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A compendium of ruminant gastrointestinal 
phage genomes revealed a higher proportion 
of lytic phages than in any other environments
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Abstract 

Background  Ruminants are important livestock animals that have a unique digestive system comprising multiple 
stomach compartments. Despite significant progress in the study of microbiome in the gastrointestinal tract (GIT) 
sites of ruminants, we still lack an understanding of the viral community of ruminants. Here, we surveyed its viral ecol‑
ogy using 2333 samples from 10 sites along the GIT of 8 ruminant species.

Results  We present the Unified Ruminant Phage Catalogue (URPC), a comprehensive survey of phages in the GITs 
of ruminants including 64,922 non-redundant phage genomes. We characterized the distributions of the phage 
genomes in different ruminants and GIT sites and found that most phages were organism-specific. We revealed 
that ~ 60% of the ruminant phages were lytic, which was the highest as compared with those in all other environ‑
ments and certainly will facilitate their applications in microbial interventions. To further facilitate the future applica‑
tions of the phages, we also constructed a comprehensive virus-bacteria/archaea interaction network and identified 
dozens of phages that may have lytic effects on methanogenic archaea.

Conclusions  The URPC dataset represents a useful resource for future microbial interventions to improve ruminant 
production and ecological environmental qualities. Phages have great potential for controlling pathogenic bacterial/
archaeal species and reducing methane emissions. Our findings provide insights into the virome ecology research 
of the ruminant GIT and offer a starting point for future research on phage therapy in ruminants.
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Background
Ruminants have been an important part of human soci-
ety for centuries [1, 2], providing us with a variety of eco-
nomic products including meat, milk, and fur [3]. The 
unique digestive system of the multi-chambered stomach 
including the rumen, reticulum, omasum, and aboma-
sum allows them to return the semi-digested food fibers 
to the mouth for further digestion [4]. This makes them 
well-suited to grazing on pastures and other types of land 
that are not suitable for other forms of agriculture [5].

Recent research has shown that the gastrointestinal 
tract (GIT) of ruminants contains a great diversity of 
prokaryotic and eukaryotic microorganisms [6–9]. Due to 
the various compositions of microorganisms among dif-
ferent locations, the microbiomes distributed in different 
sites play different roles but perform equally important 
physiological functions in ruminants’ survival [10, 11]. 
The GIT microbes enable the ruminants to digest ligno-
cellulose and other plant feedstuffs [12, 13] and protect 
the animal host from harmful bacteria and other patho-
gens [14]. However, there can also be negative effects of 
the GIT microbiome on ruminant health and productiv-
ity. For example: a disruption in the microbial balance in 
the rumen can lead to the overproduction of lactic acid, 
which can lower the pH and cause ruminal acidosis, a 
common metabolic disorder in ruminants [15]. Preci-
sion regulation of the gastrointestinal tract microbiome 
in ruminants is crucial for improving animal health and 
productivity, and reducing the environmental impact of 
animal agriculture. Methane-producing archaea exist in 
the GIT of ruminants and are one of the main sources of 
greenhouse gases, which have been targeted for eradica-
tion or reduction [16, 17]. However, achieving precision 
regulation of methane-producing archaea or pathogenic 
bacteria in ruminants is not a simple task, as it requires a 
deep understanding of the complex interplay between the 
microbiome, diet, and host physiology. Currently, there is 
a lack of system tools available to enable precise manipu-
lation of the microbiome in ruminants [18].

Bacteriophages (phages) are a critical component of 
the ruminant GIT microbiome and play crucial roles in 
shaping microbial composition [19]. In addition, phages 
hold great promise for the precision manipulation of the 
bacteriome (i.e., the bacterial and archaeal microbes) 
because of their narrow microbial-host range (i.e., 
often at species and even strain levels [20, 21]), provid-
ing alternative ways to suppress pathogenic bacterial/
archaeal species [22] and control methane emissions 
[16, 23]. The lifestyles of viruses can be broadly classified 
into two categories: lytic and lysogenic. The separation 
of lytic phages is important in practical applications, as 
lytic phages are typically more convenient to work with 
and have more immediate applications, such as using 

phages as antimicrobials against bacterial infections in 
animals. For example, phages have been used to control 
bacterial infections in dairy cattle with mastitis, which is 
a common and costly disease in the dairy industry [24]. 
Despite tremendous success in identifying viruses from 
various environmental sources such as the ruminants 
rumen [25–31], human gut [21, 32–38], aquatic, terres-
trial, plants, as well as other mammals (i.e., IMG/VR v3 
[39]), the virome structure remains the “dark matter” in 
different ruminant GIT sites, especially those other than 
the rumen, compared with other environments. A com-
prehensive resource reference phage genome is required 
to further characterize the viral community of the rumi-
nant GIT and enable genome-resolution research across 
ruminants.

Here, we present the Unified Ruminant Phage Cata-
logue (URPC), a comprehensive survey of phages in the 
gastrointestinal tracts of ruminants. Currently, the URPC 
contains 64,922 non-redundant phage genomes identi-
fied using 2333 bulk metagenomics sequencing samples 
from 18 published works (Table S1), covering ten gastro-
intestinal sites from eight different ruminant species. We 
found that 60.53% (n = 39,300) of phage genomes were 
novel compared with those in the public viral datasets, 
supporting the novelty of our dataset. We characterized 
the distributions of the phage genomes in different rumi-
nants and GIT sections, as well as the lifestyles of the 
phages. Strikingly, we revealed that ~ 60% of the ruminant 
phages were lytic, which was the highest as compared 
with those in all other environments and certainly will 
facilitate their applications in microbial interventions. To 
further facilitate the future applications of the phage, we 
also constructed a comprehensive virus-bacteria/archaea 
interaction network and identified dozens of phages 
that may have lytic effects on methanogenic bacteria. 
Together, our URPC dataset represents a useful resource 
for future microbial interventions to improve ruminant 
production and ecological environmental qualities.

Methods
Data collection, quality control, and removal of host‑ 
and food‑associated genomes
To perform a comprehensive search for phages of the 
ruminant gastrointestinal tract (GIT), publicly avail-
able sequencing reads of 2333 ruminant metagenomic 
samples were downloaded from the National Center 
for Biotechnology Information/NLM/NIH (NCBI) 
(Figure  S1; Table  S1), covering eight ruminants (buf-
falo, camel, cattle, cow, deer, goat, sheep, yak) and ten 
GIT sites (rumen, reticulum, omasum, abomasum, 
duodenum, jejunum, ileum, cecum, colon and rectum/
feces) (Table S2). Raw reads were trimmed by Trimmo-
matic (v 0.39) [40] with the options ‘ILLUMINACLIP: 
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TruSeq3-PE.fa:2:30:10 SLIDINGWINDOW:4:15 MINLEN: 
50 LEADING:3 TRAILING:3′. To decrease poten-
tial DNA contamination from the animal hosts, 
reads that could be aligned to their closest genomes 
from NCBI (Capra hircus, GCF_001704415.1; Buba 
lus bubalis, GCA_004794615.1; Camelus bactrianus, 
GCF_000767855.1; Camelus dromedarius, GCF_ 
000803125.2; Bos taurus,GCF_002263795.1; Capra hir-
cus, GCF_001704415.1; Alces alces, GCA_007570765.1; 
Cervus elaphus, GCF_910594005.1; Rangifer taran 
dus caribou, GCA_019903745.1; Capreolus capreolus, 
GCA_000751575.1; Ovis aries, GCF_016772045.1; 
Hydropotes inermis, GCA_020226075.1; Bos grunniens, 
GCA_005887515.2), and some food-associated genomes 
such as Glycine max, Zea Mays, and Medicago trun-
catula were filtered out using Bowtie2 (v 2.3.5.1) [41] 
with options ‘–very-sensitive’. The remaining paired 
reads were then used for further analyses.

Metagenomic assembly and viral contigs prediction
Unless otherwise stated, default parameters were used. 
Each sample was assembled using MEGAHIT (v 1.2.8) 
[42] with options ‘–min-contig-len 1000’. Assembled 
contigs of ≥ 1.5  kb in size were used to identify viral 
sequences using VirSorter2 (v 2.1) [43] with options ‘–
include-groups “dsDNAphage, ssDNA” –min-score 0.7’ 
and VirFinder (v 1.1) [44] with default parameters. Con-
tigs were identified as phages by both VirSorter2 and 
VirFinder (score ≥ 0.6 and p < 0.05).

Quality evaluation of phage genomes and dereplication 
of URPC datasets
The completeness of the viral contigs was estimated using 
CheckV (v 0.8.1) [45]. A total of 74,519 identified viral 
contigs with > 50% completeness were then selected and 
renamed according to their animal hosts. The sequences 
of these contigs were merged into a single file and derep-
licated using CD-HIT [46] (v4.8.1, parameters: -c 0.95 -n 
8) using a global identity threshold of 95%. The resulting 
non-redundant representative viral genomes consisted of 
a total of 64,922 viral populations (VPs) and were referred 
to as the Unified Ruminant Phage Catalogue (URPC).

Comparing the URPC genomes with public viral datasets
To estimate the proportion of novel phage genomes in 
the URPC genomes, the BLASTn tool (v 2.5.0) [47] was 
used to search all its sequences against a list of public 
viral databases including four public rumen virome data-
sets from the rumen virome database (RVD) [31], Hitch 
et al. [25] Solden et al. [26] and Friedersdorff et al. [27], 
NCBI viral Reference genomes, Release 201 (July 06, 

2020), IMG/VR v3 [39], and four public human virome 
datasets such as GVD [33], GPD [32], MGV [21], and 
CHGV [34] (Table S3).

Average nucleotide identity (ANI) was calculated by 
merging the BLASTn hit regions with identity ≥ 90% and 
hit length ≥ 500 bp, then calculating the coverage of these 
regions. Based on the overall ANI, a viral sequence was 
considered to be novel if it has < 95% ANI as compared 
with other viral sequences.

Clustering viral contigs into viral clusters (VCs)
The clustering of viral contigs into viral clusters (VCs) was 
performed using a strategy adopted from the GPD [32]. 
Briefly, the BLASTn algorithm with default parameters 
was used to search the nucleotide sequences of the URPC 
genomes and the environmental viral sequences of vari-
ous habitats (e.g., Terrestrial, Freshwater, and Plants) in the 
IMG/VR v3 database against themselves for homologous 
sequences. An E value threshold of 1E − 10 was first used 
to filter the BLASTn results; the BLASTn query-hit pairs 
were further filtered to retain those with a coverage > 70% 
on the larger genomes and a coverage > 90% on the smaller 
genomes. Here, the coverage was calculated by merging the 
aligned fraction length of BLASTn high-scoring pair (HSP) 
sequences that shared at least 90% nucleotide similarity. 
Finally, a Markov clustering algorithm (MCL v14-137) [48] 
was used with an inflation value of 6.0, which took the fil-
tered BLASTn results as input, carried out graph-based 
clustering, and clustered the viral contigs into 55,635 VCs.

Prediction of viral lifestyles
The lifestyle classifications of all the URPC genomes 
were analyzed using DeePhage v1.0 [49] with the default 
parameters. DeePhage uses a scoring system to classify 
phage genomes into four categories, including temper-
ate (with scores ≤ 0.3), uncertain temperate (0.3 ~ 0.5), 
uncertain virulent (0.5 ~ 0.7), and virulent (> 0.7). Higher 
scores indicate higher virulence. According to a bench-
mark study [50], DeePhage can classify short contigs 
from metagenomic data and has the best-reported per-
formance on lifestyle prediction, while BACPHLIP [51] is 
only designed for complete phage genomes. And DeeP-
hage has better generalization ability on novel phages by 
using a deep neural network to learn features from both 
DNA and protein sequences of phages, while BACPH-
LIP relies on a set of conserved protein domains that are 
associated with lysogeny. Therefore, we chose DeePhage 
to predict the phage lifestyles of URPC.

Taxonomic annotation of the URPC phages
To taxonomically classify the phage contigs, VirusTaxo 
(https://​github.​com/​omics-​lab/​Virus​Taxo, downloaded on 

https://github.com/omics-lab/VirusTaxo
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19th April 2022) [52] was used to compare the nucleo-
tide sequences against those in the prebuilt database of 
VirusTaxo and assign them to a known viral genus at 
an entropy index threshold of < 0.5. A Demovir script 
(https://​github.​com/​fearg​alr/​Demov​ir; downloaded on 
6th January 2022) was then used to predict family and 
order ranks for the remaining genomes by searching for 
viral marker genes at the amino acid level.

Co‑diversification analysis of phages with their animal 
hosts
For all VCs that contained phages from three and more 
animal hosts, a phylogenetic analysis was performed. 
In total, 80 VCs were selected. First, Prokka v1.13 [53] 
(–kingdom Phages) was used to annotate the phage 
genomes for protein-coding genes. Pan-genome analysis 
was carried out for each of the VCs with Roary [54] to 
identify core genes and create a multiFASTA alignment 
of core genes using MAFFT [55] by using the multi-
FASTA alignment as input. A phylogenetic tree was then 
built using FastTree [56] v2.1.10 with default parameters. 
All the phylogenetic trees were then visualized and anno-
tated using iTol [57]. For each VC, the branch length 
between any two phage genomes was calculated. Two 
single-tailed Wilcoxon rank sum tests were performed 
on the branch lengths from the same animal hosts and 
those from different animal hosts. The p value of the 
hypothesis that phages from different animal hosts had 
higher branch lengths was used to determine whether the 
phages significantly co-evolved or not co-evolved with 
their animal hosts.

Microbial host analysis of the URPC phages
To find putative microbial hosts for the URPC phages, 
ruminant metagenome-assembled genomes (MAGs) 
from four publications were downloaded, including the 
buffalo GIT [6], ruminants GIT [7], cattle rumen [58], 
and goat GIT (NCBI SRA database PRJNA723432). In 
addition, MAGs from the Global Microbial Gene Catalog 
(GMGC) [59] that covered 14 different habitats were also 
downloaded. To establish phage-microbial host relation-
ships between these MAGs and the URPC phages, two 
bioinformatic methods were used which included the 
CRISPR-spacer matches and nucleotide sequence simi-
larity searches. The CRISPR spacers of the MAGs were 
identified using CRT (v 1.2) [60] and MinCED (v 0.4.2, 
https://​github.​com/​ctSke​nnert​on/​minced). The union of 
the CRISPR spacers was then aligned to the viral popula-
tions using BLASTn (v 2.5.0) [47] with options of ‘-word_
size 10 -dust no -max_target_seqs 10,000’. Matches with 
mismatch ≤ 1 and alignment length > 95% spacer length 
were retained. In addition, BLASTn was used to compare 

the viral populations with the MAGs. A putative viral-
host relationship could be established if their nucleotide 
sequences shared > 90% identity over > 500 bps.

Phylogenetic analysis of animal hosts
The phylogenetic analysis of the eight ruminant species 
was carried out using a method based on a previous study 
[61]. Briefly, the genomic sequences of the eight ruminant 
species were downloaded from the NCBI Genome data-
base. Then, the universally conserved single-copy marker 
genes from each genome were identified using fetchMG 
[62]. The protein sequences of the markers were then 
aligned using MUSCLE [63] (-maxiters 100). To eliminate 
divergent regions from the resulting multiFASTA align-
ment, Gblocks [64] were used (parameters: -t = p -b3 = 8 
-b4 = 2 -b5 = h). The maximum likelihood trees were built 
with RAxML [65] with default parameters.

Statistical analysis
All statistical analyses were conducted using R (v4.0.4) 
with a two-sided Wilcoxon rank sum test unless other-
wise stated.

Results
A unified catalog of 64,922 phage genomes 
from the ruminant gastrointestinal tract
To provide a comprehensive overview of the phages asso-
ciated with the gastrointestinal tract (GIT) of ruminants, 
we collected a total of 2333 metagenomic samples from 
18 previously published research [6, 7, 13, 23, 26, 58, 
66–78] (Table S1) that covered ten GIT sites from eight 
ruminant species, including (Fig.  1A and Tables  S1 and 
S2). including buffalo (n = 745), cattle (n = 930), goat 
(n = 563), sheep (n = 133), deer (n = 115), yak (n = 50) and 
cow (n = 46). After quality filtering and removing host 
DNA sequences (“Methods” section), a total of 14.17 ter-
abytes (Tb) of clean data with more than 33 million reads 
and 9 billion bases per sample were retained (Table S1). 
We assembled them into a total of 302,721,852 contigs 
using MEGAHIT [42], averaging 132,251 contigs per 
sample with an N50 length of 3836 (Table S4).

To identify putative phage genomes, we screened 
the assembled contigs using a bioinformatics pipeline 
adopted from Luis et  al. [32] (“Methods” section), fol-
lowed by quality assessment for viral genome com-
pleteness using CheckV [45] and dereliction using 
CD-HIT [46]. We obtained a total of 74,519 viral contigs 
(mostly bacteriophages) with > 50% completeness and 
length > 1.5  kb, corresponding to 64,922 non-redundant 
viral populations (VPs), i.e., species-level clusters at an 
Average Nucleotide Identity (ANI) of 95%. We defined 
the latter (i.e., the 64,922 non-redundant VPs) as the Uni-
fied Ruminant Phage Catalogue (URPC). Among these, 

https://github.com/feargalr/Demovir
https://github.com/ctSkennerton/minced
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6035 (9.29%), 3085 (4.75%), and 55,802 (85.95%) were 
classified as complete, high- and medium-quality, respec-
tively, according to the CheckV tool (Fig. 1B; Table S5).

Previous studies have commonly employed a 5-kb 
threshold for identifying metagenome-based viral 
genomes [31, 39]. In our study, we opted for a 1.5-kb 
threshold. To substantiate this choice, we categorized all 
URPC phages into four length groups: < 5  kb (n = 777), 
5 ~ 30 kb (n = 14,462), 30 ~ 60 kb (n = 35,199), and > 60 kb 
(n = 14,484). We first compared the qualities of phages in 
each group and were intrigued to discover that the < 5 kb 

group exhibited the highest proportion of complete 
(29.81%) phage genomes, as determined by CheckV, 
in comparison to the other three groups (Figure  S2A). 
Moreover, taxonomic annotation, as per our methods, 
was successful for 91.48% of phages in the < 5 kb group, 
surpassing the rates observed in all other groups (Fig-
ure S2B). Therefore, our findings indicate that the utiliza-
tion of short contigs (i.e., 1.5 ~ 5 k) not only aids in more 
accurately estimating the number of phages but also sur-
prisingly enhances the annotation rates.

Fig. 1  Reconstruction of the phage genomes from the ruminant gastrointestinal tract (GIT). A Generation of the Unified Ruminant Phage 
Catalogue (URPC) using 2333 GIT microbiome samples from ten GIT sites and eight ruminant species. The upper-left panel shows a graphical 
representation of the ruminant gastrointestinal tract (GIT), with arrows indicating the direction of food flow through the stomach. The GIT 
sites in this study are divided into ten sections. The bottom-left panel shows the number of samples taken from the GIT sites or sections 
of the ruminants. The top-right panel shows the rarefaction analysis of the unique number of VPs (Y-axis) as a function of collected samples 
(X-axis), while the bottom-right panel shows the statistics on the identified phages from each of the eight ruminant species, including the number, 
genome size and taxonomy. B Pie chart showing the distribution of estimated quality of the VPs in the URPC into quality tiers estimated by CheckV 
(complete, n = 6,035; high-quality, n = 3085; medium-quality, n = 55,802). Column chart showing the quality distribution of VPs in each animal host. C 
Pie chart showing the proportion of annotated VPs in the URPC at the family level by using VirusTaxo and Demovir (see “Methods)
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We used the rarefaction analysis to show that the sat-
uration curve is far from plateaued, and more samples 
are required for the discovery of ruminant GIT phages 
(Fig.  1A). Similar trends were observed in human gut 
virome catalogs such as the metagenomic gut virus 
(MGV) [21] and a phage genome catalog of the Japanese 
[20]. Among all the animal hosts, we obtained the high-
est number of VPs (n = 33,156) in the buffalo, followed 
by the cattle (n = 10,589), goat (n = 8756), and sheep 
(n = 5876). The number of viruses identified varied in dif-
ferent GIT sites (Figure  S3), which correlated with the 
number of samples we collected. The genome size and 
viral taxa vary among different animal hosts, indicat-
ing species-specific viral composition. Given the recent 
interest in human gut phageome, we then compared the 
genome length of URPC and other published metagen-
ome-assembled human gut viral genomes, and found that 
URPC genomes were significantly longer than those in 
the human gut (p < 2.22e − 16, Wilcoxon Rank Sum test; 
Figure S4).

We annotated the VPs using VirusTaxo [52] and Demovir 
(https://​github.​com/​fearg​alr/​Demov​ir) (Fig. S5; Table S5) 
and assigned 74.69% of the VPs at the family level 
(Fig.  1C). Among the annotated VPs, 16,507 (25.42% of 
the total) belong to the Siphoviridae, followed by Pox-
viridae (n = 6327), Mimiviridae (n = 5409), Baculoviridae 
(n = 3962), Myoviridae (n = 3846), Podoviridae (n = 2360) 
and Microviridae (n = 2291). The overall taxonomic dis-
tribution, dominated by viral families such as Sipho-
viridae, Microviridae, Myoviridae, and Podoviridae, was 
consistent with other metagenome-derived viral cata-
logs in ruminant rumen (RVD) [31] and human gut [21, 
33]. Particularly, we reannotated the viral genomes from 
RVD using our pipeline for taxonomic classification 
(see “Methods” section), and we found that the families 
Siphoviridae, Podoviridae, Myoviridae, Baculoviridae, 
and Myoviridae accounted for the majority of the viral 
genomes in both URPC and RVD datasets. However, we 
also identified more phages from the family Podoviridae 
than RVD (3.6% in URPC, and 0.5% in RVD) (Figure S6; 
Table S6) indicating that URPC expands the diversity of 
the ruminant gastrointestinal phage genomes.

We then examined the novelty of the URPC phage 
genomes by comparing them with several public viral 
databases including the NCBI viral Reference genomes 
(Release 201, Jul 06, 2020), IMG/VR v3 [39], four public 
rumen virome datasets [25–27, 31] and four human gut 
virome genome catalogs [21, 32–34] (Table  S3). Apply-
ing an Average Nucleotide Identity (ANI) threshold 
of 95%, we observed that URPC exhibited the highest 
number of shared viral populations (VPs) with the RVD 
(Figure  S7A). Notably, 28.11% of URPC genomes were 
found in the RVD, while 33.84% of RVD genomes were 

identified in URPC (Figure S7A). The substantial overlap 
between the two datasets can be attributed to the similar 
number of rumen samples used in URPC (826) compared 
to the RVD (975), despite variations in tools and criteria 
for viral contig identification in the latter [31] (refer to 
Table S7 for a detailed comparison). For a fair compari-
son, only 41,738 VPs from the RVD dataset meeting the 
same criteria as our dataset (i.e., completeness > 50%) 
were considered. At these criteria, this study identified a 
significantly higher number of VPs (64,145) compared to 
the RVD (Table S7).

Furthermore, with the inclusion of three additional 
public rumen phage datasets, a total of 46,668 (71.89%) 
URPC phages were determined to be novel at a 95% ANI 
threshold (Figure  S7A), signifying URPC’s substantial 
contribution to expanding the ruminant gastrointesti-
nal tract phage dataset despite prior outstanding works. 
When considering all the aforementioned public viral 
datasets, we found that 60.53% (n = 39,300) of VPs were 
considered novel at the 95% ANI threshold, indicating 
that the majority of URPC phages are novel (Figure S7B).

Organism‑specific distribution of URPC genomes in animal 
hosts
To investigate the correlation between the composition 
of VPs and their animal hosts, we first calculated the 
distribution of the VPs in each animal host. We discov-
ered that 99.91% (n = 64,863) of VPs had only one ani-
mal host (referred to as organism-specific from now on), 
while only a few (n = 59) appeared in two or three animal 
hosts (Fig.  2A). To evaluate the distribution of phages 
with their animal hosts under higher level, we clustered 
the VPs into viral clusters (VCs) using methods adopted 
from the GPD [32] (“Methods” section) and generated a 
total of 55,635 VCs. Among these, 99.06% of (n = 55,122) 
the VCs are organism-specific. Similarly, most (91.43%, 
n = 50,874) of the VCs were distributed only in one GIT 
sit (Fig. 2B). Among the 4761 VCs that were distributed 
in two or more GIT sites, 92.69% (n = 4413) came from 
the same animal host, indicating an organism-specific 
distribution of the phages in the animal hosts. Among 
the 80 “broad-range” VCs (presented in three or more 
animal hosts), most of their animal hosts were goats 
(n = 60), buffaloes (n = 55), cattle (n = 52), sheep (n = 51), 
and deer (n = 39), while there were fewer in yaks (n = 4), 
camels (n = 2), and cows (n = 1) (Fig. 2C), which might be 
due to fewer available GIT samples of the latter three ani-
mals. To find out whether these “broad-range” VCs were 
food-related, we also included the VPs from the IMG/VR 
v3 database and re-did the viral clustering. We found that 
two of the “broad-range” VCs could be clustered with 
phages found in the terrestrial, freshwater, and plants 
(Fig. 2C), which confirmed previous research that phages 

https://github.com/feargalr/Demovir
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could be readily introduced into the rumen from water 
sources, as well as housing and farm infrastructure [19]. 
However, the origins of the other 78 broad-range VCs 
remained to be identified.

We next characterized the largest VCs (i.e., the VCs 
were ranked according to the number of containing VPs). 
27 out of the top 50 had two or more animal hosts, sug-
gesting that the diverse VCs were also the well-adapted 
ones; this trend was more apparent among the top 10 
VCs (i.e., of these, eight were found in two and more ani-
mal hosts). In addition, we observed that most of the top 
10 VCs consisted of lytic bacteriophages (Fig. 2E; the life-
styles were determined using a DeePhage tool; Methods). 
Most of the phages in the top 10 VCs were 30 ~ 60 kb in 
size, which was well within the size range of typical phage 
genomes; in contrast, crAssphages and Gubaphages were 
the most diverse in the human gut virome, which was 

significantly longer (~ 100  kb in size) [32, 79]. Interest-
ingly, the majority of broad-range phages in the top 10 
VCs were identified in the rumen (63%; Table S5), much 
higher than those identified in the rectum (including fecal 
samples; 17%), despite that, we had comparable sam-
ples from the two GIT sites (826 vs. 753, Fig. 1A). These 
results strongly suggested that at least some of the rumen 
phages were likely originated from the environment.

In summary, we found that most of the ruminant 
phages are organism- and GIT site-specific at both the 
VP and VC levels, with a few broad-range ones, likely 
originating from the environment.

Co‑diversification of phages with their animal hosts
We next investigated whether the phage genomes in 
the broad-range VCs could show co-diversification pat-
terns with their animal hosts. We focused on the 80 

Fig. 2  Distributions of the URPC phages in animal hosts and GIT sites. A The distribution of the URPC phages at the viral population (VP) level 
across the animal hosts. The UpSet pot shows the numbers of unique and shared VPs for the eight ruminant animals, while the bar chart shows 
the number of animal hosts for the VPs. B The distributions of the URPC phages at the viral cluster (VC) level across the animal hosts (left) and GIT 
sites (right). C An UpSet plot shows the overlaps between the broad-range phages (i.e., those that were found in two or more ruminant species) 
and the phage genomes collected in the IMG/VR v3 database (“Methods” section). D Top 50 most diverse VCs, ordered by their cluster size. The color 
and size of the VCs correspond to the number of animal hosts in which they were found. E Characterizations of the top 10 VCs, including the size, 
distributions in the GIT sites and animal hosts, genome size, and lifestyle. Lifestyles of phage in each VCs were predicted by DeePhage, which 
classified phages into four groups, including virulent (red), uncertain virulent (pink), uncertain temperate (light blue), and temperate (dark blue). 
Dark green and light green respectively indicate whether VCs are found in the public datasets



Page 8 of 15Wu et al. Microbiome           (2024) 12:69 

broad-range VCs that were presented in three or more 
animal hosts; for each of the VCs, we used a phyloge-
netic tree-based method to test whether phages from 
the same animal host were significantly closer than 
those of different animal hosts (“Methods” section). We 
observed that in 83.75% (n = 67) of the VCs, the phages 
tend to significantly co-evolute with their animal hosts 
(i.e., VPs from the same animal host in a VC were clus-
tered together on the evolutionary tree and had sig-
nificantly closer evolutionary distance), while only 
2.5% were classified as significantly not co-evolution 
(Fig. 3A). We included in Fig. 3B–F afew typical exam-
ples to showcase our analysis. As shown in Fig. 3B, we 
identified two deer phages in VC_1167, which showed 
closer phylogenetic relationships to phages of other 
ruminants than to each other, indicating significant 
non-co-evolution. Conversely, Fig. 3C–F showed a few 
cases of significant co-evolution in VC_1341, VC_1220, 
VC_35, and VC_95, in which multiple phages from 
the same animal hosts often cluster together in their 

respective phylogenetic trees. Further efforts would be 
required to illustrate whether the co-evolution was due 
to the adaption of the microbial hosts of the phages to 
the ruminant species.

The URPC contains the highest proportion of lytic phages 
as compared with other environments
The observation that the lytic phages account for seven 
of the top 10 VCs encouraged us to further characterize 
the lifestyle of the ruminant phages. Because the metage-
nome samples we collected were not separated viral par-
ticles, we expected that many phages were derived from 
bacterial cells and were more likely to be integrated into 
the bacterial chromosomes as temperate phages. How-
ever, we found that the majority (59.60%, n = 38,696) of 
the phages were classified as lytic phages (virulent or 
uncertain virulent) using a DeePhage tool [49], which 
outperformed several existing tools in terms of accuracy. 
We found similar proportions of lytic phages in the eight 
ruminants (55.15 to 88.59%, with an interquartile range 

Fig. 3  Co-evolution analysis of the broad-range VCs with the animal hosts. A Overall statistics of the co-evolution analysis. Here the density 
and bar plots show the likelihood (p values) distributions of the phages in the 80 broad-range VCs were co-evolved (red line and bars) 
or not co-evolved (orange line and bars). One-tailed Wilcoxon rank sum tests were performed on the branch lengths from the same animal hosts 
and different animal hosts (“Methods” section). The pie chart shows the proportion of coevolved and non-coevolved viral clusters (VCs) with three 
or more animal hosts. B–F Example phylogenetic trees of VCs with their animal hosts in which the phages showed significant not co-evolution (B) 
or co-evolution (C–F)
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(IQR) of 55.77 to 61.86%; Fig. 4A) as well as across GIT 
sites (53.76% to 61.51%, with an IQR of 57.35 to 59.08%; 
Figure S8). Similarly, we also identified a comparable per-
centage of lytic phages in two rumen viral genome data-
sets (48.55% in RVD, and 52.43% in moose rumen [26]) 
that contained at least 200 phage genomes (Table  S3), 
further supporting our findings.

We then compared with public datasets and found sur-
prisingly that phages from all other environments had 
lower proportions of lytic phages. Since the length and 
completeness of the virus affect the number of genes 
detected in the viral genome, we performed the same 
quality control consistent with our URPC (filtering 
length > 1.5  k and completeness > 50% estimated using 
CheckV [45]) on the viral genomes from public data-
bases (Table  S3). For example, 44.40% of phages in the 
IMG/VR v3, the most comprehensive phage database so 
far, are lytic, which is significantly lower than the URPC. 
We found the same results when stratifying the IMG/VR 
phages according to the habits (Fig. 4A). In addition, we 
found an overall of 32% lytic phages in several human gut 

virome datasets (24.02% to 40.81%, interquartile range 
(IQR): 28.00 to 38.03%; Table S3), consistent with previ-
ous observations that the human gut phages were mostly 
temperate [20, 32].

Interestingly, out of all the human gut virome/metage-
nome datasets we have analyzed, we found only one that 
contained a similar proportion of lytic phages to the 
URPC: the Tanzania hunter gut metagenome. As shown 
in Fig.  4B, 57.5% of the phages identified in the Tanza-
nia hunter dataset were lytic, similar to that of the URPC 
(p = 0.61, chi-square test), while both were significantly 
different from the other human gut virome datasets 
(p < 0.01, chi-square test). We speculate that the differ-
ent lifestyles between the Tanzania hunter and the other 
human samples might underlie the different phage life-
styles, such as the consumption of raw or less processed 
foods and high exposure to microbe-enriched environ-
ments of the hunters [81]. However, due to the limited 
numbers of samples (i.e., 40 metagenomic samples from 
the NCBI SRA database; PRJNA392180) and identified 
viral contigs (i.e., 40 non-redundant viral contigs with 

Fig. 4  Lifestyle analysis of the phages identified in the ruminant GIT and other environments. A Phage lifestyle analysis of the ruminant GIT, 
rumen, human gut, and other habitats in the IMG/VR v3 database. Due to the previous utilization of Virsorter1 [80] for viral identification, we 
reannotated the viral genomes from the moose rumen [26] using our viral identification pipeline (i.e., VirSorter2, VirFinder and CheckV; see 
“Methods” section), which has been marked with *. A DeePhage tool was used to analyze the phage lifestyles, which classified phages into four 
groups, including virulent (red), uncertain virulent (pink), uncertain temperate (light blue), and temperate (dark blue). The proportions next to the 
bar plots indicate the overall proportion of lytic phages (i.e., the virulent and uncertain virulent combined) in each dataset, while the numbers 
in the parentheses indicate the overall phage numbers in the corresponding datasets that passed our filtering criteria (i.e., CheckV completeness 
score > 50% and length > 1.5 k). B Comparisons in the phage lifestyles among the ruminants, Tanzania hunters, and the combination of public 
human gut virome datasets including the GPD, GVD, MGV, and CHGV. P values were calculated using the chi-square test
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completeness above 50%), our hypothesis should be 
tested using larger datasets.

Bacterial and archaeal host prediction of the URPC 
phages identifies dozens of lytic phages targeting 
methane‑producers
Predicting viral hosts is crucial for understanding their 
roles and impacts [82], and phages can serve as ideal 
tools to regulate ruminant GIT ecosystems by limit-
ing the number of their microbial hosts through lytic 
infections [83]. We thus predicted hosts for all the VPs 
using metagenome-assembled genomes (MAGs) from 
public datasets [6, 7, 58, 59] using two different meth-
ods, namely the CRISPR-spacer- and sequence simi-
larity-based methods (“Methods” section). We were 
able to assign a total of 9271 phages (14.28% out of the 
total) to their putative bacterial/archaeal hosts, includ-
ing 4690 (50.59%) to a public ruminant GIT genome 
collection and 5562 (59.99%) to the MAGs in the 
Global Microbial Gene Catalog (GMGC [59]). Among 
these, 754 phages could be assigned consistently to the 
same hosts by both methods (e.g., the highly confident 
prediction results; Fig.  5A, Table  S8). We observed 
little overlaps between the predicted virus-host con-
nection pairs produced by the two methods, consist-
ent with previous results [84, 85]. In general, a total 
of 7227 (77.95%) phages were classified as specialist 
(Fig. 5B), meaning that they infect only one genus (i.e., 
specialist phages), while the others were predicted 
to infect two or more genera (i.e., generalist phages), 
which confirmed previous research that phages have a 
limited host range [20, 86, 87].

Among all the predicted virus-microbial host rela-
tionships, Firmicutes (the combination of Firmicutes_A, 
Firmicutes, and Firmicutes_C) was the most common 
phylum targeted by the URPC phages (n = 5,214, i.e., the 
number of interacting phages), followed by Bacteroi-
detes (n = 3554) (Fig. 5C), which were the two groups of 
beneficial bacteria that were dominant in the ruminant 
GIT [88]. Many of the functionally important genera 
were targeted by the phages. At the genus level, the most 
predicted hosts were Prevotella (n = 1035; one of the 
most abundant and versatile genera that contribute to 

hemicellulose degradation, lignocellulose pretreatment, 
and feruloyl esterase activity [89]), followed by cellulose 
digestive Bacteroides (n = 625) which secrete cellulases 
and hemicellulases to degrade cellulose and hemicel-
lulose into glucose and other sugars for ruminants [12, 
90], Lachnospira (n = 524) and Roseburia (n = 381) major 
short-chain fatty acids (SCFAs) producers in the rumen 
providing energy and anti-inflammatory effects [12, 91, 
92]. Our results suggested important regulatory roles of 
phages in the ruminant GIT microbial structures and 
functions.

Phage could be an ideal tool to inhibit the growth of 
methane-producing archaea in the GIT of ruminants 
[93]. However, no lytic phages targeting methane pro-
ducers have been identified [16]. Here, we retrieved 
109 phages that infected methanogenic archaea from 
the phage-microbial host analysis (Fig.  5D). Of these, 
74 were lytic (virulent or uncertain-virulent; “Method” 
section) and could target the six genera of methanogens 
(i.e., ISO4, Methanobrevibacter, Methanobrevibacter_A, 
Methanobrevibacter_B, Methanocorpusculum, Metha-
nosphaera) annotated by GTDB-Tk [94]. These results 
should facilitate targeted isolation of phages and experi-
mental validation of their lysis efficiency against metha-
nogenic archaea.

Discussion
Many ruminant animals are important livestock and 
have more complicated gastrointestinal tracts (GITs) 
than other mammals. It has been well established that 
the GIT microbiome plays important roles in not only 
feedstuff digestion and absorption [12, 14], but also 
the development, health, and diseases as well as the 
quality of animal products such as meat, milk, and fur 
[3]. So far, there has been significant progress in the 
study of ruminant microbiomes, particularly bacteria/
archaea [6–8]. However, we still lack systematic tools to 
precisely manipulate the microbiomes to improve the 
wellness of the animals and the qualities of their prod-
ucts. Phages (bacteriophages and archaeal viruses), 
especially lytic ones, are ideal tools for such purposes 
because of their abundance in nature and high micro-
bial host specificity [93]. However, there is still a lack 

Fig. 5  Host prediction of the ruminant GIT phages and identification of lytic phages targeting methane producers. A Statistics on the viral-microbial 
host relationships using two different methods, namely CRISPR-spacer and sequence homology-(blastn) based methods. The UpSet plot shows 
the number of unique and shared viral-host interactions according to the two methods. The pie chart shows the proportion of phages whose 
host(s) could be predicted by these methods. B Histogram showing the number of phages (Y-axis) as a function of the number of predicted hosts 
at the genus level (X-axis). The phages could be divided into a specialist (number of host genus = 1) and a generalist (number of host genera > 1). 
C Characteristics of the phages stratified by their predicted microbial hosts at the phylum level, including the genome size, annotation rate, host 
specificity, and lifestyles. The lifestyles were predicted using DeePhage and classified into two groups (virulent: DeePhage score >  = 0.5, temperate: 
score < 0.5). D The interaction network between phages and methane-producers (i.e., archaea) predicted by phage-host relationships

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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of comprehensive research on ruminant phages, espe-
cially at GIT sites other than the rumen [25–31]. In 
this study, we filled this gap by mining 2333 metage-
nome samples from eight ruminant species, covering 
all major sites along the GIT (ten sites, including the 
rumen). Based on the data, we constructed a Unified 
Ruminant Phage Catalogue (URPC) comprising 64,922 
phage genomes. Of which, 60.53% were novel as com-
pared with public virome databases, indicating that the 
URPC represents a significant expansion to ruminant 
GIT phages and is the most comprehensive dataset so 
far.

We first examined the distributions of the URPC in the 
eight ruminants and across different GIT sites. Broad-
range phages, i.e., those found in multiple hosts are of 
higher values because they could be applied to multiple 
animals, e.g., to kill pathogens. However, we found that 
most phages were organism-specific, which was expected 
given the results that the rarefaction curve was far from 
saturation (Fig.  1A) and consistent with the previous 
observations in humans that the gut virome was often 
individual-specific [20, 32]. Nevertheless, these results 
also indicate that we have a much larger pool of arsenals 
from which we can find phages targeting specific bacte-
rial/archaeal species of interest.

Lytic phages often have higher application potentials 
because they are easier to isolate and more efficient 
in killing their microbial hosts. Surprisingly, we found 
that ~ 60% of the URPC phages are lytic, higher than any 
other environments we have surveyed, including the ter-
restrial, marine, aquatic, freshwater, plants, and human 
gut (Fig. 4A). Moreover, we also observed a similar ele-
vated proportion of lytic phages within two rumen viral 
genome dataset (RVD and moose rumen [26]). Lytic 
phages are often isolated from the sewage [22]; our 
results thus provided better alternatives for lytic phage 
isolation.

To further facilitate future application of the URPC 
phages, we predicted their microbial hosts using public 
MAG datasets, including several ruminant GIT MAGs 
and those of the other environments. Of particular inter-
est, we obtained 109 phages targeting methane-pro-
ducing species in all six archaeal genera by mining the 
phage-host relationships; of which 74 were lytic ones. 
Previous studies have shown that phages targeting meth-
anogens may help reduce methane emissions [13], but 
we lack a large-scale method for identifying such phages 
[95]. Therefore, our results will facilitate the targeted 
isolation of lytic phages against methanogens and other 
bacterial/archaeal species in general.

Overall, our assembly and analysis of the URPC phages 
massively expanded the ruminant GIT phages and paved 

the way for microbiome intervention to improve the 
ruminant and environmental quality.

Conclusions
We filled the gap in ruminant viral ecology research 
by providing a catalog of phage genomes and identify-
ing many lytic viruses that could target methane pro-
ducers. Our findings provide insights into the phage 
community of the ruminant GIT and can be used as 
a starting point for future research on microbiome 
manipulation in ruminants.
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