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Abstract

Background: The human intestinal microbiota changes from being sparsely populated and variable to possessing a
mature, adult-like stable microbiome during the first 2 years of life. This assembly process of the microbiota can lead to
either negative or positive effects on health, depending on the colonization sequence and diet. An integrative study
on the diet, the microbiota, and genomic activity at the transcriptomic level may give an insight into the role of
diet in shaping the human/microbiome relationship. This study aims at better understanding the effects of microbial
community and feeding mode (breast-fed and formula-fed) on the immune system, by comparing intestinal
metagenomic and transcriptomic data from breast-fed and formula-fed babies.

Results: We re-analyzed a published metagenomics and host gene expression dataset from a systems biology
perspective. Our results show that breast-fed samples co-express genes associated with immunological,
metabolic, and biosynthetic activities. The diversity of the microbiota is higher in formula-fed than breast-fed
infants, potentially reflecting the weaker dependence of infants on maternal microbiome. We mapped the
microbial composition and the expression patterns for host systems and studied their relationship from a
systems biology perspective, focusing on the differences.

Conclusions: Our findings revealed that there is co-expression of more genes in breast-fed samples but lower
microbial diversity compared to formula-fed. Applying network-based systems biology approach via enrichment
of microbial species with host genes revealed the novel key relationships of the microbiota with immune and
metabolic activity. This was supported statistically by data and literature.

Background
The intestinal microbiota and its human host develop a
strong mutual relationship [1]. Several vital functions
(e.g., metabolism and innate and adaptive immunity) are
affected by the intestinal microbiota. The microbiota of
older individuals displays greater inter-individual vari-
ation than that of younger adults [2, 3]. The infant intes-
tinal microbiota is more variable in its composition and
is less stable over time. In the first 2 years of life, the in-
fant intestinal tract progresses from sterility (pre-natal
colonization might influence the sterility [4]) to ex-
tremely dense colonization, ending with a mixture of mi-
crobes that is broadly very similar to that found in the

adult intestine [4–6]. The Human Microbiome Project
[7] has investigated the stability and individual-level vari-
ability of human microbiota depending on geography,
environment, lifestyle, and other factors [4]. However,
the assembly of the microbial community during infancy
remains poorly understood despite being essential to hu-
man health [8, 9]. Despite the fact that bacterial cells
outnumber the total number of human cells in the body,
the human gut contains a surprisingly limited number of
dominant enterotypes [10]. Starting primarily with facul-
tative anaerobes, e.g., Escherichia coli, the microbial
community is later diversified with anaerobes, e.g., Bifido-
bacterium and Clostridium [11]. The factors that affect
the colonization process after birth include feeding, pro-
boitic treatment, and environmental factors. An atypical
intestinal colonization during the first weeks of life may
alter the nutritional and immunological functions of the
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host microbiota [12] and increase susceptibility to im-
munological and metabolic diseases [13].
Despite the fact that bacterial cells outnumber the

total number of human cells in the body, the human gut
contains a surprisingly limited number of dominant
enterotypes [10]. Starting primarily with facultative
anaerobes, e.g., E. coli, the microbial community is later
diversified with anaerobes, e.g., Bifidobacterium and
Clostridium [11]. The factors that affect the colonization
process after birth include feeding, proboitic treatment,
and environmental factors. An atypical intestinal
colonization during the first weeks of life may alter the
nutritional and immunological functions of the host
microbiota [12] and increase susceptibility to immuno-
logical and metabolic diseases [13].
A systems biology approach to study the relationships

between the host and the microbiota requires the meas-
urement of biomolecular activity within the host (e.g.,
via transcriptomic data) and the quantification of host
microbiota under similar conditions [14]. The acquisi-
tion and diversity of the gut microbiota in term neonates
have been the subject of several studies. Jiménez et al.
[15] studied the microbiota at pre-birth stages in the
umbilical cord, showing the possibility of a pre-natal
colonization of infant gut. Then, Neu et al. [16] investi-
gated the effect of mode of birth (caesarean and non-
caesarean) showing the effects on the microbiota. The
effect of diet on the gut microbiota in piglets and
humans was demonstrated by Poroyko et al. [17] and
Marques et al. [18], showing the differences between
breast-fed and formula-fed piglets. Works by Eckburg et
al. [19], Azad et al. [20, 21], and Thompson et al. [22] re-
vealed the differences in the diversity of the microbiota
in breast-fed and formula-fed infants. Schwartz et al. [14]
made one of the first attempts to show the genome and
transcriptome cross talk in breast-fed and formula-fed in-
fants showing the effect of feeding mode on microbiome
and transcriptome. Rogier et al. [23] demonstrated the
role of breast-feeding on the microbiota and host gene
expression at individual levels. However, a detailed
cross-species study at the systems level is still missing.
Molecular and metagenomic techniques together with
rigorous computational analysis from systems biology
perspective can approach this goal [24]. A systems per-
spective can add novel information on key relationships
among the interacting individual components of this
rich ecosystem, apart from their pure composition and
abundance distribution [25]. Moreover, differences be-
tween the two feeding types can be quantified and
visualized.
Our study aims to observe cross talk at microbial and

transcript level, in order to understand the effect of feed-
ing mode on the host system, on the microbiome, and
on the interaction between the two. We present a

detailed analysis of the data studied in [14], from sys-
tems biology perspective, to elucidate the relationship
between the feeding mode, the microbiota, and host cell
activities. The data come from samples under two feed-
ing conditions: exclusively breast-feeding (BF) and exclu-
sively formula-feeding (FF). The formula food was
Enfamil® LIPIL®: a commercially available formula.
Our analysis is an extension of the work of Schwartz

et al. [14] with the systems biology point of view in
terms of relation between the feeding mode, the micro-
biota, and host cell activities. We identify relations be-
tween the microbial species and host genes using the
enrichment analysis of microbiome with bibliographic
data, followed by the verification of the relations via bi-
variate analysis on experimental data. Finally, we present
a system level overview of a host gene-microbiota rela-
tionship at network level in order to distinguish the in-
fant systems based on the modes of feeding.

Results
Our results indicated the effect of feeding mode both on
the microbiota and the expression patterns of certain
genes.

The microbiota
The microbiota under two feeding conditions showed
enrichments with different bacterial lineages (Fig. 1).
The microbiota in both feeding conditions had higher
fraction of anaerobes compared to facultative anaerobes.
The analysis of bacterial phyla in the sample shared high
agreement with the findings of Schwartz et al. [14] with
the Actinobacteria showing prominence under both
feeding conditions (see Additional file 1). The Firmicutes
associated with energy resorption and obesity [26] were
more abundant in FF samples than in BF samples (see
Additional file 1). We also computed the diversity of the
microbiota (see Additional file 1) in terms of Shannon
index [27].
The microbial diversity (see Additional file 1) in our

analysis partially differ from Schwartz et al. potentially
due to the use of a more updated marker sequence-
based database [28] for Bowtie 2 [29]. The filtering of
the microbiota results to the species level showed 35
taxonomic species (with 4 of the data points showing
equal relatedness with more that one species, hence des-
ignated as unclassified (see Additional file 1)). The meta-
genomic features (microbial abundances) provided a
clear distinction between the two feeding types (Fig. 2a).
We performed a differential abundance analysis (see
“Methods”) that revealed four species to be differentially
abundant in the samples given the two feeding types
(Fig. 2b). The four species included three Bifidobacter-
ium species together with Ruminococcus gnavus. The
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gap in diversity also widened for the species level enrich-
ment (see Additional file 1).
We used the abundance data to understand the rela-

tionship among the microbial species detected in the
samples. We computed the Bray-Curtis similarity among
the samples (see “Methods”) to create two microbial
community networks, one for each feeding type (Fig. 3).
We conducted a permutation test to check whether our
computed microbial community network could have
been generated just by chance. We ran a permutation
test against 1000 randomly permuted networks with the
same set of nodes (preserving the network degree). The
p value of 0.0465 for FF networks, and 0.0008 for BF
network was obtained (showing that the networks were
not just by chance).
The FF microbial community network is ~1.5 times

denser than the corresponding BF network. This can be
seen as a direct implication of the higher diversity

observed in FF infant microbiota and leads to an intri-
cate mutual dependence of microbes on one another.
Furthermore, among the three Bifidobacterium species
detected in our analysis, B. breve and B. bifidum were
detected mostly in BF infants, whereas B. longum and R.
gnavus were detected in FF samples (Fig. 2b). This also
shows that the network at the phylum may look alike
but at lower level (here, species level), the two systems
(BF and FF) can be differentiated. The core of the BF
network consisting of the largest connected component
(11 nodes) was retained in the FF network but extended
with several other co-occurrence relationships observed
(Fig. 3).

Relation between microbes and human systems
We extracted the relations of microbes with the human
genes from bibliographic knowledgebase (see “Methods”).
These genes do not necessarily represent a physical

Breast-Fed 
Formula-fed 

Fig. 1 The LEfSe plot for clades of the microbiota under breast-fed (BF) and formula-fed (FF) conditions. The cladograms report the taxa (highlighted
by small circles and by shading) showing different abundance values (according to LEfSe). Colors of circle and shading indicate the microbial lineages
that are enriched within corresponding samples. LEfSe highlights several genus-level clades, e.g., the class Bacilli is under-abundant in BF samples with
an otherwise over-abundant Lactobacillus lineage (indicated with a red shade over green for indices m and n (see adjacent legend)). A contrary example
can be seen in case of Enterobacter (indexed as a8)
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interaction with microbe or its biomolecules but rather a
dependence relationship in either direction (gray edges in
Fig. 4). Looking at the related genes (square nodes) for dif-
ferentially abundant microbes (a network specific to differ-
entially abundant species is available in Additional file 1)
revealed that they are mostly related to the host genes
(Fig. 4, yellow nodes in circle and squares) that already
have a higher degree. To further verify these relationships,
we analyzed which host genes have been found to be in a
dependence relation with the corresponding microbial
species via a bivariate analysis. For this, we used the pairs
of microbes and the host genes related to these microbes
as shown in Fig. 4. To illustrate, if a microbe M is related
to host genes X, Y, and Z; then, we compute the correl-
ation for abundance of M and expression level of X, Y,
and Z along the samples. Thus, we get three correlation
values for microbe M, i.e., M~X, M~Y, and M~Z. This
was carried out for all the microbes and their corre-
sponding genes (related to these microbes). The Pear-
son correlation coefficients were computed between
microbial abundance and the expression levels of corre-
sponding DE genes (a set of n correlation coefficients

for a species enriched with n genes) showed a higher
correlation (p value ≤0.05) for B. bifidum and R. gna-
vus. Figure 5a shows the boxplot for the correlations
between each microbial species, paired with its corre-
sponding genes extracted from literature. The results
cannot be computed in terms of p values as the two
other differentially abundant microbes (B. breve and B.
longum) were not detected in both types of sample. We
compared these correlation coefficients against the
mean of absolute correlation between 1000 randomly per-
muted microbial species and host gene pairs, which was
found to be <0.2. Furthermore, we also generated random
pairs of genes and microbes and computed similar corre-
lations (abundance~expression level) to check if the corre-
lations for actual relationships are better than these
random pairs. We compared these correlation coefficients
against the mean of absolute correlation between 1000
randomly permuted microbial species and host gene pairs,
which was found to be <0.2 (indicated by the black line in
Fig. 5a). This approach also served as a validation for our
literature-mining pipeline to find genes related to micro-
bial species.

(See figure on previous page.)
Fig. 2 a The heatmap showing the abundance of microbes at species level, in breast-fed and formula-fed infants. Green and red shades indicate lower
and higher percent abundances, respectively, with species along the Y-axis and samples along X-axis. The clustering was performed with the “Ward”
method based on Pearson scores. b Scatter plot representing the log p values (Y-axis) and fold changes (X-axis) for microbial abundance to detect the
differentially abundant bacterial species. The blue-green circles indicate the differentially abundant microbial species under FF and BF conditions
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A functional enrichment analysis with GO terms
(Biological Process) of the genes related to diffe-
rentially abundant species indicated their role in the
immune system (Fig. 5b; details in Additional file 2).
Similar enrichment analysis for the genes related to
all the species was found to be rich with immune sys-
tem, metabolic- and transport-related terms (Fig. 5b).
A pathway enrichment analysis based on Reactome
[30] gave a similar result with several metabolic

pathways, e.g., carbohydrate digestion, interleukin pro-
cessing, and antigen processing.

Differences at transcriptomic level in host
The analysis of the gene expression data obtained from
the epithelial cells in fecal samples of the infants (see
“Methods”) distinguishes the two feeding types at the
transcription level (see Additional file 1). The functional
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enrichment analysis of the 477 differentially expressed
genes revealed a significant abundance of immune
system-related activities (Fig. 5a). We extended our ana-
lysis to obtain two co-expression networks of genes
under each feeding condition. As a higher number of
array probes provided overexpression signals in the tran-
scriptomic data for BF infants, the BF gene co-
expression networks (see “Methods” section) were ~2.1
denser than the FF network at the level of gene co-
expression unlike our finding at microbial community
level (see “The microbiota” section).

The feeding mode microbiome host system
Combining the outcomes from the abovementioned re-
sults, we could layout the dependence of the microbiota
and human system on feeding mode together with the
relationship between the microbiota and the human sys-
tem (see Additional file 1: Figures 0.10 and 0.11 and
Additional file 3 (network SIF files)). The differences be-
tween the two feeding modes could be observed at this
level (Fig. 6). Analyzing the topology of the two net-
works showed a higher diameter of 20 for the FF than
for BF network (14). Furthermore, the BF network
showed a considerably higher density and shorter aver-
age paths lengths than the FF network (Fig. 6a). These
features indicate a greater degree of small-world

properties in a BF network and hence robustness against
perturbations [31]. To extend our analysis further, we
measured the reachability of the nodes starting from a
random node in the graph traversing a fixed path length
(Fig. 6b). This allows us to measure connectivity in the
networks. The results showed that within the denser BF
network there are more dependencies (interactions)
among the genes than the FF network. The two dense
clusters of nodes visible in the BF network (see Additional
file 1: Figure 0.10) supports the connectivity analysis done
via Fig. 6b.

Discussion
The main focus of this study was to complement the
work of Schwartz et al. with a systems level analysis for
understanding the colonization of infant gut as a function
of feeding mode and its interaction between the micro-
biota and the human system. The feeding mode seemed
to directly affect the microbiota as well as the host system.
We complemented the approach of Schwartz et al. in
three directions: (1) mining the relationships between the
microbiota and the host genes from literature and their
validation with the gene expression and microbial abun-
dance data; (2) a differential abundance analysis of the
microbiota at species level; and (3) combining these find-
ings at a systems biology level depicting the overall
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relations between the feeding mode, the microbiota, and
host biomolecular activities.
Feeding mode has been shown to affect the micro-

biota composition as well as gene expression in infants
[23, 14, 21]. The presence of Bacteroides in BF samples
was unusual, but it can be explained, as recent findings
have shown that Bacteroides colonize infant gut with
time [32, 33]. The samples we used were from 12-week-
old infants; this likely explains the presence of Bacter-
oides in BF samples. Furthermore, it has also been
shown that certain Bacteroides species can use the
sugar in human milk via mucosal layers [34]. It has also
been shown that the formula-fed infants had increased
richness of species compared to the breast-fed infants
[21, 35]. Our findings confirmed that formula-feeding
increases the microbial diversity. This finding was in
line with existing knowledge [19–22]. Nevertheless, the
core of the co-occurrence microbial network was retained.
In terms of microbial enrichment, we showed that B.
longum was abundant in the FF infants. B. longum is one
of the widely used probiotic in formula food [36]. The
genes associated with differentially abundant microbes
were highly involved in immunological activities depicting
the role of these microbes in the functioning of the human
system.
The picture was different at the level of human genes.

The gene network among the BF sample was found to
have a higher number of interactions (~2.1 times the
FF network). Thus, the phenotypic outcomes observed
in the host system are affected by feeding conditions.
The BF samples do not exhibit a great diversity in the
microbiota network [23]. The higher transcriptomic ac-
tivities as inferred from a denser co-expression net-
works in BF infants indicates the presence of bioactive
compounds in the breast milk [37]. These compounds
can activate numerous pathways compared to formula
[38]. The presence of genes related to metabolism in
our co-expression network extends the effect of feeding
mode to these activities together with the immune sys-
tem [39, 40]. The difference at metabolomic level has
been shown before by Martin et al. [41].
The conservation of the core of microbial co-

occurrence networks and the differentially abundant mi-
crobes being associated with genes that already have
higher degree, leads to the question of the true func-
tional importance of diversity in the microbiota. How-
ever, a core microbiota is undoubtedly required for
optimal health [42] and it has also been observed in our
study, where the core of the community network was
retained under both BF and FF conditions. At the level
of network biology, the gain in microbial diversity was
not found to add many new relationships/effects to the
host system (genes) but rather presented alternative
paths to the existing ones in the network for BF infants.

However, the role of bioactive components of breast
milk played a prominent role in activity at the host
(human) level. As observed in the overall microbe-host
gene system (Fig. 6b), the sharp increase in reachability
of differentially expressed genes in BF infants is lever-
aged by the bioactive compounds in breast milk. The
difference in the reachability of transient human genes
(linked to microbial species) remained more consistent
since new microbes had indifferent relationships to hu-
man genes. Nevertheless, they might provide alternate
ways to affect the microbiota-host relationships.
Our findings based on small but unbiased samples

leveraged by robust statistical checks suggested that
the development of human immune system during
infancy should not be seen as an effect of the diet or
the microbiota at individual level, rather these factors
should be studied together in a system level approach.
Our results indicated how feeding affected the expres-
sion pattern of genes as well as the microbial com-
munity and how these two factors together impact
the host system (infants).

Conclusions
We used a network model with multiple components
(microbial species and human genes) to study the effects
of feeding conditions in infants on the microbiota and
on the overall human system and its role in host im-
mune system. The components included the microbial
system and the host genes together with the interplay
between these components. The analysis on the micro-
biota revealed a feeding mode-dependent difference in
terms of diversity of the microbiota as well as of the net-
work describing the interactions among them. The com-
parison of the results based on literature and data showed
the validity of our findings. The network among the differ-
entially expressed genes, computed via co-expression, was
found to be much denser in the case of BF infants than FF
infants, depicting higher biomolecular cross talk depend-
ing on the feeding mode. Many of the edges in the gene
network for BF and FF samples could be mapped onto im-
mune, signaling, or metabolic pathways. Mapping the rela-
tions between microbes and human genes was another
major advancement achieved during the study. We com-
plemented and extended the work of Schwartz et al. by
detecting the differences in the microbiota based on feed-
ing mode. The study of the microbiota and the host sys-
tem together helped us to study a meta-system consisting
of the host with the fellow microbes residing within the
host rather than individual organism systems. Our results
revealed that the integration of -omics data from the host
and the microbiota with existing knowledge (in this case,
literature) could yield useful insights into the system or ra-
ther the meta-system.
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Methods
Data
We used (1) metagenomic and (2) transcriptomic data
[14, 43] from a previous study by Schwartz et al. The
metagenomic data was obtained from EBI Short Read
Archive (SRA) accession number ERP001038. It consisted
of microbial DNA profiles in full term 3-month-old
infants obtained from the fecal samples via metagenomic
pyrosequencing. The transcriptomic data in the form of
gene expression profiles came from NCBI Gene Expres-
sion Omnibus (GEO) accession GSE31075. The mRNA
measurements were performed on intact sloughed epithe-
lial cells from fecal samples. Both types of data were taken
from the same set of infants categorized into the two
exclusive feeding conditions (BF and FF).

Methods
Our approach aimed to use the metagenomic and tran-
scriptomic data integratively in order to infer the rela-
tion between the microbiota, the host (human) system,
and the feeding mode.

Expression data analysis
The limma package [44] from Bioconductor was used
to identify genes that were differentially expressed be-
tween feeding types. Limma uses an empirical Bayes
method to test the differential expression of genes [45].
A p value cutoff of 0.05 (after multiple testing correc-
tion based on Benjamini-Hochberg method [46]) and a
log fold change ≥2 were used to select the differentially
expressed genes, resulting in 477 genes that were differ-
entially expressed under the two feeding conditions.

Metagenomic data analysis
We analyzed the metagenome data in the form of se-
quence reads in order to obtain the enrichment of mi-
crobes in the samples. We used Bowtie 2 [29] to align
the reads to the microbial genome database. Then, we
performed RAST analysis [47] to produce the microbial
and functional annotation that identified the biomolecular
functions of the sequences detected in the metagenomic
data. We also computed the species abundance in the
metagenomic sample using MetaPhlAn [28]. The data
were then filtered to the species level to obtain the abun-
dances of species in the metagenomic samples. A limma
analysis [45] was used to detect the differential abundance
of the species in the samples (for details, see [48]).

Inferring microbial community network
Inferring microbial community network is a major chal-
lenge due to ambiguities about the operational taxonomic
unit (OTU) definition and corresponding variation in
quantification data based on OTUs. However, we define
“microbial species” as the OTU in our investigation for

simplicity and in order to follow the standards in the lit-
erature. The abundance table (see Additional file 4) com-
puted for the metagenome from the samples showed
many entries equal to zero. We adopted the Bray-Curtis
similarity to obtain the pairwise distances between the mi-
crobial species based on their corresponding abundances
across the samples. In this way, we infer the relationships
between pairs of organisms, based on their co-occurrence
patterns. We used Bray-Curtis similarity because (1) it is
insensitive to sparse count data (i.e., the occurrence of
zeroes in the count data because of the absence or below
detection level abundance of a microbe [49]) and (2) cor-
relation coefficients cannot serve the purpose due to the
small sample size (six BF and six FF). Similarities with
mean scores less than least 2 standard deviations above 0
were filtered out to disallow large variance in the similarity
matrix, thereby removing spurious edges in the network
(i.e., a kind of sampling noise). This matrix was used to
infer the relations among the microbial species.

Extracting microbe-gene relations from text
The knowledge of potential bipartite relations between the
microbes and the human genes/proteins is important to
establish effects of feeding modes and microbes on the hu-
man mechanisms at system level. To extract these rela-
tions, we performed text mining on MEDLINE
abstracts [50–52]. We identified the abstracts containing
the co-occurrence of human genes in context with the mi-
crobial species under investigation. This list went through
a filter to include only the text that had relationship terms
like “activates,” “interacts with,” “depends on,” etc. Thus, a
set of genes/proteins for each microbial species was cre-
ated. This can be interpreted as microbial species enriched
in relationships with certain human genes. To identify sta-
tistically significant genes/protein for each microbial spe-
cies, we did a Fisher’s exact test on this enrichment. The
relationships with p values less than 0.05 were accepted
for further analysis (see Additional file 5). The approach
used the statistical test score to establish relations between
a microbe and genes retrieving only significant and spe-
cific relations from the text and minimizing noise.

Computing the gene-gene co-expression network
Based on the set of differentially expressed genes extracted
from the expression data, together with those mined from
literature, the gene-gene relationships were computed. A
co-expression gene network based on the Pearson correl-
ation coefficient was created based on these data for two
different conditions (breast-fed and formula-fed samples).
The cutoff for the correlation was set to 0.8. For sim-
plicity, unweighted networks were constructed. The net-
works were joined with the microbial community
networks and the results from text mining procedure to
get an overall picture.
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Functional analysis
We did a hyper-geometric test on the genes in the data
from different sources (expression, literature) to under-
stand the biological roles of the human genes involved
by means of a functional enrichment of these gene sets.
A detailed analysis of this functional enrichment was
done at individual and combinatorial level. The differen-
tially expressed genes and text mining genes underwent
functional enrichment with GO Biological Process terms
[53] and Reactome pathways [30].
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