 0.022), IDCH (p = 0.004), IDFC (p = 0.004), 
IDAB (p = 0.022), and V4FC (p = 0.035) remained sig-
nificantly changed upon intervention. Interestingly, a 
few changes were maintained in the wash-out phase of 6 
weeks, including ABA1, IDAB, IDCH, IDFC, and IDPN. 
Therefore, intervention with aronia juice leads to several 
changes in human lipoprotein metabolism, and these 

changes are maintained even for several weeks after end-
ing the intervention (Fig. 7A).

To reveal if tolerability for aronia juice can be detected 
using plasma metabolites or lipoproteins as biomarkers, 
we carried out additional analyses (Additional file  5). 
Regarding the tolerability groups, no differences in the 
metabolic profiles could be observed between Vt and Vc 
at baseline. Taking into account all time points, treat-
ment, and tolerability in a 3-way ANOVA analysis with 
Bonferroni correction, we found formic acid (p = 0.005) 
to be significantly lower in Vt compared to Vc. A sig-
nificant increase of formic acid was observed in Vt from 
baseline to after the intervention (p = 0.034). In addi-
tion, glutamine (p = 0.009) was significantly lower in Vc 
compared to Vt after the intervention. However, no sig-
nificant changes in the metabolic profile were observed 
longitudinally for Vc.

Separated for tolerability, initial significant differences 
in lipoprotein profile between Vt and Vc and after the 
intervention were detected and related to several LDL-
related parameters. In 3-way ANOVA and after Bonfer-
roni correction, L2AB (p = 0.043), L2CH (p = 0.008), 
L2FC (p = 0.009), L2PL (p = 0.013), L2PN (p = 0.043), 
and L3FC (p = 0.043) remained significantly up in Vt 
(Additional file  4). Importantly, only in Vt, the longitu-
dinal changes of lipoprotein profile upon intervention 
could be observed, with the same LDL-related param-
eters showing significant changes with time in 3-way 
ANOVA and after Bonferroni correction—L2AB (p = 
0.048), L2CH (p = 0.009), L2FC (p = 0.010), L2PL (p = 
0.014), L2PN (p = 0.048), and L3FC (p = 0.038) (Fig. 7B).

Metabolomic outcome fecal samples
NMR-based metabolomic analyses of the fecal samples 
was performed to analyze metabolites and breakdown 
products from polyphenols to assess the intake, digest-
ibility, and cleavage of polyphenols. Thereby, metabolic 
shifts in stool samples were observed for all groups over 
the three time points; however, none of these shifts 
remained significant after Bonferroni correction (Addi-
tional file 6).

Three-way ANOVA analysis revealed a significant 
increase of gallic acid (p = 0.007), a breakdown prod-
uct of polyphenols, in the verum group; however, this 
significance did not remain after Bonferroni correction 
(p = 0.300).

Discussion
Summary of the results
In this clinical randomized single-blinded placebo-
controlled parallel-design intervention trial, the effects 
of 6 weeks of aronia juice consumption followed by 
another 6 weeks of wash out on the gut microbial 
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composition and associated metabolic outcome were 
investigated. Since striking differences in the tolerabil-
ity of the aronia juice occurred, the verum group was 
divided into a tolerated and a complaints group for data 
analysis. Although significant changes in alpha diver-
sity indices were only observed in Vt over time, the 
change in microbial composition led to a completely 
different predicted metabolic flux between Vt and Vc. 
In Vt, six of the 40 most likely metabolites were chola-
tes, thus associated with the bile acid and lipoprotein 
metabolism. Metabolomics data on lipoprotein profiles 
showed alteration in several subfractions of LDL and 
VLDL molecules after the intervention in Vt that disap-
peared again in the wash out phase. In Vc, ammonium 
and carbon dioxide as well as nine O-glycans that are 
known to make up the mucus system were among the 
40 most likely metabolites processed by gut microbes. 
This finding underpins changes due to gastrointestinal 
complaints in the Vc group.

Acceptance and tolerability of aronia juice
Aronia melanocarpa, with its high polyphenol content, 
including considerable concentrations of tannins, is 
known for its astringent and bitter taste which is rather 
unappealing to certain people [30]. It has been discussed 
previously that the acceptance of aronia products may 
be limited to people who like its specific taste. However, 
compared to other polyphenol-rich beverages such as 
sea buckthorn, acerola, or cranberry, aronia showed the 
highest consumer acceptance [31]. To avoid unneces-
sary drop out due to individual taste preference, we only 
included females who reported liking bitter and astrin-
gent drinks. However, in our cohort, some participants 
experienced physical discomfort after prolonged juice 
consumption. To our knowledge, gastrointestinal dis-
comfort has not been reported previously after natural 
aronia product consumption.

Tannins are known to interact with diverse food mol-
ecules such as proteins and polysaccharides, and with 

Fig. 7 Changes in plasma lipoprotein profile over the study period. The 30 most abundant plasma lipoproteins are shown. A The change 
in plasma lipoprotein profile between the placebo and the verum group is depicted. In the placebo group plasma, lipoproteins were lower 
compared to the verum group. In the verum group, several plasma lipoproteins increased during the intervention with aronia juice (tp 2), 
whereas the strongest effects were observed for VLDL, IDL, and LDL sub‑fractions. After the intervention (tp2), more than 30 lipoproteins were 
significantly higher in V compared to P. After the washout phase (tp 3), most of these altered lipoprotein plasma concentrations returned to initial 
concentrations except for ABA1, IDAB, IDCH, IDFC, and IDPN that remained significantly higher compared to baseline concentrations (tp 1). B The 
change in plasma lipoprotein profile in the tolerability groups during the intervention is depicted. A significant increase in plasma LDL‑lipoproteins 
was only observed in the group that tolerated the aronia juice. The concentration of most lipoproteins returned to initial levels after the wash 
out phase. P, placebo; Tp1, time point 1 (baseline); Tp2, time point 2 (after the intervention); Tp3, time point 3 (after the washout phase); V, verum
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salivary proteins ending up in astringency and bitter-
ness. Astringent mouthfeel is also discussed as a conse-
quence of lubrication failure due to low saliva flow rate 
and xerostomia [65]. In our cohort, we could not identify 
internal factors contributing to elevated taste perception. 
However, tolerability could be slightly enhanced by advis-
ing the participants to dilute the juice with water or con-
suming it together with meals which ensured compliance 
despite reported complaints. The effect of food combina-
tion and meal planning strategies might be explained by a 
tannins-protein and tannins-polysaccharides interaction. 
Prior research noted individual variations in polyphe-
nol bioavailability and catabolism [61, 66, 67] related to 
food composition, intestinal enzyme activity, transit time, 
and colonic microbiota composition [68–70], which 
might contribute to differences in metabolic effects of 
polyphenols.

Aronia juice and gut microbiota modulation
In our study, the alpha diversity expressed as Shannon 
index and richness increased only in Vt over the study 
period, while no significant differences were observed 
for Vc, V in total, and P. Regarding beta diversity, we 
could not observe significant changes; however, in Vt, 
Anaerostipes and Bacteroides species seemed to be 
affected during the study period. Although no signifi-
cant changes in microbial composition were observed, 
the MICOM model-based flux balance analysis of key-
stone taxa revealed pronounced differences in expected 
metabolites produced by the gut microbiota between 
Vt and Vc. In Vc, an increased gas production could be 
observed which underpins the complaints reported by 
this group. While a lot of  CO2 was exported, a lack of 
 CO2-consuming microbes was identified in the network. 
Moreover, high metabolic mucosal activity was shown 
which might be explained by the changed conditions 
caused by aronia juice polyphenols. The intestinal micro-
biome of Vc appeared to handle these substances poorly. 
In contrast, a stable network between the gut microbes 
of Vt and cholates associated with lipid metabolism was 
shown, and the import and export of fermentation prod-
ucts seem to be rather balanced. Apparently, this micro-
bial community was more advantageous for the turnover 
of aronia juice polyphenols. A changed composition of 
the network between Bacteroides and Anaerostipes could 
be of importance for tolerability. In summary, a potential 
impact of the aronia juice polyphenols on the modulation 
of microbial composition can be assumed.

An increase in alpha diversity after treatment with Aro-
nia melanocarpa polysaccharides has previously been 
observed in mice [71]. Also, an increase in Anaerostipes 
[72] and Bacteroides [73] after the application of aronia 
polyphenols has already been shown in in  vitro models 

as well as in a clinical placebo-controlled intervention 
trial [61]. Istas et al. [61] found no significant changes in 
gut microbiota diversity in a human placebo-controlled 
intervention study with polyphenol-rich aronia extract 
and whole fruit aronia berry powder in healthy adult 
men. However, the consumption of aronia extract led to 
an increase in the abundance of Anaerostipes (+ 10.6%), 
while the intake of the whole fruit powder increased 
Bacteroides abundance significantly by 193%. Moreover, 
Wu et al. [72] reported aronia polyphenols to modulate 
microbial composition in an in vitro study. They investi-
gated the mechanistic effects of aronia juice polyphenols 
on microbial composition in a simulator of the human 
intestinal microbial ecosystem (SHIME) and a Caco-2/
endothelial cell coculture model and found an increased 
abundance of Anaerostipes after aronia juice application. 
Yu et  al. [73] found black chokeberry anthocyanins to 
significantly increase the relative richness of Bacteroides 
and others in an in vitro model. These findings are in line 
with our observed trend in the increased abundance of 
these two genera Anaerostipes and Bacteroides in the Vt 
group.

Concerning single polyphenols contained in the poly-
phenol blend of Aronia melanocarpa several experimen-
tal studies in animal and cell models showed an impact 
of these polyphenols on the gut microbiome, thereby 
primarily proposing beneficial effects. Studies on the 
impact of procyanidins (e.g., [74, 75], anthocyanins (e.g., 
[76, 77]), and phenolic acids (e.g., [78, 79]) showed modi-
fication in the gut microbiota that was associated with 
reduced risk for atherosclerosis, gestational diabetes mel-
litus, inflammatory pathways, diet-induced obesity, and 
non-alcoholic fatty liver diseases, respectively. However, 
in our study, we could not confirm microbial or meta-
bolic outcomes pointing to beneficial cardiovascular or 
antiatherosclerosis effects in healthy young females since 
LDL and VLDL subfractions increased.

In total, available literature supports the beneficial 
benefits of aronia juice as a food component or their 
major polyphenols on gut microbiota. On contrary, 
we observed intolerance reactions in half of our par-
ticipants leading to alterations in metabolic outcomes. 
We assume that changes in gut microbial composi-
tion contribute to intolerability symptoms and impact 
gut health, as the microbiota is involved in the mucus 
production supporting the gut barrier function, and 
endothelial cell integrity [15].

Aronia juice’s impact on gut health
We found a striking number of predicted O-glycans in 
the complaints group. O-glycans are main components 
of the intestinal mucins that form the mucus layer of the 
gut epithelium. Thereby, core 3-derived O-glycans are 
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primarily expressed in the colon. O-Glycans play a cen-
tral role in maintaining intestinal health by influencing 
barrier integrity, preventing pathogen adhesion, modu-
lating the immune response, and contributing to eubio-
sis by shaping the mucin environment [80, 81]. In this 
regard, Bacteroides species Lachnoclostridium [22] and 
Akkermansia [72] are associated with mucus modula-
tion properties and are stimulated after aronia poly-
phenol treatment. Taira et al. [82] found increased fecal 
mucin, improved intestinal barrier function and reduc-
tion of dysbiosis after aronia consumption in rats. Most 
interestingly, tannic acid, a prominent aronia polyphenol, 
shows a strong affinity to mucin production [83], sug-
gesting a potential impact in our observation. Moreover, 
recent research demonstrated that aronia berry pow-
der improves intestinal barrier function in a cell model 
of chronic colonic inflammation by modulation of tight 
junction expression, but isolated polyphenols, as sur-
rogates of the microbiota-derived catabolites of aronia 
berry, did not replicate this effect [84].

While previous literature emphasizes the positive 
effects of polyphenols on mucus production, our study 
associates the predicted elevation of O-glycans with 
gastrointestinal disturbances. We assume a shift in the 
microbial profile induced by polyphenol ingestion and 
an accompanying adaption in immune response [32]. The 
increased production of O-glycans through microbiome 
modulation in Vc may serve to protect the epithelium 
from irritation caused by polyphenol overconsumption. 
Microbiota might respond to elevated polyphenol expo-
sure with upregulation of O-glycan production to poten-
tially mitigate any adverse effects on the gut epithelium.

Alterations in plasma metabolite profile
In our cohort, plasma glutamine was significantly 
higher in Vt post-intervention, aligning with MICOM 
model-based flux balance analysis predictions indicating 
L-glutamine as one of the metabolites derived from gut 
microbiota. Glutamic acid, a precursor of L-proline and 
L-arginine, is obtained from food and endogenously syn-
thesized from glutamine, α-ketoglutarate, and pyroglu-
tamic acid in human metabolism [85]. The model-based 
flux balance analysis of keystone taxa predicted three 
metabolites (L-glutamine, 2-oxoglutarate, L-proline) 
associated with glutamic acid metabolism, linking the 
higher glutamine levels in Vt to metabolic processes trig-
gered by changes in the gut microbiota.

Moreover, NMR metabolomics analysis revealed sig-
nificantly higher formic acid concentration in Vc after 
the intervention. Formic acid plays an important role 
in human metabolism and serves as a metabolic media-
tor between the organism, diet, and gut microbiota. It 
is produced endogenously from the cleavage of serine 

and glycine, the catabolism of tryptophan and choline, 
and the synthesis of sterol and cholesterol. However, 
about 50% of the circulating formic acid pool is attrib-
uted to anaerobic fermentation by gut microbes. Formic 
acid is oxidized in human cells to carbon dioxide  (CO2) 
[86]. This  CO2 may have caused bloating and intesti-
nal discomfort reported by the participants of Vc. The 
observed higher formic acid levels in Vc in plasma sup-
port higher  CO2 production proposed by the prediction 
model (Fig. 5).

The intervention with aronia juice led to several 
changes in human lipoprotein metabolism, and some of 
these changes were maintained even for several weeks 
after ending the intervention. Several proatherogenic 
subclasses of LDL and VLDL increased in Vt after aronia 
juice consumption and decreased again during the wash-
out phase which was also associated with several pre-
dicted cholates as microbial metabolites and increased 
fecal glycerol excretion. This suggests an effect of poly-
phenols on cholesterol metabolism via bile acid bio-
synthesis [87] as primary bile acids are modified by gut 
microbes, resulting in the formation of secondary bile 
acids which is accompanied by changes in the bioavail-
ability and bioactivity of bile acids [88–90]. Secondary 
bile acids intricately influence lipoprotein metabolism 
through diverse pathways. They participate in the enter-
ohepatic circuit, act as ligands for the nuclear farnesoid 
X receptor (FXR), and regulate cholesterol metabolism 
and gene expression related to cholesterol synthesis and 
transport [91]. Additionally, secondary bile acids serve 
as signaling molecules, activating FXR and Takeda G 
protein-coupled receptor 5 (TGR5) to jointly regulate 
glucose and lipid metabolism, energy expenditure, and 
inflammation. Experimental studies link the gut microbi-
ome and bile acids to cardiovascular disease risk factors, 
including atherosclerosis [92]. However, precise mecha-
nisms require further exploration. In addition, glycerol 
in stool might point to a higher cleavage of triglycerides 
and endogenous triglyceride turnover [93]. Of note, an 
increase in cholates has also been reported after high 
polyphenol consumption within the Mediterranean die-
tary patterns [94].

Changes in plasma lipoprotein levels after polyphe-
nol consumption have been observed in healthy sub-
jects before [95]. In contrast to our results, Rahmani 
et  al. [96] found a significant increase in HDL after 
aronia consumption and decrease in cholesterol and 
LDL in a meta-analysis of seven studies. Interestingly, 
they found a significant reduction in triglyceride lev-
els when aronia was administered in higher doses (300 
mg/day), whereas others used lower doses of 100 ml/
day [97]. We administered 200 ml of aronia juice a day, 
which is in line with other interventions [33–35]. Thus, 
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possibly hermetic effects may have contributed to these 
diverse outcomes, whereby the polyphenolic composi-
tion of the aronia products may differ by the growing 
and processing conditions of the plants [27, 28]. Impor-
tantly, sex differences in lipoprotein metabolism have 
been described previously. Petrovic et al. [97] reported 
elevated triglyceride levels in women, but not in men. 
The significant increase in VLDL-particles and a con-
secutive change to baseline level in the washout period 
could therefore be a gender-specific phenomenon. To 
our knowledge, there are currently no studies available 
reporting on VLDL-levels in the context of aronia or 
polyphenol consumption.

In mouse models, aronia powder has demonstrated 
a positive effect on lipid metabolism by attenuating de 
novo lipogenesis in hepatocytes of mice with nonalco-
holic fatty liver disease [98]. Despite potential induction 
of hepatic de novo lipogenesis by high fructose inges-
tion and microbial fermentation of fructose to acetate 
in the gut [99], our study suggests to exclude the influ-
ence of fructose on lipoprotein alteration in our cohort. 
The observed increase in LDL and VLDL were only 
observed in Vt, with no changes in Vc or P, despite com-
parable additional fructose consumption. An elevation 
of VLDL has also been reported as a result of the mobi-
lization of fatty acids in adipose tissue [100]. This might 
underpin polyphenols’ impact on adipose tissue physi-
ology and their lipid oxidation properties within the 
adipocyte [101, 102].

Strengths and limitations
Since we divided the study cohort into tolerability groups, 
the study population is small. A larger sample size would 
strengthen the revealed associations. Our comparative 
power analyses of microbial taxa and predicted metabolic 
fluxes suggest that a bigger cohort and more samples 
would have been necessary to determine significance, but 
our results were rather robust against the selected sub-
groupings within our dataset. Furthermore, the inves-
tigation was conducted in humans under their habitual 
lifestyle conditions. Even though we aimed to document 
all possible influencing factors, also other stressors the 
participants might have encountered during the study 
period may have influenced the outcome. We further 
need to acknowledge that possibly other unknown facts 
before conducting the study may have led to differences 
in the tolerability. However, the strength of this study is 
that we included females only. In light of sex differences 
in lipid metabolism, the homogenous group of females 
is an advantage in data interpretation. Including only 
women enhances gender-specific insights but may limit 
the generalizability of findings to the broader population.

Conclusions
The interindividual differences in the tolerability of aronia 
juice were associated with variations in gut microbiota 
derived metabolites and the metabolic profile in plasma 
and stool. Intolerance symptoms were reflected in the 
microbiota-derived metabolites indicating the adaption 
of gut microbes to the aronia polyphenols. In contrast to 
previous findings, an increase in lipoprotein profile due 
to modification of the gut microbiome through aronia 
juice consumption was detected. These findings suggest 
that it may be important to explore personalized rec-
ommendations for the level of polyphenol consumption 
to benefit from their potential health benefits. Further 
research is needed to identify possible microbial contrib-
utors to polyphenol pathways in the human gut. Dose-
dependent effects of aronia polyphenols should be tested 
in accordance with individual factors such as age, sex, 
and defined biomarkers. Even though we could repro-
duce some of the findings on aronia polyphenols on the 
gut microbiome diversity and specific genera in a human 
female cohort, we could not confirm favorable effects on 
lipoprotein profiles in this healthy cohort. Further stud-
ies should investigate larger cohorts including males 
and consider testing potential hermetic doses to further 
define the interindividual tolerability differences.
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