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Linear growth faltering in infants is associated
with Acidaminococcus sp. and community-
level changes in the gut microbiota
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Abstract

Background: Chronic malnutrition, termed stunting, is defined as suboptimal linear growth, affects one third of
children in developing countries, and leads to increased mortality and poor developmental outcomes. The causes
of childhood stunting are unknown, and strategies to improve growth and related outcomes in children have only
had modest impacts. Recent studies have shown that the ecosystem of microbes in the human gut, termed the
microbiota, can induce changes in weight. However, the specific changes in the gut microbiota that contribute to
growth remain unknown, and no studies have investigated the gut microbiota as a determinant of chronic malnutrition.

Results: We performed secondary analyses of data from two well-characterized twin cohorts of children from Malawi and
Bangladesh to identify bacterial genera associated with linear growth. In a case-control analysis, we used the graphical
lasso to estimate covariance network models of gut microbial interactions from relative genus abundances and
used network analysis methods to select genera associated with stunting severity. In longitudinal analyses, we determined
associations between these selected microbes and linear growth using between-within twin regression models to adjust
for confounding and introduce temporality. Reduced microbiota diversity and increased covariance network density were
associated with stunting severity, while increased relative abundance of Acidaminococcus sp. was associated with future
linear growth deficits.

Conclusions: We show that length growth in children is associated with community-wide changes in the gut microbiota
and with the abundance of the bacterial genus, Acidaminococcus. Larger cohorts are needed to confirm these findings
and to clarify the mechanisms involved.
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Background
Undernutrition in early childhood underlies 45 % of mortal-
ity in children aged under 5 years worldwide, resulting in
3.1 million deaths annually [1]. Ponderal and linear growth
faltering in children are viewed as indicators of acute and
chronic malnutrition, respectively, and are often measured
in terms of z-scores (i.e., deviations in attained growth from
a reference population median). Children whose length- or
height-for-age z-scores (LAZ or HAZ) is more than 2
standard deviations below the reference population median
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are termed stunted. Stunting has short-term effects on
morbidity and mortality [2], leads to poor motor devel-
opment and cognition, and reduces educational and
economic attainment over the life-course [1–3]. An es-
timated 165 million children under 5 years old were
stunted in 2011 [1], representing almost one third of
children in this age group in low- and middle-income
countries (LMICs), hindering developmental potential
and human capital of entire societies.
Most linear growth faltering occurs in the period from

conception to 2 years of age, and restoration of deficits in
linear growth beyond that period is limited. Interventions
to prevent stunting are therefore required early in the life-
course. Social, economic, and educational factors, as well
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as infectious diseases and poor diet in early childhood all
contribute to linear growth faltering [1, 4–7]. Further-
more, a number of studies have shown that small intes-
tinal inflammation and permeability are associated with
poor linear growth [8–11]. This subclinical gut pathology
has been termed environmental enteric dysfunction (EED)
and is acquired early in life among children living in un-
sanitary conditions [5, 12–15]. Reduced intestinal barrier
function caused by EED enables bacterial translocation
to occur, leading to chronic systemic inflammation, which
is associated with reduced insulin-like growth factor 1
(IGF-1) and linear growth faltering [16]. However, the
pathophysiology of stunting is not well understood, and
currently available interventions, which focus mostly on
dietary supplementation and prevention of diarrhea, have
only a modest impact [17]. Mechanisms underlying stunt-
ing therefore need to be better defined so that tractable
pathways for intervention can be identified.
Recent studies suggest a role of the intestinal microbiota

in child growth. The intestinal microbiota is an ecosystem
of gut microbes that helps to modulate nutrient harvesting
from the diet, mucosal inflammation, and the immune
response in the gut [18–22]. Observational studies in
humans [23–26] have demonstrated a relationship between
the intestinal microbiota and severe acute malnutrition
(SAM). A causal effect of the intestinal microbiota on
weight has also been shown using experimental animal
models [27, 28]. However, the specific changes in the
microbiota that contribute to growth remain unclear,
and no studies to date have investigated the intestinal
microbiota as a determinant of linear growth.
We performed a secondary analysis of publicly available

data from two twin cohorts of undernourished children
from low-income settings (Malawi and Bangladesh)
[25, 27], to identify bacterial genera whose relative abun-
dances explain linear growth. Previous analyses from these
cohorts showed that acute malnutrition was associated with
differences in gut microbiota functional gene abundances
[27] and maturation [25]. Our analyses aimed to deter-
mine changes in gut microbiota networks and relative
abundance associated with stunting status, in order to iden-
tify potential microbiota members that contribute to linear
growth faltering (i.e., chronic malnutrition). We hypothe-
sized that differences in the relative abundance of identified
genera are independently associated with prospective defi-
cits in linear growth between siblings.

Results and discussion
Cohort description
Data were provided for 44 children in the Malawi co-
hort, who were median 10.2 months (interquartile range
(IQR) 4.6, 14.5) old at baseline and followed for median
9.7 months (IQR 4.1, 14.5). Baseline HAZ and weight-
for-height z-scores (WHZ) were −2.95 (IQR −3.70, −2.18)
and −0.46 (IQR −0.87, −0.13), respectively. Anthropomet-
ric, epidemiological, and DNA whole genome shotgun
sequencing data were provided for median 7 (IQR 4, 8)
follow-up visits per child, for a total of 308 longitudinal
observations (Additional file 1: Table S1). Data were
available for 25 children in the Bangladesh birth cohort,
who were 0.3 months (IQR 0.19, 0.63) old at baseline
and followed for median 14.5 months (IQR 11.9, 20.7).
Baseline HAZ and WHZ were −3.75 (IQR −4.54, −2.68)
and −0.57 (IQR −1.51, 0.35), respectively. Anthropometric,
epidemiological, and relative abundance data were pro-
vided for median 17 (IQR 13, 22) follow-up visits per
child. Randomly excluding one child from the set of trip-
lets for between-within regression analyses provided 429
longitudinal observations.

Description of cases and controls
In the Malawi cohort, 13 children had a follow-up visit
that met incident case criteria for severe stunting, and
11 had a follow-up visit that met control criteria for
stunting (see “Methods” for details on case and control
definitions). Six eligible cases were co-twins, and six eligible
controls were also co-twins. In the Bangladesh cohort, eight
children had a follow-up visit that met incident case cri-
teria, and ten had a follow-up visit that met control criteria.
Four eligible cases were co-twins, and ten eligible controls
were co-twins. For each pair of co-twins that both met case
criteria, we randomly chose one sibling as a case to avoid
within-group correlations [29]. The same was done for
pairs of co-twins that both met control criteria. This
provided ten cases and eight controls from Malawi, and
six cases and five controls from Bangladesh (Fig. 1).
Cases from the Malawi cohort had lower HAZ (−3.08
v −2.45, p < 0.01) and were younger compared to controls
(10.8 v 19.6 months, p = 0.05). Similarly, in the Bangladesh
cohort, case HAZ was −3.17 v −2.63 for controls, p < 0.01,
and age was 2.9 v 11.0 months, p < 0.01. WHZ was also
higher in Bangladesh cases compared to controls (0.53
v −0.64, p = 0.05) (Additional file 1: Table S1).

Genus relative abundance and microbiota diversity
Roche 454 shotgun whole genome sequence data were
provided for median 76,700 (IQR 55,200, 103,000) reads
per sample in the entire Malawi cohort, while relative
abundance data from the Bangladesh cohort were quan-
tified from a median 20,192 (IQR 16, 155, 24,632) reads.
In both cohorts, a similar number of reads were avail-
able for cases and controls (Additional file 1: Table S1).
In the Malawi cohort, Bifidobacterium (42.8 %) and

Prevotella (22.7 %) were the most abundant genera iden-
tified, followed by Bacteroides (3.7 %), Faecalibacterium
(3.14 %), Collinsella (1.0 %), Lactobacillus (0.6 %), and
Blautia (0.6 %). In the Bangladesh cohort, Bifidobacterium
(46.2 %), Streptococcus (4.8 %), Lactobacillus (2.6 %), and
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Fig. 1 Flow chart of case and control selection from the Malawi twin cohort for network analysis (left) and flow chart of case and control
selection from the Bangladesh twin cohort for network analysis (right)
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Escherichia/Shigella (1.8 %) were the most abundant gen-
era, followed by Collinsella (0.5 %). These were also the
most prevalent genera identified in fecal samples collected
during follow-up (Additional file 2: Table S2) and are con-
sistent with the literature on microbiota in infants and
with different diets [30–35]. In the Malawi cohort, Prevo-
tella (18.1 v 42.9, p = 0.06), Bacteroides (1.9 v 7.4, p =
0.01), Eubacterium (0.0 v 2.4, p < 0.01), and Blautia (0.6 v
2.4, p = 0.03) showed the largest decrease in relative abun-
dance in cases v controls (Additional file 3: Table S3). In
the Bangladesh cohort, Lactobacillus (0.1 v 8.7, p < 0.01),
Olsenella (0.0 v 0.8, p < 0.01), Dorea (0.0 v 0.7, p = 0.05),
Blautia (0.0 v 0.2, p < 0.01), and unclassified genera in the
Coriobacteriaceae (0.0 v 0.3, p < 0.01) and Enterococcaceae
(0.0 v 0.1, p = 0.08) families showed the largest decrease
in relative abundance in cases v controls. Lesser, but
statistically significant depletion of Anaerococcus, Dialister,
Faecalibacterium, Megamonas, Weissella, Megasphaera,
and unclassified genera in the Lachnospiraceae, Lactoba-
cillaceae, and Veillonellaceae families were also observed
in Bangladesh cases (Additional file 4: Table S4). Case
microbiota were less diverse than controls in both cohorts
(Malawi: 0.5 v 0.7, p = 0.02; Bangladesh: 0.5 v 0.7, p = 0.05)
(Additional file 1: Table S1).

Network indices
Network density (i.e., the probability that two randomly
selected microbes co-vary) was greater in case compared
to control networks in both cohorts (Malawi: 0.56 v
0.25, p = 0.08; Bangladesh: 0.56 v 0.33, p = 0.42), indicat-
ing a greater potential for information flow in case
microbiota. We also observed that the density of edges
from aerobes to anaerobes was greater in the case net-
work in both populations (Figs. 2 and 3).
In the Malawi cohort, differences in degree centrality

were observed for Acidaminococcus (0.6 v 0.0, p = 0.06),
Bacteroides (0.6 v 0.2, p = 0.03), Brachyspira (0.6 v 0.0,
p = 0.09), Haemophilus (0.6 v 0.2, p = 0.07), and unclassified
genera in the Neisseriaceae (0.6 v 0.2, p = 0.08) and Chla-
mydiaceae (0.6 v 0.0, p = 0.05) families in case v control
networks (Additional file 3: Table S3). In the Bangladesh
cohort, Acinetobacter (0.5 v 0.0, p = 0.03), Anaerococcus
(0.7 v 0.2, p = 0.09), Blautia (0.7 v 0.2, p = 0.08), Coprococ-
cus (0.5 v 0.0, p = 0.03), Geobacillus (0.6 v 0.0, p = 0.09),
Lactococcus (0.6 v 0.0, p = 0.02), Micrococcus (0.5 v 0.0,
p = 0.05), Proteus (0.6 v 0.0, p = 0.09), and Sarcina (0.6
v 0.0, p = 0.09) were more central in the case network
(Additional file 4: Table S4).

Between-within models
Thirty of 164 genera identified across both populations
were selected, based on statistically significant differences
in relative abundance or centrality, to estimate their asso-
ciation with future HAZ using multivariable between-
within regression models. Acidaminococcus, of the phylum
Firmicutes, was the only genus associated with HAZ in



Fig. 2 Graphical models of Malawi case and control microbiota networks constructed using glasso. (Top) Case networks. (Bottom) Control networks.
(Left to right) Associations found in both groups, cases only and controls only. Solid and dotted edges indicate positive and negative associations. Blue
indicates associations among aerobic and facultative anaerobic genera. Orange indicates associations among anaerobic genera. Gray indicates
associations from aerobic/facultative anaerobic to anaerobic genera. Node size is proportional to median abundance

Fig. 3 Graphical models of Bangladesh case and control microbiota networks constructed using glasso. (Top) Case networks. (Bottom) Control
networks. (Left to Right) Associations found in both groups, cases only and controls only. Solid and dotted edges indicate positive and negative
associations. Blue indicates associations among aerobic and facultative anaerobic genera. Orange indicates associations among anaerobic genera.
Gray indicates associations from aerobic/facultative anaerobic to anaerobic genera. Node size is proportional to median abundance
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longitudinal analyses of both cohorts. In the Malawi
cohort, a 0.1 % difference in the relative abundance of
this genus between co-twins was associated with a 0.08
lower height-for-age z-score (90 % confidence interval
(CI) −0.12, −0.04) at the subsequent study visit in the
co-twin who had the greater Acidaminococcus abundance
compared to their sibling. In the Bangladesh cohort, a
0.1 % difference in the relative abundance of this genus
between co-twins was associated with a 0.19 lower HAZ
(90 % CI −0.25, −0.13) at the subsequent visit in the co-
twin with the greater Acidaminococcus abundance. These
associations remained significant after controlling for mul-
tiple hypothesis testing (Table 1).
The literature on Acidaminococcus sp., with which we

can infer its role in the human gut and its potential im-
pact on linear growth in children, is sparse. Only two
species in this genus have been described [36, 37]. One
notable characteristic of these described species is their
ability to consume glutamate as their sole source of car-
bon and energy. In porcine models, dietary glutamate is
an essential oxidative fuel for the intestinal epithelium
[38, 39], which undergoes a continuous process of re-
generation and has high energy demands. Estimates for
the amount of glutamate completely metabolized in the
gut range from 64 [39] to 90 % [38]. As such, glutamate
is important to gut epithelium restitution. The beneficial
effect of glutamate on restoration of gut barrier function
Table 1 Relative genus abundance associations with future HAZ est
models for genera with a significant difference in degree centrality b

Malawi

Genus Abundance
differencea

Coefficient (90 % CI) p value

Acidaminococcus 0.40 −0.080 (−0.124, −0.037) <0.01

Acinetobacterb

Anaerococcusb

Bacteroides 4.51 0.000 (−0.001, 0.001) 0.67

Blautia 2.51 −0.001 (−0.003, 0.002) 0.64

Brachyspira 1.03 0.003 (−0.002, 0.007) 0.32

Chlamydiaceae_uncl 0.37 −0.012 (−0.054, 0.030) 0.65

Coprococcus 0.35 −0.006 (−0.061, 0.049) 0.87

Geobacillusb

Haemophilus 0.76 0.001 (−0.009, 0.010) 0.92

Lactococcusb

Micrococcusb

Neisseriaceae_uncl 0.22 −0.027 (−0.103,0.048) 0.56

Proteusb

Sarcinab

Coefficients are expressed as the average difference in future HAZ per 0.1 % differe
90 % CI 90 % confidence interval, HAZ height-for-age z-score
aMedian difference in relative abundance between siblings in a twin pair
bModels could not be fit in the Malawi cohort because these genera were only iden
has been observed using in vitro cell lines [40–42], as
well as in animal models of glutamate supplementation
[43–46]. Glutamate is an important precursor and inter-
mediate in the synthesis and metabolic recycling of other
amino acids, and with the urea cycle, in the gut
[38, 39, 47, 48]. Amino acids closely interlinked with
glutamate metabolism include arginine, which also con-
tributes to epithelium restitution, preserves barrier func-
tion, prevents accumulation of ammonia in the gut, and
attenuates intestinal tissue damage [49–51], and gluta-
thione, which protects the epithelium from damage by
oxidative stress [52, 53]. Altogether, major functions of glu-
tamate in the gut appear to be its role as a key intermediate
in gut amino acid metabolism and nitrogen cycling, main-
tenance of epithelial integrity, and preservation of barrier
function. Biomarkers of intestinal injury and repair have
been associated with lower HAZ in LMICs [54]. Impaired
gut barrier function is characteristic of EED, which is also
associated with poor linear growth [8–11].
This evidence led us to pose the a posteriori hypothesis

that glutamate fermentation by microbes is negatively asso-
ciated with future HAZ. We tested this hypothesis using
KEGG enzyme abundance data provided for the Malawi
cohort. We fitted between-within regression models where
the relative abundance of critical genes utilized in glutamate
fermentation pathways by microbes [55] was the exposure
of interest. We found that the abundance of genes encoding
imated using multivariable between-within twin regression
etween cases and controls

Bangladesh

Adjusted
p value

Abundance
differencea

Coefficient (90 % CI) p value Adjusted
p value

0.02 0.30 −0.191 (−0.253, −0.129) <0.01 <0.01

0.00 −0.032 (−0.159, 0.094) 0.68 0.89

0.01 −0.182 (−0.915, 0.551) 0.68 0.89

0.89 0.29 −0.001 (−0.002, 0.001) 0.63 0.89

0.89 5.00 0.001 (0.000, 0.001) 0.07 0.45

0.89

0.89

0.92 4.33 −0.003 (−0.010, 0.003) 0.38 0.89

0.01 0.266 (−0.154, 0.685) 0.30 0.89

0.92

0.04 −0.002 (−0.007, 0.004) 0.59 0.89

0.46 −0.107 (−2.183, 0.169) 0.16 0.94

0.89 0.01 0.001 (−0.001, 0.004) 0.46 0.64

0.00 −0.002 (−0.037, 0.033) 0.94 0.94

5.00 0.000 (0.000, 0.001) 0.54 0.89

nce in abundance between siblings

tified in ≤2 samples
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glutamate dehydrogenase and α-keto-glutarate reductase
was negatively associated with future HAZ. For glutamate
dehydrogenase and α-keto-glutarate reductase, respectively,
a one unit greater gene abundance in one co-twin com-
pared to their sibling was associated with a −0.17 (90 %
CI −0.29, −0.04, p = 0.03) and −0.08 (90 % CI −0.16, −0.01,
p = 0.07) smaller HAZ in that co-twin at the subsequent
study visit. These are the first two enzymes involved in the
hydroxyglutarate fermentation pathway used by Acidami-
nococcus fermentans for glutamate fermentation; some
species in the Peptoniphilus, Fusobacterium, and Clos-
tridia families can also utilize this pathway [55, 56].
In the Bangladesh cohort, we also observed a −0.003

(90 % CI −0.004, −0.002) lower HAZ and a 0.001 (90 %
CI 0.000, 0.001) greater HAZ at the subsequent visit in
co-twins who had a 0.1 % greater abundance of Weissella
or Blautia, respectively, compared to their siblings (Table 1
and Additional file 5: Table S5). The association with
Blautia was not statistically significant after controlling
for multiple hypothesis testing.

Discussion
In these analyses, we show that less diverse gut microbiota
with greater covariance network density are associated with
stunting severity, and an increase in the relative abundance
of Acidaminococcus sp. is associated with lower future
linear growth in two very different, well-characterized
cohorts of children living in low-income settings. We
applied a novel approach, utilizing a statistical learning
method combined with network analysis and a permutation
test to determine differences between microbiota com-
munities of stunted and severely stunted children from
these cohorts, and applied longitudinal epidemiological
analysis methods to investigate whether changes in the
genera identified were associated with future linear growth.
In our longitudinal models, greater abundance of Acid-

aminococcus was associated with a future deficit in HAZ
between co-twins in both cohorts. Acidaminococcus sp.
can utilize glutamate as their sole source of carbon and
energy. Greater abundance of genes encoding the first two
enzymes in the hydroxyglutarate pathway for glutamate
fermentation was also associated with a future HAZ def-
icit. Overgrowth of bacteria that can ferment glutamate
may have a deleterious effect on linear child growth, po-
tentially as a result of glutamate’s importance in amino
acid metabolism, nitrogen balance, and barrier function.
This observation may also reflect the state of malnutrition
in these cohorts of children, as the microbiota turns to
host-associated proteins for energy. The weak negative as-
sociation between Weissella and future HAZ observed in
the Bangladesh cohort was not detected in the Malawi
children and needs to be confirmed in other studies.
The impact of Acidaminococcus on growth may also

involve its microbial relationships. Network analysis
provides a useful framework for identifying important
bacteria by their number of relationships [57–59]. One
study used correlation network centrality measures to
identify bacteria that successfully promote the growth
conditions of a previously uncultivable microorganism
[59]. In the Malawi cohort, Acidaminococcus showed a
large increase in degree centrality in cases, indicating a po-
tential increase in its influence on microbiota composition.
The possibility that rare commensals can promote patho-
logical states based on their relationships with other
microbes, despite their low abundance, has been proposed
[60] and is in line with the notion of keystone organisms
[60–62]. Although an increase in Acidaminococcus cen-
trality was not observed in the Bangladesh cases, ran-
dom sampling error introduced by selecting cases and
controls from such a small population (n = 25), lacking
truly healthy control subjects of normal length, could
bias how representative the case and control exposure
histories were in that cohort. Larger epidemiological
and experimental investigations are needed to confirm
these findings and the mechanisms involved.
Finally, in both populations, we observed greater dens-

ity in case networks that was only statistically significant
in the Malawi cohort and a larger proportion of connec-
tions from aerobes to anaerobes in cases. An increase in
the average number of connections with worsening nu-
tritional status was also reported in children with SAM
using correlation networks [23], and greater connectivity
between aerobic and anaerobic bacteria was reported
for the microbiota correlation network of children with
moderate-to-severe diarrhea compared to non-diarrheal
controls [63]. Simulation studies suggest that increased
density may provide greater resource flow to nodes that
are normally of low importance and may reduce the effi-
ciency of resource flow out of the system [64, 65].
In construction of our graphical models, we adjusted for

potential confounders that were reported (e.g., age and
WHZ) but could not control for confounding when
comparing case and control network indices. These dif-
ferences may, therefore, still be confounded by age or
by other unreported factors such as infant diet, maternal,
or environmental variables, since controls were older than
cases in both populations, and microbiota composition
and structure may relate to the timing of complementary
food introduction or environmental exposures. We cannot
dismiss the possibility of spurious associations in our
graphical models due to compositional effects [66], re-
sidual confounding by diet or other factors, and small
sample size. The resulting “noise” limited our ability to
detect differences between case and control networks,
and we must exercise caution in interpreting pairwise
associations as true ecological interactions.
The between-within multivariable regression models,

however, control for unreported confounders that are
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shared between co-twins (e.g., fetal, maternal, and envir-
onmental), other factors that are identical between twins
such as age at each visit and length of follow-up, as well
as reported confounders that differ between siblings
(e.g., diarrhea and infant sex). Data on any antibiotic
use and diet at each visit were only provided for the
Bangladesh cohort. Including antibiotic use and breast-
feeding (without the use of formula or solid foods) in
the between-within models did not change the results.
The association between Acidaminococcus and linear
growth was reproduced in both populations, suggesting
that residual confounding due to other unreported factors
that may differ between siblings, such as HIV status (these
data were not available from either cohort), is unlikely.
We also lagged these models so that changes in exposure
preceded changes in growth. The temporality adds cred-
ibility to our main findings that an increase in Acidamino-
coccus and glutamate-fermenting microbes are associated
with future growth deficits. Measurement error in quanti-
fication of relative abundance is unavoidable in microbiota
studies. Since any such error is unlikely to be systemat-
ically related to future growth deficits between siblings,
measurement error in these analyses would attenuate
true associations with growth, further reducing our power
in these small cohorts. Finally, the original cohort studies
were not designed to investigate stunting. The average
child in these populations already suffered from severe
growth restriction at study entry, and these data may not
elucidate the potential negative effect of microbiota dysbio-
sis or the protective effect of certain genera in children who
are of normal length but still at risk of becoming stunted.
This may apply particularly to the case-control analyses, for
which there were no healthy, non-stunted controls.

Conclusions
Our study applied a novel use of statistical learning and
network methods to identify and interpret changes in
graphical models of microbiota covariance patterns. They
suggest that reduced microbiota diversity and changes in
covariance network density are associated with stunting
severity and that overgrowth of Acidaminococcus, and
possibly other glutamate-fermenting microbes, may con-
tribute to future growth deficits in already malnourished
children. Our findings demonstrate the potential role that
certain types of commensals in the gut may have on linear
growth deficits. Larger primary studies in other settings,
designed specifically to evaluate stunting in infants, are
needed to confirm these findings, and experimental stud-
ies are needed to clarify the mechanisms involved.

Methods
Study sample
Demographic, clinical, and anthropometric data from a
cohort of 22 twin pairs from Malawi, and a second cohort
of 11 twin pairs plus one set of triplets from Bangladesh,
were made available at http://gordonlab.wustl.edu/Supp-
Data.html. Details are provided in Smith et al. [27] and
Subramanian et al. [25]. In brief, 22 twin pairs ages birth
to 3 years were selected from among 317 available pairs in
five rural communities in Malawi for longitudinal analyses
of their gut microbiota. Twin pairs were selected if at least
four fecal samples were available from each co-sibling.
The 12 sets of siblings from Bangladesh were selected
from among mothers with multiple pregnancies at a child
health and family planning clinic in Dhaka and were
followed up for longitudinal gut microbiota evaluation. In
both twin cohorts, at each follow-up visit, length/height
and weight were measured, and fecal samples were
collected along with data on age in months and diarrhea
in the 7 days prior to or at the visit for Malawi and
Bangladesh, respectively. Anthropometric measures were
provided as height-for-age and weight-for-height z-scores.
In the Malawi cohort, if at least one co-twin developed
SAM, as defined using WHO criteria [67], both were
treated with ready-to-use therapeutic food (RUTF).
Whole genome sequencing and annotation
Whole genome sequence datasets from the Malawi cohort
were made available through the European Bioinformatics
Institute at http://www.ebi.ac.uk/ena/data/view/ERP00191
1&display=html [27] and MG-RAST (http://metagenomi
cs.anl.gov/) [30]. Relative genus abundances (expressed as
a percentage of the total amount of DNA assigned to a
bacterial taxon in each stool sample) were estimated
from shotgun reads using MetaPhlan [68]. Relative op-
erational taxonomic unit (OTU) abundance data from
the Bangladesh cohort were used as provided at http://
gordonlab.wustl.edu/SuppData.html and were analyzed
at the genus level. Extraction of genomic DNA from
fecal samples, DNA sequencing, processing and filtering of
reads, and, for Bangladesh data, OTU picking and taxon
assignment have been described [25, 30]. The Simpson di-
versity index was calculated as a measure of alpha diversity
in all samples using vegan [69]. Simpson diversity measures
the probability that two randomly selected microbes in a
sample will be from different taxa and provides a measure
of the number of different types of bacteria present.
Statistical analyses
Analyses were performed separately for the Malawi and
Bangladesh cohorts using two approaches. We first con-
ducted an analysis of unmatched cases and controls se-
lected from each cohort in order to identify changes in
microbiota networks and relative genus abundance associ-
ated with stunting status and to select genera for inclusion
in longitudinal analyses. Next, in longitudinal analyses, we
fitted multivariable regression models, using data available

http://gordonlab.wustl.edu/SuppData.html
http://gordonlab.wustl.edu/SuppData.html
http://www.ebi.ac.uk/ena/data/view/ERP001911&display=html
http://www.ebi.ac.uk/ena/data/view/ERP001911&display=html
http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
http://gordonlab.wustl.edu/SuppData.html
http://gordonlab.wustl.edu/SuppData.html
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at all follow-up visits for the entire cohort of children, to
control for confounding and to introduce temporality.
Case-control network analyses
Children in the Malawi and Bangladesh twin cohorts
had median baseline HAZ of −2.96 (IQR −3.68, −2.18)
and −3.75 (IQR −4.54, −2.68), respectively, indicating
that the majority were severely stunted at study entry
(Additional file 6: Figure S1). For the case-control analyses,
linear growth status was therefore defined as severely
stunted (HAZ ≤ −3, cases) or stunted (−3 < HAZ ≤ −2,
controls). For cases, the visit where a child first reached
HAZ ≤ −3 was selected, excluding children already se-
verely stunted at study entry. The subset of children
who were not siblings of cases and who had HAZ > −3
but ≤ −2 at the end of follow-up, regardless of their
baseline z-score, was selected as controls. Spurious in-
ferences can arise in the analysis of correlated data
[70]. Since methods to address correlations are not
available for the network analyses methods we imple-
mented, if both siblings in a pair met case or control cri-
teria, one was randomly chosen to avoid within-group
correlations [29], and data from only one visit were used
per child. Differences in anthropometric, demographic
and epidemiological measures, alpha diversity, and relative
abundance between cases and controls were evaluated
using the chi-squared test or by permutation test on the
median, as appropriate.
A supplemental approach to diversity indices for in-

vestigating the microbiota uses networks of pairwise cor-
relations between taxa as a model of microbe-microbe
interactions. In this representation, nodes are genera and
a link between two nodes represents a non-zero associ-
ation between two genera. This association is used as a
proxy for bacterial interaction (see Additional file 7 for
further information). An alternative to pairwise correla-
tions is to estimate an inverse covariance matrix from
genus abundances as a graphical model of important bac-
terial relationships. We generated these graphical models
separately for cases and controls using the graphical lasso
(glasso) [71]. The covariance associations estimated by the
glasso (i.e., the links between genera in each network) are
independent of all other taxa and covariates included in
the model. For each case and control network, we calcu-
lated graph density and the normalized degree centrality
of each genus [72] using igraph [73]. Differences in net-
work indices were assessed for statistical significance
by permutation. Specifically, children were randomly
reallocated between the case and control groups 1000
times. For each permutation, one network was estimated
per group and distributions of the difference in network
indices between case and control networks were generated
for statistical inference. Genera with significant differences
in degree centrality or relative abundance between cases
and controls were selected for longitudinal analyses.

Longitudinal analyses
After performing microbiota feature selection in the case-
control analyses, we fitted between-within regression
models [70, 74], using data for all follow-up visits from all
twin pairs in each cohort (regardless of their selection as
cases or controls), to investigate whether the relative
abundance of selected genera was associated with linear
growth. A between-within model allows estimation of the
effect that differences in exposure level (e.g., differences in
genus abundance) between siblings within a twin pair have
on their outcomes, while adjusting for unmeasured con-
founders that siblings share, such as fetal, maternal, and
environmental factors. This is done by including both (i)
individual sibling exposure values and (ii) the mean expos-
ure value of co-twins as covariates in a regression model.
Adjustment for measured confounders not shared be-
tween co-twins (e.g., diarrhea) can be made by including
sibling-specific covariates in the model [74].
We fitted a separate model for each genus selected,

with relative abundance as the exposure and HAZ as the
outcome. Each model was adjusted for reported diarrhea,
WHZ, infant sex, and alpha diversity as reported con-
founders not shared by co-twins. Age in months and
length of follow-up since baseline were also included as
predictors of the outcome. All covariates were lagged
by one visit in order to model their effect on future
HAZ, with the exception of length of follow-up and
age. All between-within models were fitted by generalized
estimating equations (GEE) using geepack [75], and mul-
tiple hypothesis testing adjustments using the Benjamini-
Hochberg method [76] were made. Statistical significance
was determined at α < 0.1 due to the small sample size
of both cohorts. All analyses were conducted in R ver-
sion 3.0.1.

Additional files

Additional file 1: Table S1. Study participant characteristics in each
cohort at the baseline visit and in cases v controls. Summary statistics
describing the baseline characteristics of participants enrolled in the
Malawi and Bangladesh twin cohorts, and comparison of case versus
control characteristics.

Additional file 2: Table S2. Genus relative abundance and genus
presence in 308 Malawi and 429 Bangladesh fecal samples collected
during follow-up. Median, minimum and maximum relative abundance
of each genus identified in 308 Malawi and 429 Bangladesh fecal samples
collected during follow-up, and the number and proportion of samples
in each cohort in which each genus was identified.

Additional file 3: Table S3. Relative abundance and normalized degree
centrality of genera identified in severely stunted cases and stunted
controls selected from the Malawi cohort. Median, minimum and maximum
relative abundance of each genus identified in 10 case or 8 control samples
selected from the Malawi cohort. P-values were obtained by permutation
test for a difference between case and control medians. Degree centralities

http://www.microbiomejournal.com/content/supplementary/s40168-015-0089-2-s1.xls
http://www.microbiomejournal.com/content/supplementary/s40168-015-0089-2-s2.xls
http://www.microbiomejournal.com/content/supplementary/s40168-015-0089-2-s3.xls
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of each genus identified in case or control samples were calculated from
covariance network models of gut microbial interactions estimated using
the graphical lasso, and were normalized for the number of genera in each
network. P-values were obtained by permutation test for a difference
between case and control degree centralities.

Additional file 4: Table S4. Relative abundance and normalized degree
centrality of genera identified in severely stunted cases and stunted controls
selected from the Bangladesh cohort. Median, minimum and maximum
relative abundance of each genus identified in 6 case or 5 control samples
selected from the Bangladesh cohort. P-values were obtained by permutation
test for a difference between case and control medians. Degree centralities of
each genus identified in case or control samples were calculated from
covariance network models of gut microbial interactions estimated
using the graphical lasso and were normalized for the number of genera in
each network. P-values were obtained by permutation test for a difference
between case and control degree centralities.

Additional file 5: Table S5. Relative genus abundance associations
with future HAZ estimated using multivariable between-within twin
regression models for genera with a significant difference in relative
abundance between cases and controls. Associations between relative
abundance and future HAZ for each genus with a statistically significant
difference in median abundance between cases and controls selected
from either the Malawi or Bangladesh cohorts. Coefficients measure the
average difference in future HAZ between siblings within a pair of twins that
is associated with each 0.1 % difference in relative abundance between
siblings. Coefficients are also adjusted for infant sex, weight-for-height
z-scores, diarrhea, and alpha diversity using multivariable between-within
twin regression, since these factors may differ between co-twins.

Additional file 6: Figure S1. Histograms of height-for-age z-score
distributions in Malawi and Bangladesh children at study entry. Figure: (top)
Height-for-age z-score distribution in the 44 Malawi children at study entry;
(bottom) Height-for-age z-score distribution in the 25 Bangladesh children
at study entry. Red vertical lines indicate the World Health Organization cut-
off for stunting.

Additional file 7. Extended Methods. An extended description of the
statistical analysis methods.
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