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Abstract

Background: The bacterial communities of the nasopharynx play an important role in upper respiratory tract
infections (URTIs). Our study represents the first survey of the nasopharynx during a known, controlled viral
challenge. We aimed to gain a better understanding of the composition and dynamics of the nasopharyngeal
microbiome during viral infection.

Methods: Rhinovirus illnesses were induced by self-inoculation using the finger to nose or eye natural transmission
route in ten otherwise healthy young adults. Nasal lavage fluid samples (NLF) samples were collected at specific
time points before, during, and following experimental rhinovirus inoculation. Bacterial DNA from each sample
(N = 97 from 10 subjects) was subjected to 16S rRNA sequencing by amplifying the V1-V2 hypervariable region
followed by sequencing using the 454-FLX platform.

Results: This survey of the nasopharyngeal microbiota revealed a highly complex microbial ecosystem. Taxonomic
composition varied widely between subjects and between time points of the same subject. We also observed
significantly higher diversity in not infected individuals compared to infected individuals. Two genera – Neisseria
and Propionibacterium – differed significantly between infected and not infected individuals. Certain phyla,
including Firmicutes, Actinobacteria, and Proteobacteria, were detected in all samples.

Conclusions: Our results reveal the complex and diverse nature of the nasopharyngeal microbiota in both healthy
and viral-challenged adults. Although some phyla were common to all samples, differences in levels of diversity and
selected phyla were detected between infected and uninfected participants. Deeper, species-level metagenomic
sequencing in a larger sample is warranted.

Keywords: Microbiota, nasopharynx, longitudinal, sequencing, rhinovirus illness
Background
The nasopharynx is frequently colonized by both com-
mensal and pathogenic bacteria [1]. Many pathogenic
species, including Streptococcus pneumonia, Haemophi-
lus influenza, Moraxella catarrahlis, Staphylococcus aur-
eus, and Neisseria meningitidis, exist in the nasopharynx
of apparently healthy individuals [1-4]. Ling et al. found
the nasopharyngeal microbiota to be distinct from other
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body sites surveyed (saliva, dominant hands, and feces)
in healthy Chinese adults [5].
Understanding the relationships between microbes of the

upper respiratory tract (URT) during perturbations is antic-
ipated to provide insights into the pathogenesis of URT
infections. Studies of the nasopharyngeal microbiota in chil-
dren have observed changes due to season (winter/fall ver-
sus spring) [4] and treatment with antimicrobials or the
heptavalent conjugated pneumococcal polysaccharide vac-
cine [6,7]. Specific commensal taxa have been negatively as-
sociated with colonization of known pathogenic bacteria
and with acute otitis media in children, and these relation-
ships changed depending on antibiotic usage [8].
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Like pathogenic bacteria, viruses, including rhinoviruses,
enteroviruses, coronaviruses, and adenoviruses, have been
found in asymptomatic, healthy individuals [9,10]. Infec-
tions of the URT display complex interactions between
bacterial pathogens and viruses, both synergistic and com-
petitive [11-14]. Viruses in the URT can alter bacterial ad-
herence [15], bacterial colonization [16], and host immune
response [17-19]. A study of the nasopharyngeal microbiota
of children with severe bronchitis showed microbiotal shifts
depending on the viral infection (human rhinovirus (HRV)
only, respiratory syncytial virus (RSV) only, or co-infection)
[20]. The lung microbiota in chronic obstructive pulmonary
disease (COPD) patients and healthy individuals during
a rhinovirus challenge showed significant changes after
infection [21].
We previously used microarray technology to investigate

bacteria in the adult nasopharynx prior to, during, and after
experimental rhinovirus infection [22]. The microarray ap-
proach allowed us to detect bacteria at the species level, but
we were only able to test the presence or absence of about
60 clinically informative bacteria. The goal of the present
study was to characterize the relative abundance of micro-
bial communities of the nasopharynx at the phylum and
genus levels, by sequencing the 16S rRNA gene of bacteria
in nasal lavage fluid (NLF) samples from the same adults
during rhinovirus challenge.

Methods
Sample collection
This protocol has been previously described [22]. Briefly,
participants were volunteers between the ages of 18 and 65
years, who responded to advertisements in 2010. Subjects
were eligible if they had a screening serum neutralizing
antibody of 1:4 or less to the challenge Rhinovirus type 39.
The study was approved by the Institutional Review Board
for Health Sciences Research at the University of Virginia.
Informed consent was obtained from all ten participants
prior to enrollment. The rhinovirus immunotype 39 inocu-
lum pool has been safety tested and approved for use by the
Food and Drug Administration (FDA) (IND12934). This
study was conducted with all sample collection during the
fall. Subjects were exposed to a total of 100 to 300 TCID50
Figure 1 Study timeline including when information or samples were
(NLF) samples were obtained prior to rhinovirus inoculation.
of rhinovirus in 250 μL by self-inoculation by touching the
medial cantus and conjunctiva of one eye or the septum in
the nasal vestibulum on one side of the nose and repeated
once after a 5- to 15-minute period. NLF was obtained by
installation of 5 mL of 0.9% saline into each nasal cavity
which was recovered into a waxed paper cup. The saline is
able to reach throughout the nasopharynx due to the pos-
ition of the participant’s head (tilted backwards). Ten nasal
washes were obtained from each volunteer: three during the
week prior to HRV inoculation, one on each of five days im-
mediately following inoculation, and on days 10 and 21 fol-
lowing inoculation (Figure 1). An aliquot of 1 mL of each of
the NLF sample was placed in tubes containing an equal
volume of viral collection broth, kept on ice, and trans-
ported to the laboratory within one hour for rhinovirus iso-
lation in tissue cultures. The remaining NLF was transferred
to 2-mL cryo-tubes and stored frozen at −80°C.

Assessment of infection
This protocol has previously been described [22]. Briefly, a
subject was considered infected if the challenge rhinovirus
was detected in the NLF at least once during the five days
following inoculation. Additionally, the serum antibody re-
sponse to the challenge rhinovirus type 39 was examined in
sera obtained prior to inoculation and three weeks follow-
ing inoculation by standard methods [23]. Subjects with a
4-fold increase in antibody titer to the challenge virus were
considered to be infected. If either of these tests were posi-
tive, the subject was considered infected. Assessment of ill-
ness of the participants is described in Additional file 1.

DNA extraction
DNA was isolated from NLF using bead beating and
phenol-chloroform extraction methods. This protocol [24]
was optimized from Ren T, et al. to increase DNA output
from a more difficult sample type (NLF). Briefly, 1.8 mL of
nasal wash was transferred to a 2-mL BeadBeater tube
(BioSpec, Bartlesville, OK) and centrifuged at 2,348 g (5,000
rpm) for 10 minutes. Supernatant (1.3 mL) was aspirated,
leaving all pelleted bacterial cells plus 500 μL supernatant
for DNA extraction and subsequent sequencing. Then, 20
μL Proteinase K (20 mg/mL) (Roche, Basel, Switzerland)
collected from study participants. *Day on which nasal lavage fluid
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was added and incubated at 60˚C for two hours then 95˚C
for 10 minutes. A total of 200 μL 10% SDS (Fischer Scien-
tific, Waltham, MA), 400 μL of 0.1 mm zirconia/silica
beads (BioSpec, Bartlesville, OK), 100 μL of buffer (10 mM
Tris-HCl pH 7.5, 5 mM EDTA, 100 mM NaCl), and 500
μL of phenol:chloroform:isoamyl alcohol (25:24:1) (Fischer
Scientific, Waltham, MA) were added to the tube. The
sample was homogenized on a Biospec Mini-BeadBeater-8
for 3 minutes and then centrifuged for 10 minutes at
10,000 g. The top aqueous layer was transferred to a new
Phase-Lock-Gel tube (VWR, Radnor, PA) with an equal
volume of chloroform:isoamyl alcohol (24:1) (Acros Or-
ganics, Fischer Scientific, Waltham, MA) and centrifuged at
20,000 g for 10 minutes. This step was repeated twice to en-
sure removal of phenol. The sample was then ethanol pre-
cipitated, and the DNA pellet was resuspended in 50 μL 10
mM Tris-HCl pH 8.0. Each set of extractions was accom-
panied by a negative control to ensure no contaminants in
the extracted DNA.

Tag-PCR amplification of the V1-V2 regions of the
bacterial 16S rRNA gene and pyrosequencing
This protocol has been previously described [24]. Briefly,
the V1-V2 hypervariable regions of the 16S rRNA gene
were amplified from extracted DNA samples using two
primers containing the universal sequences 27 F (5′-AG
RGTTTGATCMTGGCTCAG-3′) and 534R (5′-TTACC
GCGGCTGCTGGCAC-3′). Each sample was tagged with
a unique barcode (10 bp) added to the 5′ end of the for-
ward primer. Conditions for amplification were 94˚C for 3
minutes, then 30 cycles of 94˚C for 30 seconds, 57˚C for 45
seconds, and 72˚C for 60 seconds with a final extension
step of 72˚C for 5 minutes. Each set of samples was ampli-
fied with a negative control to ensure no contaminants
from reagents. PCR products were then run on a gel to ver-
ify amplification of the correct size. Amplicons from all
samples were quantified using the Qubit® 2.0 Fluorometer
and then pooled in equal molar ratios with 49 samples in
pool 1 and 48 samples in pool 2. To achieve a final pool of
20 μL of sample with a 10 ng/μL concentration, 40.8 ng of
each sample were added to pool 1 and 41.67 ng were added
from each sample to pool 2. The pooled samples were then
gel-purified and the concentration of each sample was mea-
sured using the Qubit 2.0 Fluorometer to ensure the mini-
mum of 20 μL of 10 ng/μL sample for sequencing. Each
pooled sample was sequenced using titanium chemistry on
a 454 Life Science Genome Sequencer FLX platform at the
University of Virginia Department of Biology Genome Core
Facility using the standard protocol for sequencing. The
samples were run on an Agilent 2100 Bioanalyzer High-
Sensitivity chip to determine the size distribution of the li-
brary samples. Then, a KAPA Biosystems qPCR assay was
run to determine the effective concentration of the
samples.
Quality assessment and filtering of sequences
This quality of the read sequences was assessed using
FastQC v0.10.1 [25]. This assessment revealed that a sig-
nificant fraction of our reads were identical short (<100
bp) reads (homopolymers). Based on this assessment,
and the distribution of read lengths, we filtered the se-
quences by length, removing any reads shorter than 100
bp in length, or greater than 600 bp. This filter alone re-
duced our initial dataset from 4.32 Mbp, to 3.32 Mbp
(approximately 23.1% reduction). In addition, reads with
an average quality score lower than 25 (phred scale)
were removed, as were any reads that contained 50-base
windows with average quality scores below that thresh-
old. Qiime’s default filters also removed any reads with
mismatches in the primer or barcode sequences, and
any reads with more than six ambiguous bases.

Clustering and filtering of operational taxonomic units
(OTUs)
Sequences were clustered into operational taxonomic units
(OTUs) (97% identity cutoff) using the uclust algorithm
v1.2.22 (de novo clustering) [26] in QIIME v1.8 [27], and
assigned taxonomy using RDP classifier v2.2 [9], trained
with the Greengenes (gg_13_8) [28] dataset. OTUs were re-
moved from the dataset if they could not be classified at
the domain level, or were classified as archaea, or were clas-
sified as chloroplast sequences. OTUs estimated to be puta-
tively chimeric by the uchime algorithm v4.2.40 [29] were
also filtered out, as were singleton OTUs. After filtering, we
were left with a mean of 1021.6 sequences per sample (SD
630.84, median 913, minimum 134, maximum 4,501). Sam-
ples containing fewer sequences than three SD below the
mean count (146 sequences/sample) (n = 1) were elimi-
nated from downstream analyses.

Sequence analysis
Analyses of taxonomic composition and diversity were per-
formed using QIIME, version 1.8 [27]. Default parameters
were used for the core analyses. OTU representatives were
aligned with pyNAST v1.2.2 [30], and phylogenies were
generated using FastTree v2.1.3 [31]. Alpha diversity
(within-population diversity) of samples was measured
using counts of observed species (OTUs), the chao1 esti-
mator for species richness, and the Shannon diversity
index, which estimates total diversity taking into account
both species richness and evenness. Beta diversity (diversity
between populations) was calculated using UniFrac dis-
tances (unweighted) [32] between samples (based on the
relative abundance of OTUs), and visualized using principal
coordinates analysis (PCoA) [33]. In order to compare di-
versity of OTUs in the nasopharynx to that of other body
sites, we also performed a combined beta diversity analysis
of our nasopharyngeal samples with samples from several
different body sites (gut, oral cavity, external auditory canal,
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nostril, and hair) from Costello et al. [34], as well as ade-
noid samples from Ren et al. [24].

Statistical analysis
Analyses of phylum abundance between inoculation
states (before, during, and after) and between subjects,
was performed using analysis of variance (ANOVA). For
significant results, the Tukey Kramer test was subse-
quently conducted. ANOVA was also used for the ana-
lyses of class, order, and family abundances between
inoculation states (before, during, and after). Compari-
sons of alpha diversity between the infected and non-
infected sample groups were done using Mann-Whitney
Wilcoxon tests, as were the abundances of selected gen-
era between the infected and non-infected samples, and
the comparison of inter-individual and intra-individual
Unifrac distances.

Results
Subject population
Ten volunteers were eligible and enrolled into the study.
Forty percent of volunteers were female, and the average
age of volunteers was 19.6 years. Six of the subjects were
self-inoculated into the nose and four were self-
inoculated into the eye. Seven out of the ten subjects
were infected by the rhinovirus challenge. Out of the in-
fected subjects, three were considered ill based on the
modified Jackson cold method (Additional file 1). All
subjects were sampled at all ten time points. Demo-
graphic information and information on infection status
is included in Table 1.
DNA was successfully extracted from 99/100 NLF sam-

ples with concentration values ranging from 5.86 ng/μL to
33.8 ng/μL, which is above the recommended threshold for
microbiota studies [35]. One sample (subject number 6,
day 3) did not have enough NLF for DNA extraction. PCR
amplification and pyrosequencing of the V1-V2 hypervari-
able regions of the bacterial 16S rRNA gene was successful
in 97 out of the 99 NLF samples. PCR amplification was
unsuccessful in two samples (subject number 3, day 2 and
Table 1 Subject information

Variable 1 2 3 4 5

Age, years 19 19 18 18 20

Sex F F F M F

Race White1 White White White W

Route of inoculation Eye Nose Nose Nose No

HRV infection yes no yes yes ye

Criteria for infection status Ab - HRV/Ab HRV HR
1The subject did not specify “Non-hispanic.” For criteria for infection status, HRV ind
the infection period) and Ab indicates that the subject had a 4-fold rise in serum-ne
subject number 10, day 3). Sequencing of the two pools of
DNA extracted from the NLF samples resulted in 679,135
reads. These reads were then quality filtered to select the
most reliable reads for analysis (see Methods). After all
quality filters had been performed on both raw sequences
and OTUs (see Methods), there were 99,095 reads
remaining for analysis (median of 913 reads per sample)
(Figure 2). After filtering, reads had a mean length of 376
bp (median 414 bp), and one sample (subject number 10,
day 7 (134 reads)) was excluded for containing fewer se-
quences than 3 SD below the mean count (146 sequences/
sample).

Analysis of nasopharyngeal bacterial richness and
composition by sequencing
The sequences were clustered into 3,229 distinct OTUs
(97% identity cutoff ). Singleton OTUs were filtered out,
leaving 1,608 OTUs for downstream analysis. Across all
ten subjects, the dominant phyla were Firmicutes
(40.6%), Actinobacteria (20.9%), Proteobacteria (17.1%),
and unclassified (20.6%), with the relative abundance of
each phylum being highly variable across the subjects
(Additional files 2 and 3) and time points (Additional
files 2 and 4). To determine if bacterial composition
changes occur due to viral infection, we compared the
relative abundance of the dominant phyla before (time
points 1 to 3), during (time points 4 to 8), and after
(time points 9 to 10) Rhinovirus infection in infected
and not infection subjects (Figure 3). No phylum showed
a significant change in relative abundance between time
points. Additionally, we performed ANOVA on the
relative abundances (log-transformed values), which
revealed no significant differences (after FDR correction)
in the abundance of the three dominant phyla before,
during, or after inoculation, in either the infected or un-
infected categories. Significant differences were found in
two subjects: subject number 5, in which Proteobacteria
abundance was significantly different before inoculation
than during or after inoculation (P = 0.039), and subject
number 9, in which Actinobacteria abundance was
Subject number

6 7 8 9 10

21 21 20 19 21

M M M M M

hite, Asian White White White African American White

se Eye Eye Eye Nose Nose

s no yes yes no yes

V/Ab - HRV/Ab Ab - HRV/Ab

icates HRV shedding in at least one sample during time points 4 to 8 (during
utralizing antibody in response to the challenge virus. M, male; F, female.



Figure 2 Box and whisker plot of read counts at each time point during the study after quality control filtering.
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significantly different between the before, during, and
after time points (P = 0.0001) (Additional file 5). No
significant differences were found in the abundances of
dominant classes, orders, or families before, during, or
after inoculation, in either infected or not infected
individuals (all P-values >0.11). ANOVA was also per-
formed to test the null hypothesis that the relative abun-
dances (log-transformed values) of the dominant phyla
were the same between subjects (Additional file 6). After
FDR correction, there was a significant difference in
the relative abundance of Firmicutes between subjects
Figure 3 Box and whisker plot of the relative abundance of dominant ph
counts for Infected samples: (before (n = 19), during (n = 34), and after (n = 14)
and after (n = 6)).
(Padj = 0.009 in not infected subjects, Padj = 0.001 in
infected subjects).
We also carried out a rarefaction analysis to compare

bacterial species richness between the samples before,
during, and after infection by plotting the rarefaction
measure (the Chao1 diversity index for OTUs at 97%
identity threshold) by the number of sequences per sam-
ple (Figure 4; Additional files 7 and 8). The rarefaction
plot curves indicate that the nasopharynx, sampled by
NLF, is a very complex microbial environment. Deeper
sequencing could reveal even more diversity in this very
yla in infected and not infected individuals by time period. Sample
). Sample counts for Non-Infected samples: (before (n = 8), during (n = 15),



Figure 4 Rarefaction plots displaying the relationship between
the sample size and the number of observed species.
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complex microbiota. Additionally, there is no significant
difference between the species richness between the
three time points, though there is a trend for more bac-
terial richness in the time points during and after inocu-
lation than in the time points before inoculation.
The most abundant genus in the nasopharyngeal

microbiota across samples was Alloiococcus (21.2% of
total abundance), followed by Corynebacterium (14.7%),
Staphylococcus (8.9%), Haemophilus (5.3%), Propioni-
bacterium (4.6%), and Streptococcus (3.2%). All other
classified OTUs belonged to genera comprising less
than 2% of the total abundance. It should be noted that
these abundances reflect total abundance across all
Figure 5 Nasopharyngeal microbiota is similar to neighboring body p
analysis (PCoA) was performed using the unweighted UniFrac distance ma
points. Each sample is represented by a point with NLF (n = 27) in green, g
canal (n = 44) in red, nostril (n = 46) in purple, hair (n = 14) in orange, and
samples. Taxonomic composition varied widely between
samples (Additional file 2).
We compared the microbiota of the nasopharynx (NLF

samples) to those of other body sites including the gut, oral
cavity, external auditory canal, nostril, hair, and adenoid
using PCoA (Figure 5; Additional files 9 and 10). For the
purpose of comparison, only the NLF samples taken prior
to inoculation were included for this analysis. The micro-
biota of the nasopharynx is most similar to the external
auditory canal, nostril, hair, and adenoid. The gut and oral
cavity are distinct from the rest of the samples. When we
used PCoA to compare the NLF samples before, during,
and after infection; infected versus not infected; ill versus
not ill; and by route of infection, we saw no distinct differ-
ences in the samples (Additional files 11 and 12). When
looking at the PCoA to compare NLF samples between
each subject (Additional file 11), there was no distinct clus-
tering by subject. When comparing NLF samples within
each subject (Additional file 12), there was also no distinct
clustering. Unifrac distances between samples from differ-
ent individuals was significantly greater than the distances
between samples from the same individual (Figure 6A).
Inter-individual Unifrac distances were not significantly
different between infected and not infected subjects
(Figure 6B).

Bacterial community structure of infected and not
infected subjects
The community structure of bacteria in the NLF samples
of infected (n = 7) and not infected (n = 3) subjects were
compared at the genus level. Both groups showed similar
arts, but distinct from gut and oral cavity. Principal coordinates
trix using nasal lavage fluid (NLF) samples from pre-inoculation time
ut (n = 45) in dark blue, oral cavity (n = 46) in yellow, external auditory
adenoids (n = 69) in light blue.



Figure 6 Unifrac distance comparisons. (A) Unweighted Unifrac distances between samples from different individuals (inter-individual) and the
distances between samples from the same individual (intra-individual). (B) Inter-individual unweighted Unifrac distances compared between
infected and not infected subjects. P-values displayed are the results of Mann-Whitney Wilcoxon tests.
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patterns of genera distribution (Figure 7A), but there were
significant differences (P = 0.031) in the overall community
diversity (Chao1 index) between infected and not infected
subjects (Figure 7B). The Mann-Whitney Wilcoxon test
was used to compare the relative abundances between
infected and not infected samples of all genera comprising
1% or more of the total abundance across samples.
Significant differences were detected in two genera
(Neisseria and Propionibacterium) after using the Benjamini
and Hochberg false discovery rate correction for multiple
comparisons (Table 2). Prior to correction for multiple
comparisons, the genus Haemophilus was significantly less
abundant in the infected samples, suggesting a potential as-
sociation that could be further investigated with additional
samples.

Discussion
This study is the first to survey and describe the micro-
biota of the nasopharynx in healthy adults during a
rhinovirus challenge. We found a highly complex
microbiome that varied between individuals, and
significant differences in two genera (Neisseria and Pro-
pionibacterium) between infected and not infected indi-
viduals. Strengths of our study include a controlled
rhinovirus study, longitudinal analyses, and use of high-
throughput sequencing technology. Limitations include
the modest sample size and sequencing depth.
The results from this survey have been compared to

the results of the microarray study [22] using the same
NLF samples. Due to the design of the microarray study,
it can only detect the presence or absence of bacterial
species on the panel included, while the 16S method is
able to determine relative abundance of all bacteria in
the sample. We can only compare the number of
mismatches in those genera that the microarray was able
to detect (n = 8). Out of the total 96 samples, the per-
cent of samples which were detected in one study but
not the other ranged from 4% to 53% in each genus.
These results can be due to two aliquots from the same
NLF sample extracted using two different methods. It
could also be due to the microarray detecting species in
very low abundance because of enrichment due to PCR.
Due to the level of complexity of the nasopharyngeal

microbiota, it is possible that significant changes in the
bacterial community before, during, and after infection
could likely be detected with deeper sequencing and/or
recruiting more subjects. Some large changes in relative
abundances of phyla within individuals at close time
points were observed. It will be important to investigate
whether these reflect true biological fluctuations in this
dynamic ecological niche or low microbial density via
greater sequencing depth. Additionally, using true shot-
gun metagenomics and taxonomic classification [36] to
distinguish bacteria at the species level may allow signifi-
cant changes in pathogenic and opportunistic bacteria
during infection to be discovered. Information on the
species level is especially important because, in numer-
ous cases, there are pathogenic and commensal bacteria
within the same genus, for example, Haemophilius influ-
enzae, a known pathogen, and its closest phylogenetic
relative Haemophilus haemolyticus, a commensal bacter-
ium [37,38].
PCoA of the nasopharyngeal microbiota samples along

with samples from various other body habitats shows lo-
gical clustering with similar locations throughout the
URT. The nasopharynx, adenoid, ear, hair, and nostril
samples all formed a single large cluster. While this clus-
ter was distinct from the separate clusters formed by the



Figure 7 Stacked taxonomic bar chart (A) with box and whisker
plot (B) - Shannon diversity index (Not infected (n = 29) versus
Infected (n = 67). Operational taxonomic units (OTUs) were
categorized as “Unclassified”, if RDP classifier could not classify them
to at least the family level. Genera that could be classified to the
family level, but not the genus level were categorized by the family
name, followed by “_Unclassified” to indicate that the genus is not
known. All genera comprising less than 1% of the total abundance
(whether classified or not) were combined into the “Other
<1%” category.
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gut and oral samples, there was not a clear differenti-
ation between the other body sites. Bacterial niches in
close proximity have some sharing of bacteria due to
physiological events like sneezing and nose blowing
[39-41], which could help to explain the overlap between
the microbiota of the nasopharynx and other proximal
body habitats. Differences in age and health status of
subjects along with season of sample collection may im-
pact results. Participants in the Costello, et al. study in-
cluded healthy adults, with two samples collected during
June and two during the following September [34].
Adenoids in the Ren, et al. study were from children
undergoing adenoidectomy, collected year round [24].
Demographic data was not accessible because these were
discarded surgical specimens. NLF samples in our study
were collected during the fall season in healthy adults.
Future studies will need to sample complementary
niches in the URT to understand coordinated changes of
bacterial communities in response to viral infection.
In our study, we surveyed the microbiota of the

healthy nasopharynx during viral infection and
cataloged a highly diverse population of microbes. The
nine dominant phyla of the adenoid microbiota [24]
contained the dominant phyla found in our study in-
cluding Firmicutes, Proteobacteria, and Actinobacteria.
We found the same dominant phyla as a study of naso-
pharyngeal microbiota of healthy Chinese adults [5].
We did not observe an effect of viral infection on mi-
crobial composition, which is likely due to a small popu-
lation, insufficient sequencing depth to detect the full
complexity of the microbiota, and the inability to clas-
sify OTUs to the species level. In addition to deeper se-
quencing to achieve species level information, shotgun
metatranscriptomics could be used as a complementary
approach, to characterize the changes in gene expres-
sion that the invasion of a virus can elicit in a microbial
community [42]. This information would help us to ad-
dress the open question of the functional role that the
microbiota plays in viral infections. It is uncertain, for
instance, whether the microbiota can help to protect the
host from viral infection by providing a barrier or by ini-
tiating an immune response. Alternatively, it is also pos-
sible that the microbiota can aid a virus in invading the
host mucosa. One metagenomic study of the airway
DNA virome of cystic fibrosis (CF) and non-CF individ-
uals showed that the metabolic profiles of CF and non-
CF individuals were distinctly different [43]. This study
used the approach of finding target pathways that have
altered expression levels in the diseased state, rather
than taxonomic composition differences of the micro-
biota to discover novel therapeutic strategies. Our study
has highlighted the highly diverse microbial compos-
ition of the adult nasopharynx in both healthy individ-
uals and during viral infection.
Our finding that each individual had a unique naso-

pharyngeal microbiota broadened our views on how to
study and treat URTIs. Most prior studies have looked
at a population of individuals with a specific URTI or
complication (that is, sinusitis) and sampled each indi-
vidual for specific pathogens. From the findings of such
studies, conclusions may be drawn as to which patho-
gens are likely involved and targeted treatments may be
created. However, with a new understanding of the com-
plexity of the NP microbiota at the individual level, we
can apply this understanding by recognizing that future
studies need to sample patients with URTIs or complica-
tions at baseline comprehensively, and then during acute
disease to determine which bacteria respond, expand,
disappear. This approach is anticipated to lead to



Table 2 Comparisons of genus abundance between infected and uninfected samples, using the Mann-Whintey
Wilcoxon test

Mean Relative Abundance

Genus Infected Not infected W P-value P-adj

Alloiococcus 0.237 0.155 1198 0.071 0.227

Anaerococcus 0.004 0.013 801 0.137 0.274

Bifidobacterium 0.010 0.004 975.5 0.969 0.970

Corynebacterium 0.141 0.162 946 0.842 0.970

Enterobacteriaceae_unclassified 0.003 0.043 864 0.343 0.534

Finegoldia 0.015 0.013 1166 0.113 0.263

Haemophilus 0.032 0.104 709 0.020 0.095

Lactococcus 0.013 0.016 898.5 0.227 0.398

Moraxella 0.009 0.002 976 0.970 0.970

Neisseria 0.001 0.011 667 0.001 0.020

Peptoniphilus 0.009 0.003 1176.5 0.081 0.227

Propionibacterium 0.058 0.018 1315.5 0.006 0.042

Staphylococcus 0.101 0.061 964.5 0.959 0.970

Streptococcaceae_unclassified 0.027 0.043 871.5 0.417 0.583

P-values < =0.05 (with and without false discovery rate correction) are bolded.
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improved understanding of disease and more tailored
approaches to treatments of these diseases.

Conclusions
In conclusion, we have conducted a longitudinal survey
of the nasopharyngeal microbiota of healthy adults during
rhinovirus challenge. This microbiota is highly diverse and
varies greatly between individuals. The microbiota of each
individual differs between time points throughout the viral
challenge, though variability within individuals was less
than between individuals. No significant changes in bac-
terial presence or relative abundance between time points
were found due to viral infection. Further studies are
needed to further characterize this microbiota and the re-
sponse of the microbiota to viral infection down to the
species level using deeper sequencing. Additionally, meta-
genomic sequencing will give us insight into transcrip-
tional changes of the host and microbiota during viral
infection. With this knowledge, we will better understand
the pathogenesis of URT infections.

Availability of supporting data
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Additional file 6: Excel file. Analysis of variance (ANOVA) test of
dominant phyla between subjects. ANOVA to test the null hypothesis
that the relative abundances (log transformed values) of the dominant
phyla were the same between subjects in infected and not infected
groups.

Additional file 7: Compressed file. Alpha diversity_150. Alpha diversity
analyses including rarefaction plots. Plots go to minimum sequences/
sample (approximately 150).

Additional file 8: Compressed file. Alpha diversity_1000. Alpha
diversity analyses including rarefaction plots. Plots exclude samples with
fewer than the mean sequences/sample (approximately 1000).

Additional file 9: Compressed file. Beta Diversity_All body sites_
pre-inoculation nasal lavage fluid (NLF). Beta diversity (both weighted
and unweighted Unifrac) analyses/emperor plots for all body sites,
including pre-inoculation nasal wash samples.

Additional file 10: Compressed file. Beta Diversity_All body sites_all
nasal lavage fluid (NLF). Beta diversity (both weighted and unweighted
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Unifrac) analyses/emperor plots for all body sites, including all nasal wash
samples.

Additional file 11: Compressed file. Beta Diversity_ nasal lavage fluid
(NLF) samples only. Beta diversity (both weighted and unweighted
Unifrac) analyses/emperor plots for the nasal wash data only.

Additional file 12: Compressed file. Beta Diversity_ nasal lavage fluid
(NLF) samples only_by subject. Beta diversity (both weighted and
unweighted Unifrac) analyses/emperor plots for the nasal wash data only,
split up by subject.
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