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Abstract 

Background  Disturbances alter the diversity and composition of microbial communities. Yet a generalized empirical 
assessment of microbiome responses to disturbance across different environments is needed to understand the fac-
tors driving microbiome recovery, and the role of the environment in driving these patterns.

Results  To this end, we combined null models with Bayesian generalized linear models to examine 86 time series 
of disturbed mammalian, aquatic, and soil microbiomes up to 50 days following disturbance. Overall, disturbances 
had the strongest effect on mammalian microbiomes, which lost taxa and later recovered their richness, but not their 
composition. In contrast, following disturbance, aquatic microbiomes tended away from their pre-disturbance com-
position over time. Surprisingly, across all environments, we found no evidence of increased compositional dispersion 
(i.e., variance) following disturbance, in contrast to the expectations of the Anna Karenina Principle.

Conclusions  This is the first study to systematically compare secondary successional dynamics across disturbed 
microbiomes, using a consistent temporal scale and modeling approach. Our findings show that the recovery 
of microbiomes is environment-specific, and helps to reconcile existing, environment-specific research into a unified 
perspective.
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Background
Bacterial communities are ubiquitous [1], dynamic [2], 
and sensitive to environmental change [3, 4]. A wide 
range of literature explores microbiome responses to 
rapid environmental change in different environments 

[3], consistently revealing that microbial communi-
ties are affected by disturbance, and generally do not 
recover their pre-disturbance composition [5]. Histori-
cally, experimental procedures, designs, and hypoth-
eses regarding the recovery of microbiomes following 
disturbance have developed in a largely field-specific 
manner (e.g., medical microbiology, soil microbiology, 
aquatic microbiology). Consequently, a comparison 
of community disturbance responses across microbial 
environments is lacking. Whether microbiomes from 
different environments exhibit responses to disturbance, 
and whether these responses are consistent with extant 
conceptual frameworks [6, 7] is a major gap in knowl-
edge, especially considering growing anthropogenic pres-
sures on microbial systems (e.g., pollutants, antibiotics, 
and climate extremes).

Properties of the microbial environment likely affect 
the dominant responses of microbiomes to disturbance, 
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but empirical comparisons of recovery across environ-
ments are scarce [4]. Different microbial habitats have 
varying degrees of spatial and temporal heterogeneity, 
microbial species pool sizes, connectivity, and resource 
availability, all of which may affect community assembly 
processes [6], and likely result in different disturbance 
responses among environments. For example, animal 
gut microbiomes have relatively low diversity [1] and are 
dispersal-limited due to selective pressures associated 
with host physiology that likely influence the recovery of 
the resident microbial diversity. In contrast, soil micro-
biomes are extremely diverse, but poorly connected [8], 
likely affecting recolonization following disturbance. The 
lack of host-driven selection in these systems, combined 
with high diversity may result in communities composed 
of different taxon when compared to their pre-distur-
bance state.

Assessments of microbiome recovery often rely on 
indicator measurements that are environment-specific 
(e.g., host health in host-associated microbiomes or plant 
productivity in soil microbiomes), hindering the com-
parison of microbial disturbance responses across envi-
ronments. By considering changes in diversity at multiple 
spatial scales (i.e., within and among samples) and the 
role of spatial connectivity in these responses, the meta-
community framework [9] can help to synthesize and 
explicitly compare microbial community responses to 
disturbance across environments, and in turn provide 
new insights into the role of the environment in shap-
ing these responses [4]. To this end, publicly available 
16S rRNA gene amplicon sequences can be leveraged to 
assess bacterial community responses as changes in bac-
terial richness (the number of taxa present in a sample) 
and composition (variation in taxon relative abundance 
between samples). Generally, we expect that across envi-
ronments, community richness will decrease (Fig. 1a), as 
has been found across both aquatic and terrestrial eco-
systems [10] We also expect that community composi-
tion will change immediately after the disturbance, due 
for example to differential mortality and an altered com-
petitive landscape [5]. However, environmental change 
does not consistently result in decreased richness [11]. 
Additionally, in microbes, disturbances may involve 
the addition of novel taxa (e.g., with sewage sludge 
amendments to soil [12]), which may result in richness 
increases. Over longer time scales following disturbance, 
richness may either fail to fully recover (at least within 
the period observed; e.g., [13]), recover fully [14], or even 
be higher following disturbance [15].

Community composition is often a more robust indica-
tor of biodiversity change than richness [11]. Composi-
tional changes can be assessed in terms of compositional 
variation among local communities [16], or dispersion, 

and the extent to which the community recovers to its 
pre-disturbance composition, or turnover (Fig.  1b). Fol-
lowing disturbance, dispersion can decrease, for exam-
ple, if a stressor is selective and leaves only tolerant taxa 
to persist. Alternatively, dispersion can increase, for 
example, if the stressor is non-selective, or more gener-
ally if taxa that persist following disturbance differ [17]. 
In microbiomes, the Anna Karenina Principle (AKP), 
derived primarily from the observation of host-associ-
ated communities, posits that healthy microbiomes are 
more stable, and thus less variable than disturbed ones 
[18].

Given enough time, we expect the same taxa that dom-
inated prior to a disturbance to recover their original 
abundances [4], especially in host-associated microbi-
omes, which can be modulated by the host [19]. How-
ever, under some circumstances (e.g., strong or long 
disturbances, or invasion by novel taxa [20, 21]), it is 
also possible that the disturbance could permanently 
alter relative abundance patterns in the community [22, 
23], resulting in communities that tend away from their 
pre-disturbance composition over time. Across envi-
ronments, microbiomes have been shown to recover 
towards (negative turnover, e.g., [14, 24]), or to drift away 
from (positive turnover, e.g., [25]), their pre-disturbance 
compositions. Importantly, both changes in dispersion 
and turnover can arise from changes in richness alone 
and null models have been developed that allow for the 
measurement of compositional change independent of 
changes in community richness [26].

Meta-analyses focusing on the undisturbed temporal 
dynamics of microbial communities have shown consist-
ent patterns across systems [2, 5, 27], but temporal dis-
turbance responses have received less attention [4]. To 
this end, we performed a synthetic analysis of the time 
series of disturbed aquatic, mammal-associated, and soil 
microbiomes. Across environments, we compared the 
initial response and subsequent recovery from distur-
bance in terms of community richness, dispersion, and 
turnover, and used null models to disentangle whether 
the observed changes in dispersion and turnover were 
due to changes in richness. Given the rapid rates of com-
positional turnover in microbiomes [28], we focused 
on 29 studies that repeatedly sampled the microbiomes 
within 50 days post-disturbance.

Methods
Dataset selection
Using Google Scholar and Web of Science search engines 
(a list of keywords is available as Supplementary Mate-
rials), we collated bacterial studies from systems where 
an experimental disturbance was imposed, and 16S 
rRNA gene amplicon sequencing datasets were available. 
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Specifically, we chose studies that (1) were sequenced 
in Illumina or IonTorrent platforms; (2) sequenced the 
V3–V4 regions of the 16S rRNA gene; (3) were published 
after 2014; (4) repeatedly sampled microbial communi-
ties following a discrete disturbance or environmental 
change; (5) included samples from before the disturbance 
(i.e., controls), at least one (replicated) sample within a 
week after disturbance, and at least one (replicated) sam-
ple within a month after disturbance; and, (6) included 
experimental triplicates (i.e., three samples per time 
point). Criteria 1–3 ensured that the sequencing tech-
niques were comparable between studies, and reduced 

the biases associated with sampling different regions of 
the 16S rRNA gene [29]. Importantly, downstream analy-
ses adopted a synthetic framework (i.e., we reprocessed 
sequences using a single approach described below), 
and samples from different studies were not combined. 
We applied criteria 4–6 to examine variation in rates of 
compositional change across environments. Criterion 6 
ensured that the variability of the microbiomes at each 
time point could be measured. We defined a disturbance 
causally, as a “discrete, rapid environmental change” [30]. 
We excluded datasets for which raw sequencing data 
were not publicly available and stopped data collection 

Fig. 1  Microbial community dynamics after disturbance. The microbial community can be characterized in terms of its pre-disturbance state 
(yellow), its immediate response (green), and its long-term response (blue). Community richness can be monitored over time (a). In multivariate 
dissimilarity space (shown as ordinations in b and c, with samples as points), we can measure the dissimilarity between all experimental replicates 
in a study to quantify variability (b left, dispersion), and the dissimilarity between undisturbed communities and recovering communities to quantify 
overall changes in the community (b right, turnover). In b, gray dotted lines indicate pairwise comparisons included in each metric. Over time, 
disturbed community dispersion can increase (c, left) or decrease (c, right), and the community can tend towards the pre-disturbance state 
(negative turnover; c, top) or away from the pre-disturbance composition (positive turnover; c, bottom). For each set of samples, the centroid 
is indicated by an asterisk. In a, b, and c, color indicates stages of recovery. In c, insets indicate how turnover (purple) and dispersion (red) are 
visualized as change over time
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in October 2020. In all, datasets from 29 studies matched 
our criteria [14, 23, 31–54], see Table S1 for all datasets). 
We grouped these time series into three environmental 
categories: aquatic, mammal-associated, and soil micro-
biomes (including rhizosphere microbiomes). To further 
explore the role of disturbance type on the observed 
phenomena, we categorized disturbances according to 
their effect on the community as previously done in mac-
roecology [16]. Categories included mortality-induc-
ing treatments (e.g., heat, azoxystrobin, ciprofloxacin, 
mechanical removal), mortality-inducing treatments 
combined with a microbial invasion (e.g., cefuroxime 
and Clostridium difficile), mortality-inducing treatments 
combined with nutrient additions (e.g., heat and fertilizer 
additions), drought, invasions (e.g., the addition of Pseu-
domonas or C. difficile), metal pollution (e.g., cadmium 
additions), nutrient additions (nitrate, chitin, diesel), 
nutrient additions including potential invasions (e.g., the 
addition of wastewater, the addition of diesel and a bacte-
rial consortium), and PAH contamination.

Sequence reprocessing and functional inference
Raw 16S rRNA gene amplicon data and metadata were 
obtained from the NCBI Sequence Read Archives with 
the exception of two datasets, one of which came from 
another database, and the other was obtained directly 
from the authors (see Table  S1 for accession numbers). 
We reprocessed sequences in R 3.4.3 [55] using the 
dada2 package [56], and a conservative approach. To 
account for the different sequence qualities across data-
sets and to improve comparability in the reprocessed 
data, each dataset was inspected and reprocessed sepa-
rately, and downstream statistical analyses accounted 
for between-study differences. Prior to processing, we 
visually inspected two samples per study with the plot-
QualityProfile to determine whether the reads had been 
merged prior to archiving, and to confirm that primers 
were not present. We only used forward reads because 
reverse reads were not available for all studies. Follow-
ing inspection, we trimmed and truncated sequences on 
a study-by-study basis (see Table  S1 for trimming and 
truncation lengths) to preserve a 90-bp segment, the 
minimum recommended in the Earth Microbiome Pro-
ject protocols [1] (and the maximum possible for studies 
that used Illumina HiSeq machines). We acknowledge 
that 90 bp is shorter than the length that is often used in 
amplicon sequencing studies and that longer segments 
would have detected higher microbial diversity; however, 
our aim was to compare diversity patterns across studies, 
for which short read lengths are suitable [57]. Similar to 
downstream rarefaction, trimming all segments to the 
same length ensured a comparable degree of biodiversity 
detection across studies [57].

We filtered, dereplicated, and chimera‐checked each 
read using standard workflow parameters [58]. While 
we did not use taxonomic assignments in our analyses 
or compare amplicon sequence variants (ASVs, 100% 
sequence identity) across datasets, we assigned reads to 
ASVs with the SILVA v.132 training set [59] to remove 
non-bacterial ASVs. Unassigned, bacterial ASVs (i.e., 
those classified as Bacteria) were preserved. Details about 
the percentage of reads lost at each step of sequence pro-
cessing, per study, are included in Fig. S1. As the samples 
included in these studies had a wide range of sequencing 
depths across samples (independent of the study envi-
ronment), we randomly subsampled each sample to 1500 
reads per sample to obtain a similar degree of biodiversity 
detection across studies. To ensure that our findings were 
not affected by observation depth, we additionally ran all 
analyses in parallel using the deepest possible observa-
tion depth (with a lower bound of 1500 reads per sample) 
for each study (Table S1). As our findings were consistent 
regardless of standardization (Fig. S2), we present only 
the results from the global rarefaction (i.e., 1500 reads 
per sample for all samples). To examine the completeness 
of each sample relative to the total richness in a commu-
nity, we calculated sample completeness [60] using the 
BetaC package [61]. On average, our samples represented 
0.96 ± 0.05 (mean ± sd) of the community. We removed 
any time points that had fewer than three experimen-
tal replicates for each time series. We coded time series 
so that time (days) ≥ 0 occurred after disturbance, and 
time < 0 denoted the pre-disturbance community.

Calculation of richness and turnover metrics
To examine variation in diversity across environments we 
calculated metrics that quantify diversity within samples 
(richness), and variation in taxon composition between 
samples (turnover). We calculated richness and turnover 
metrics using the phyloseq package’s data structure [62]. 
We calculated species richness as the number of unique 
ASVs per sample (Hill q = 0), and Inverse Simpson’s index 
(Hill q = 2 [63]). We used Bray–Curtis dissimilarity to 
quantify two aspects of compositional variation. First, to 
describe the compositional variation between samples 
collected at the same time point, we calculated disper-
sion as the pairwise Bray–Curtis dissimilarity between 
all combinations of experimental replicates for each time 
point within each time series. For studies that resam-
pled the same experimental unit (e.g., host organism or 
microcosm) over time, we excluded pairwise compari-
sons between samples from the same experimental units. 
Second, to quantify how composition changed follow-
ing disturbance, we calculated turnover using pairwise 
dissimilarities between all control samples (i.e., pre-dis-
turbance) and all subsequent replicate samples at each 
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time point following disturbance. Using this approach, 
communities that recover their pre-disturbance state 
will have a negative slope estimate through time, while 
communities that become increasingly different from the 
pre-disturbance community over time will have a positive 
slope estimate (Fig. 1).

Because compositional changes can be due to changes 
in richness alone, we used a null model to disentangle 
compositional changes from changes in richness. We ran-
domly permuted abundance values within each sample 
1000 times, preserving the number of taxa (i.e., richness) 
for each sample, and recalculated turnover and disper-
sion metrics for each matrix to derive a null expectation 
for each. For both metrics, Z-scores were calculated as 
uobserved−µ

expected

σ expected
 , where µexpected is the mean of the resam-

ples, and σ expected is the standard deviation. Z-scores are a 
powerful method to explore dissimilarities as deviations 
from a null expectation [64], perform particularly well 
for long-tailed microbiome data, and are recommended 
over subtraction-based dissimilarity partitioning meth-
ods [65]. Statistical analyses evaluated dissimilarity and 
Z-score values in parallel. Significant (95% credible inter-
val) patterns observed in both dissimilarity and Z-score 
data were attributed to changes in community richness, 
while significant patterns observed only in the Z-score 
data were attributed to changes in the relative abundance 
of taxa within the community. We present models fit to 
the raw dissimilarity metrics (i.e., Bray–Curtis) in the 
main text, and report where they differed from analyses 
of the Z-scores, which are presented in full in Figs. S6 
and S9. All code for bioinformatics processing and null 
models is available at https://​github.​com/​drcar​rot/​Distu​
rbanc​eSynt​hesis.

Statistical analyses
We fit generalized linear models to assess how richness, 
dispersion, and turnover change in response to distur-
bances using Bayesian methods and the brms pack-
age [62], and detailed information about each model is 
provided in the “Supplementary methods” section. We 
performed all analyses at the ASV level. To quantify the 
immediate response of richness and dispersion to distur-
bance, we used before-after analyses that compared data 
from prior to the disturbance to samples taken < 4  days 
post-disturbance; to determine whether responses dif-
fered between environments (i.e., aquatic, mammal, 
soil), we included an interaction between the before-
after and environment categorical covariates. Five stud-
ies were excluded from the before-after analyses due to 
a lack of samples (Table  S1). To quantify how richness 
and dispersion changed through time following distur-
bance, we fit models to data from the first 50 days post-
disturbance only (i.e., pre-disturbance samples were not 

included). Finally, to examine how composition changed 
from pre- to post-disturbance, we fit models to turno-
ver that quantified compositional changes between the 
pre-disturbance controls and samples taken in the first 
50 days post-disturbance. To determine whether changes 
following disturbance differed between environments, 
all-time series models included an interaction between 
time and environment. Time (in days) was fit as a con-
tinuous covariate and was centered by subtracting the 
mean duration from all observations prior to modeling. 
We fit all models with the same, hierarchical grouping (or 
random-effects) structure: to account for methodological 
variation between studies, we included varying intercepts 
for each study in all models; and, because many studies 
included more than one disturbance type (e.g., [35]), we 
included varying slopes and intercepts for time series 
within studies (i.e., one time series per disturbance type). 
Models fit species richness (i.e., the before-after and 
time series models) assumed a negative-binomial error 
distribution and a log-link function. In addition to the 
parameters and the grouping structure described above, 
the shape parameter of the negative-binomial distribu-
tion (that estimates aggregation) was also allowed to vary 
among studies. Models fit raw values of dispersion and 
turnover assumed Beta error, a logit-link function, and 
the precision parameter was allowed to vary among stud-
ies. Models fit to Z-transformed dispersion and turnover 
assumed Gaussian error, an identity link, and to account 
for heteroskedasticity residual variation (i.e., the sigma 
parameter) was modeled as a function of the environ-
ment and allowed to vary among studies. The modeled 
responses and means per group, as well as the 95% CI, 
are depicted together with the data where applicable. For 
each comparison and for each environment, we identified 
time series that exhibited an upward or downward trend 
if the 97.5% CI did not overlap with zero, and neutral 
otherwise.

For Bayesian inference and estimates of uncertainty, we 
fit models using the Hamiltonian Monte Carlo (HMC) 
sampler Stan [66], which was coded using the brms pack-
age [67]. We used weakly regularizing priors, and visual 
inspection of the HMC chains showed excellent con-
vergence. All code for statistical analyses is available at 
https://​github.​com/​sablo​wes/​micro​biome-​distu​rbance.

Results
Our final dataset included 2588 samples in 86-time series 
from 29 studies (Table S1) belonging to soil micro- and 
mesocosms (n = 49), seawater mesocosms (n = 16), and 
mammalian microbiomes (n = 21) that were sampled 
multiple times within 50 days after disturbance (Fig. 2a). 
Across all samples, we detected 56,480 ASVs. Sample 
completeness was highest in mammalian microbiomes 

https://github.com/drcarrot/DisturbanceSynthesis
https://github.com/drcarrot/DisturbanceSynthesis
https://github.com/sablowes/microbiome-disturbance
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(0.98 ± 0.02; mean ± sd), lowest and most variable in soil 
microbiomes (0.93 ± 0.06), and was significantly differ-
ent between environments (ANOVA, F = 475.1, p < 0.001, 
Fig. 2b).

Richness in disturbed and recovering microbiomes
Prior to disturbance, mean richness was highest in soil 
microbiomes with 327 ASVs [95% CI 196–506], followed 
by aquatic 184 [111–281], and mammalian 86 [51–133] 
microbiomes (Fig. 3a). While all environments exhibited 
decreases in microbiome richness following disturbance, 
only the decrease in the mammalian microbiomes statis-
tically differed from zero, and all mammalian time series 
(n = 19 time series) exhibited a downward richness trend 
(Table 1). This pattern was primarily driven by time series 
which employed disturbances that likely caused mortal-
ity, or those that introduced an invasion, or a combina-
tion of both (Fig. S3). In contrast, all aquatic time series 
(n = 14) and most soil time series (n = 20) with the excep-
tion of four exhibited neutral trends (Table 1).

On average, the post-disturbance richness in mam-
malian microbiomes was approximately 43% of that 
found pre-disturbance (Fig.  3a), and over time, rich-
ness increased consistently at a rate of approximately 
2% (1–3%) per day (Fig.  3b), a phenomenon that was 
observed across disturbance types and was present in all 
mammal time series (n = 19) except for one that exhibited 
neutral trends. In general, the mammalian microbiomes 
that lost the most richness after disturbance also recov-
ered this richness most rapidly over the following 50 days 
(Fig. S4). In contrast, no overall patterns were observed 
in the richness in aquatic and soil time series, although 
they exhibited either neutral responses or (n = 11 and 
n = 41 for aquatic and soil time series) or the continued 

loss of richness over time (n = 5 and n = 6, respectively, 
Table  S1). These results were consistent when alpha 
diversity recovery was assessed as inverse Simpson’s 
index (Fig. S5).

Dispersion and turnover
All microbial communities were under dispersed relative 
to the null expectation, and 97% of Z-scores were nega-
tive. All of the lowest Z-score values (< − 400) belonged 
to mouse microbiomes, for which we detected fewer than 
30 ASVs. On average, dispersion did not change imme-
diately after disturbance for any environment (Fig.  4a, 
Table  S2). However, we found a decrease through time 
following the disturbance in dispersion values for mam-
malian microbiomes (Fig.  4b), though this pattern was 
not present in the Z-scores (Fig. S6), indicating reduced 
compositional variation was associated with a reduction 
in richness, rather than changes in relative abundances. 
The strongest responses were from microbiomes exposed 
to invasion (n = 1), mortality (n = 10), or a mixture of 
both (n = 8, Fig. S7). Most mammal time series (n = 13) 
exhibited a decreasing dispersion over time, while 7 
exhibited neutral dynamics (Table 1). Similarly, soil time 
series exhibited mostly decreasing (n = 15) or neutral 
(n = 31) dispersion dynamics, with only one-time series 
increasing in dispersion over time. In contrast, aquatic 
time series exhibited either neutral (n = 11) or increasing 
(n = 5) dispersion over time.

We found environment-specific turnover between 
composition pre- and post-disturbance. On average, 
mammalian microbiomes exhibited negative turnover, 
and most time series (n = 14) tended to recover toward 
their pre-disturbance composition (Fig.  5, Table  1). 
This pattern was consistent across disturbance types 

Fig. 2  Samples used in this meta-analysis. We selected a time series which had control samples and multiple samples after disturbance (a). 
A vertical black line denotes a disturbance event in all cases; samples taken on the day of the disturbance (before or after) are shown along this 
line. A vertical gray line indicates the fourth day after the disturbance. Studies which had not sampled the recovering microbiome within < 4 days 
after disturbance were excluded from assessments of the immediate impacts of disturbance on richness and dispersion. All samples were 
standardized to 1500 observations per sample, and had an average sample completeness > 90% (b). In b, the sample completeness for all samples 
included in the synthesis is shown as a histogram. Sample completeness, or the proportion of the community that belongs to sampled taxa [60], 
was estimated according to [61]
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and was strongest for microbiomes subjected to inva-
sion (n = 1), mortality (n = 10), or a combination of 
both (n = 8, Fig. S8). Importantly, negative turnover 
was not found when assessed with Z-scores (Fig. S9), 
indicating that recovery occurred through an increase 
in richness, not due to the recovery of relative abun-
dances. In contrast, following disturbance, aquatic 

microbiomes exhibited positive turnover, tending away 
from their pre-disturbance controls over time. This 
pattern was present in all-time series (n = 16), and 
was consistent whether raw values (Fig. 5) or Z-scores 
were modeled (Fig. S8), indicating that changes in the 
identity and relative abundance of taxa, rather than 
simply changes in the number of taxa in the system 

Fig. 3  The effect of disturbance on microbiome richness, immediately (< 4 days) after disturbance (a), and over 50 days of recovery (b). Richness 
was calculated as the number of observed taxa in each sample and is presented in a log2-transformed y-axis. Points represent samples and are 
colored by study. In a, solid black points indicate the modeled mean across time series per environment with a 95% CI indicated by error bars. In 
b, thin regression lines for each time series are colored by study, and the solid black line shows the modeled mean response across time series 
per environment. The 95% CI is displayed as a gray-shaded area, and environments for which overall trends deviate from zero are indicated 
with an asterisk (*) on the bottom right corner

Table 1  Microbiome disturbance responses per environment

For each comparison and for each environment, we identified time series that exhibited an upward or downward trend if the 97.5% CI did not overlap with zero, and 
neutral otherwise. Numbers indicate the numbers of time series responding according to a specific parameter (e.g., immediate richness change)

Aquatic Mammal Soil

↓  −  ↑ ↓  −  ↑ ↓  −  ↑

Immediate richness change 0 14 0 19 0 0 4 20 0

Temporal richness change 5 11 0 0 1 19 6 41 0

Immediate dispersion change 0 10 4 2 13 2 0 29 4

Temporal dispersion change 0 11 5 13 7 0 15 31 1

Turnover 0 0 16 14 6 0 2 29 16
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Fig. 4  The effect of disturbance on microbiome dispersion, immediately (< 4 days) after disturbance (a), and over 50 days of recovery (b). 
Dispersion was calculated as the pairwise Bray–Curtis dissimilarity between replicates for each time point within each time series, and each point 
is a pairwise comparison, colored by study. In a, solid black points indicate the modeled mean across time series per environment with a 95% 
CI indicated by error bars. In b, thin regression lines for each time series are colored by study, and the solid black line shows the modeled 
mean response across time series per environment. The 95% CI of the overall response in each environment is displayed as a gray-shaded area, 
and environments for which overall trends deviate from zero are indicated with an asterisk (*) on the bottom right corner

Fig. 5  The effect of disturbance on community recovery is environment-dependent. For each time series, recovery was calculated as the pairwise 
dissimilarity between post-disturbance samples and pre-disturbance controls. Each point is a pairwise comparison, colored by study. Microbiomes 
which recover their pre-disturbance state will exhibit negative slopes; microbiomes which continue to drift away from their pre-disturbance 
composition over time will exhibit positive slopes. Thin regression lines for each time series are colored by study, and a solid black line indicates 
the modeled mean response across time series per environment. The 95% CI is displayed as a gray shaded area, and environments for which overall 
trends deviate from zero are indicated with an asterisk (*) on the bottom right corner
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were responsible for this drift away from a pre-dis-
turbance composition. While all-time series followed 
this response regardless of the type of disturbance, 
PAH and metal-contaminated microbiomes (n = 1 for 
each) exhibited the strongest response (Fig. S8). Nota-
bly, while no consistent responses were found in soil, 
most time series exhibited positive (n = 16) or neutral 
(n = 29) turnover, with only two-time series tending 
towards recovery (i.e., negative turnover).

Finally, to examine the relationship between the 
immediate disturbance responses (i.e., the strength 
of the disturbance) and compositional changes over 
time subsequent to the disturbance, we plotted rates 
of temporal turnover as a function of the magnitude 
of the immediate (< 4  days after disturbance) changes 
in richness (Fig.  6). This relationship was environ-
ment-dependent. Aquatic microbiomes predominantly 
exhibited no immediate richness responses to distur-
bance and positive turnover thereafter (i.e., compo-
sition moved away from pre-disturbance controls); 
mammalian microbiomes exhibited an immediate 
loss of richness and a negative turnover (i.e., recovery 
toward pre-disturbance composition); and soil micro-
biomes exhibited very weak or no responses in terms 
of both immediate richness responses and turnover 
following the disturbance (Fig.  6). This pattern was 
consistent, but weaker when turnover Z-scores were 
modeled, especially for mammalian microbiomes (Fig. 
S10).

Discussion
We synthesized metabarcoding data to show how micro-
bial community responses to disturbance vary across 
three environments at time scales that are relevant to 
microbiome turnover rates and bacterial life histories [28, 
68]. We focused on the richness, dispersion, and turno-
ver of microbiomes recovering from 86 different dis-
turbances in three different environments, and further 
partitioned the latter two into shifts caused by changes 
in richness or in the relative distribution of taxa in order 
to shed light on the ecological processes driving micro-
bial recovery. We found environment-specific responses: 
aquatic microbiomes tended away from their pre-distur-
bance composition following disturbance, while mam-
malian microbiomes tended to recover towards their 
pre-disturbance state. Soil microbiomes exhibited no 
clear patterns. Furthermore, we found no indication that 
disturbances increased dispersion in any environment, 
in contrast with the Anna Karenina Principle (AKP), and 
instead found the opposite pattern, especially in mam-
malian microbiomes. These findings highlight consistent 
response patterns within environments and consistent 
differences between environments.

Contrary to our expectation, we only found modest 
losses in richness following disturbance. On average, 
only mammalian microbiomes experienced statistically 
significant richness loss. This loss likely underscores the 
efficacy of antibiotics, which were used in 76% of mam-
malian microbiome time series, often in combination 

Fig. 6  Relationships between the immediate effect of a disturbance on richness and a microbiome’s long-term recovery of composition vary 
among environments. Each point is a time series, colored by its environment. Immediate richness responses were calculated as the before-after 
effect of disturbance on log-transformed community richness (Fig. 3a). Turnover rates were calculated as the modeled slope estimates 
of logit-transformed turnover over time. Error bars show the 95% CI for both metrics. Large points indicate the mean responses per environment
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with an invader such as C. difficile [23, 35] Disturbances 
in soil and aquatic environments in our study were domi-
nated by nutrient additions (e.g., inorganic nitrogen and 
phosphorus inputs in aquatic microbiomes, [49] or humic 
acid amendments in soil, [45]), which are not directly 
expected to decrease richness. Surprisingly, we did not 
record any instance of a nutrient addition increasing 
richness in these systems, but this may be because all the 
experimental systems selected in the meta-analysis were 
partially closed to dispersal from the local environment 
(e.g., microcosms and mesocosm).

Despite their strong initial response to disturbance, 
mammalian microbiomes exhibited a clear and rapid 
trend toward recovery over time. Our null model analyses 
showed that richness changes were largely responsible for 
the decreases in community dispersion (i.e., more similar 
taxa composition) and negative turnover following the 
disturbance, suggesting that in mammals, disturbance 
generally resulted in the loss of specific taxa followed by 
a rapid recolonization by these taxa. Given the absence 
of this pattern in soil or aquatic microbiota, our find-
ings suggest role of the host in modulating and perhaps 
accelerating the recovery of the resident microbiota. Host 
behaviors such as eating [69] and socializing [70] may 
function as mechanisms of active dispersal, and together 
with the immune system may act as a selective pressure 
[19], resulting in recovered microbiomes that resem-
ble the undisturbed communities. Several studies have 
demonstrated the high variability in host responses to 
disturbance [71] and the dependence of these responses 
on the environment [72]; however, by comparing these 
responses with those found in other environments, we 
found that host-associated microbiomes exhibited the 
strongest and most consistent responses to disturbance.

Surprisingly, aquatic microbiomes tended to become 
more dissimilar from their pre-disturbance compositions 
over time. This pattern may be due to the high connec-
tivity and constant mixing of resources (i.e., nutrients) 
in aquatic microbiomes [73]. Due to the different experi-
mental designs included in this synthesis, it was not 
possible to determine whether the communities were 
generally drifting towards a specific composition (i.e., an 
alternative stable state [74]).

In contrast, in the highly heterogeneous soil environ-
ment, microbiomes did not exhibit strong responses to 
disturbance. Nevertheless, similarities with the other 
environments were present: in all environments, we 
recorded no instances of soil microbiomes increasing 
in richness immediately following disturbance. Like 
in aquatic microbiomes, we also found no instances 
of soil microbiomes recovering their richness over 
time following disturbance, or of dispersion decreas-
ing immediately after disturbance. We also found that 

a substantial portion of the soil time series tended away 
from their pre-disturbance state. As in mammalian 
microbiomes, we found several instances of microbi-
ome turnover tending towards decreased dispersion 
over time.

In the above cases, most time series in soil exhibited 
neutral responses (i.e., no detectable trend), however. 
This pattern could be due to the extreme diversity and 
heterogeneity found in this system [75], or due to tech-
nical limitations of this study. Nevertheless, standardiz-
ing the data to the maximum depth for each time series 
yielded identical results, suggesting that higher resolu-
tion may be necessary to capture community recovery in 
soils and disentangle the role of rare taxa from stochas-
ticity. The conservative approaches we employed for the 
selection, processing, and analysis of the data aimed to 
facilitate cross-study comparisons, but limited the con-
tribution of rare taxa (i.e., those with low relative abun-
dance) in our analyses of diversity change. Recognizing 
these limitations, we focused on the dominant taxa, using 
abundance-weighted metrics (Bray–Curtis). This likely 
impacted our analysis of soil most strongly, as soil micro-
biomes had the highest overall richness and lowest sam-
ple completeness estimates, and rare taxa are important 
sources of variation in soil microbiomes [76, 77].

It is likely that our sample size (n = 86 time series) and 
statistical methods (applied to standardize and enable 
direct comparison across habitats) have together pro-
vided a broader analysis than was previously achieved 
from habitat-specific studies. We found no indication 
that dispersion increases immediately or over time fol-
lowing disturbance, in any environment, in direct con-
trast with the AKP. The AKP proposes that dysbiotic 
microbiomes exhibit an increased host-to-host variation 
[18]. Importantly, our synthesis did not include measures 
of dysbiosis, as these were not consistently available and 
the definition of dysbiosis can vary widely. Instead, we 
compared the microbiomes to their pre-disturbance state 
and found that disturbance does not consistently increase 
dispersion, at least in the dominant portion of the com-
munity. While changes in dispersion are often reported 
in the microbial literature [78–80], dispersion is generally 
measured as pairwise Bray–Curtis dissimilarity among 
experimental or field replicates, and confounds changes 
in richness with compositional changes [26, 81]. We 
found that, in general, when dispersion decreased (i.e., in 
mammals), it was due to decreasing species richness in 
the community, not due to changes in the relative abun-
dance of community members. We also found that in the 
absence of a host, soil and aquatic microbiomes tended 
to shift away from their pre-disturbance conformation, 
suggesting that environmental microbiomes are less 
prone to recovery than mammalian ones. Taken together, 



Page 11 of 14Jurburg et al. Microbiome           (2024) 12:79 	

this synthesis sheds light on similarities across environ-
ments and highlights the role of the host in microbiome 
recovery.

Conclusion
Our work highlights the need to reconsider the defini-
tion of disturbance in the microbiome [82]. We included 
a wide range of disturbances, and categorized them 
according to a framework that considered the direct 
effect of the disturbance on the microbial community and 
that largely echoes similar categorizations in macroecol-
ogy (e.g., [10, 16]). For example, when sterilized, organic 
amendments represent a novel source of resources, but 
when applied unsterilized, they also potentially include 
an invasive community, a scenario that deviates from the 
classic invasion literature [83]. Furthermore, selective 
disturbances (e.g., antibiotics) remove similar taxa across 
experimental replicates, resulting in the homogenization 
of microbiomes, and decreasing dispersion [47]. In con-
trast, disturbances that affect taxa randomly could lead 
to the microbiomes becoming more dissimilar, increas-
ing the influence of ecological drift, and consequently, 
compositional dispersion. The duration of disturbances 
also varied, especially relative to bacterial life histories 
and ecologies [28]. Pulse disturbances which last multiple 
days may encompass multiple life cycles for many micro-
bial taxa. Similarly, disturbances which may be consid-
ered long-term changes for macro-organisms (i.e., oil 
pollution), may represent short-term resource pulses for 
oil-degrading bacteria. In a world in which microbiomes 
are exposed to increasing disturbance pressures, develop-
ing a set of descriptors for disturbances based on their 
effect on the microbiome’s niche space and competitive 
landscape is urgently needed.

Our study reconciles several hypotheses that have been 
proposed for microbiomes, with different hypotheses 
supported in different environments. First, we find strong 
support for the tendency to drift away from the pre-dis-
turbance state in aquatic systems, and mild support in soil 
systems [74]. Second, we find a strong tendency towards 
recovery in mammalian microbiomes, characterized 
by the loss of specific taxa during disturbance and their 
return thereafter. Third, we find little general evidence 
for changes in compositional dispersion (after account-
ing for changes in richness) following disturbance, in 
contrast to the AKP. Our work focused on community-
level responses to disturbances across microbiomes, but 
did not delve into the responses of specific taxa due to 
the differences in sequencing techniques (and especially 
primer choice among studies [84]. Future work may focus 
on smaller subsets of data that use consistent techniques 
to identify responsive taxa. Our results highlight how 

richness alone does not capture complex microbiome 
dynamics, similar to findings in broader  ecology [11]. 
Further work is needed to distinguish the consequences 
of selective versus non-selective disturbances (e.g., those 
that impact certain populations versus those that indis-
criminately impact all populations) on microbiome 
responses. Overall, this work provides a new empirical 
perspective on the dynamics and generalities of microbi-
ome disturbance responses that are supported by directly 
comparable metrics, equivalent temporal scales among 
datasets, and a consistent modeling approach. It suggests 
that with comparisons of standardized diversity meas-
ures, responses that were previously believed to be appli-
cable to all microbiomes (i.e., the AKP) are not present 
and that the environment (especially the host) is a key 
determinant of the microbiome of both the response to, 
and recovery from, disturbance.
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