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Abstract

Background: Obesity-related diseases, including type 2 diabetes and cardiovascular disease, have reached epidemic
proportions in industrialized nations, and dietary interventions for their prevention are therefore important. Resistant
starches (RS) improve insulin sensitivity in clinical trials, but the mechanisms underlying this health benefit remain
poorly understood. Because RS fermentation by the gut microbiota results in the formation of physiologically active
metabolites, we chose to specifically determine the role of the gut microbiota in mediating the metabolic benefits of
RS. To achieve this goal, we determined the effects of RS when added to a Western diet on host metabolism in mice
with and without a microbiota.

Results: RS feeding of conventionalized mice improved insulin sensitivity and redressed some of the Western
diet-induced changes in microbiome composition. However, parallel experiments in germ-free littermates
revealed that RS-mediated improvements in insulin levels also occurred in the absence of a microbiota. RS
reduced gene expression of adipose tissue macrophage markers and altered cecal concentrations of several bile
acids in both germ-free and conventionalized mice; these effects were strongly correlated with the metabolic
benefits, providing a potential microbiota-independent mechanism to explain the physiological effects of RS.

Conclusions: This study demonstrated that some metabolic benefits exerted by dietary RS, especially improvements
in insulin levels, occur independently of the microbiota and could involve alterations in the bile acid cycle and adipose
tissue immune modulation. This work also sets a precedent for future mechanistic studies aimed at establishing the
causative role of the gut microbiota in mediating the benefits of bioactive compounds and functional foods.
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Background
Obesity has become a public health crisis, with an esti-
mated 39% of adults ages 18 and over worldwide con-
sidered overweight in 2014 and 13% deemed obese [1].
Many obese individuals also experience a cluster of
abnormalities (elevated blood triglycerides, fasting
hyperglycemia, high blood pressure, and reduced HDL
cholesterol), referred to as the metabolic syndrome, that
places them at significant risk for the development of type

2 diabetes (T2D), hypertension, dyslipidemia, and car-
diovascular disease (CVD) [2]. Resistance to insulin is
considered the earliest detectable metabolic aberrancy
in persons who eventually develop T2D [3]. The mech-
anisms underlying insulin resistance are multifactorial
and include ectopic lipid accumulation in the muscle
and liver as well as systemic inflammation, especially in
adipose tissue [3]. In particular, adipose tissue macro-
phages (ATMs) have been identified as immune cells
driving the development of insulin resistance [4]. Con-
sidering these underlying factors, successful therapeutic
approaches and dietary interventions for treating
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metabolic syndrome should ideally provide both meta-
bolic and immunological benefits to the host.
Dietary fibers, such as resistant starches (RS), have

been studied extensively and are promising nutritional
interventions for preventing metabolic diseases [5–7].
RS in particular are well documented to modulate insu-
lin sensitivity in healthy and obese volunteers as well as
in patients with metabolic syndrome [8–11]. Although
these benefits likely arise from a multitude of mecha-
nisms, the gut microbiota is increasingly considered
one of the key factors underlying these health benefits
[12–15]. Recent research concerning the beneficial
effects of short-chain fatty acids (SCFA), which result
from bacterial fermentation of non-digestible carbohy-
drates such as RS, on intestinal barrier function, gut pep-
tide secretion [16–18], and immune function [19–21]
further strengthen the concept that dietary fibers may
exert some of their metabolic benefits via gut bacteria.
However, despite the rationale for considering the
microbiota in mediating the physiological effects of RS
and fiber, very few studies have taken a mechanistic ap-
proach to determine the exact role of the microbiota such
as feeding germ-free mice or performing microbiota trans-
plants [22–25]. Rather, most studies have only assessed
bacterial participation in a phenotype by correlations and
not by methods that establish causality [26–30].
To systematically determine the gut microbiota’s con-

tribution to the health benefits of dietary fiber, we com-
pared the effects of feeding RS on host metabolism in
Western diet-fed mice with and without a microbiota.
The two types of RS preparations (RS type 2 and RS type
4) selected for this study have both been shown to sig-
nificantly impact host metabolism [9, 11, 31, 32], yet
each elicits very distinct effects on human gut micro-
biota composition [33]. We therefore sought to evaluate
how two types of RS capable of differentially influencing
the gut microbiota impact insulin sensitivity. The find-
ings reported here demonstrate that some metabolic
benefits mediated by dietary RS, especially improve-
ments in insulin levels, occur independently of the gut
microbiota and could potentially involve alterations in
the bile acid cycle as well as adipose tissue immune
modulation in the form of macrophage recruitment and
retention.

Results
Germ-free C3H mice experienced similar gains in body
weight as their conventionalized counterparts when fed
a Western diet
To directly test the role of the gut microbiota in mediat-
ing the metabolic benefits of RS, we sought to compare
the effects of feeding RS to mice with and without a
gastrointestinal microbiota. However, C57BL/6 (B6)
mice, the mouse strain traditionally used for diet-

induced obesity (DIO) research, are resistant to the
effects of feeding a Western diet (WD) when maintained
germ-free [34–36]. In contrast, germ-free (GF) C3H/
HeN (C3H) mice are generally not protected against
DIO [37]. To compare the role of the gut microbiota in
the development of DIO in the two strains of mice, GF
and conventionalized (CVZ) C3H and B6 mice were all
fed the same WD for 8 weeks. GF B6 mice gained sig-
nificantly less weight compared to their conventionalized
counterparts (Fig. 1a). In contrast, GF C3H mice gained
weight similarly to CVZ controls (Fig. 1b). Of note, CVZ
C3H mice gained more weight and exhibited a higher
energy intake than CVZ B6 mice (Fig. 1). These findings
are consistent with previous reports [34–37] and indi-
cate that GF C3H mice are a tractable model in which
to study the role of the microbiota in the therapeutic ef-
fects of a dietary fiber in the context of obesity.
Because C3H mice fed a Western diet gained weight

independently of the gut microbiota, we next sought to
determine whether C3H mice respond to RS supplemen-
tation similarly to B6 mice (in which weight gain was
gut microbiota-dependent) in the presence of a micro-
biota. C3H and B6 mice were fed either a control WD
or a WD enriched with 10% RS for 8 weeks (Table 1). A
portion of the corn starch in the purified diets was re-
placed with RS—an approach often applied in human
nutritional intervention trials. In those interventions,
participants are asked to consume either RS-enriched
products [33, 38, 39] or RS supplements [9–11, 40, 41]
with native or readily digestible starch or starch-based
products serving as the placebo. The two types of RS fed
(resistant starch type 2 (RS2) and resistant starch type 2
(RS4)) in this study were selected because they are
known to improve host metabolism (including insulin
resistance) yet elicit distinct effects on human gut
microbiota composition [9, 11, 31–33]. In C3H mice,
supplementation with RS4 improved insulin sensitivity
despite having no impact on body weight, body weight
gain, subcutaneous adipose tissue weight, and energy
intake (Fig. 2). Similar results were obtained in B6 mice
(Additional file 1: Fig. S1). These experiments revealed
that, although the influence of the microbiota on
weight gain was line-dependent, animals from both
lines maintained the ability to respond to dietary modu-
lation by RS in the presence of a microbiota.

Feeding resistant starches substantially altered the gut
microbiota composition
Supplementing a WD with RS2 or RS4 restored the mi-
crobial α-diversity reduced by feeding a WD to CVZ
C3H mice (Fig. 3a). Principal Coordinate Analysis
(PCoA) plot of β-diversity based on binary Jaccard dis-
tance revealed that gut communities clustered according
to diet (Fig. 3b). Similar results were obtained via two
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other independent β-diversity metrics (Bray-Curtis dis-
tance and unweighted UniFrac distance, Additional file 2:
Fig. S2a, b). Together, these findings indicate that RS
induced global changes to the structure of the gut
microbiota in mice. Accordingly, parametric analyses
revealed that 124 species-like OTUs and 46 taxa were
significantly affected by dietary treatment (Fig. 3c;
Additional file 3: Tables S1, S2). Interestingly, RS cor-
rected the proportions of seven taxa (Ruminococcaceae
and Clostridiales Incertae Sedis XIII families and Clos-
tridium IV, Anaerovorax, Oscillibacter, Elizabethkingia,
and Flavonifractor genera) whose levels were altered
upon feeding a WD. Consistent with observations from
a previous RS feeding study of healthy humans, RS4 in-
creased the Bacteroidetes phylum and decreased the
Ruminococcaceae and Erysipelotrichaceae families [33].
Non-parametric analysis of bacterial taxa using LEfSe con-
firmed most of these results and also highlighted that
Proteobacteria-related taxa were specifically enriched in the
WD-fed mice (Additional file 2: Fig. S2c, d). Altogether,
these data indicate that supplementing a WD with RS
caused substantial shifts in gut microbiota composition and
was able to redress some of the aberrancies induced by
feeding a WD.

Feeding resistant starches improved plasma insulin levels
and the index of insulin resistance independently of the
gut microbiota in C3H mice
To directly test the role of the gut microbiota in mediat-
ing the metabolic benefits of RS, both GF and CVZ C3H

mice were fed either a control WD or a WD enriched
with 10% RS for 8 weeks (Table 1). We choose to per-
form this experiment with C3H mice because, unlike the
B6, GF C3H mice gained weight similarly to their CVZ
littermates when fed a WD. Although WD feeding in-
creased body weight, white adipose tissue weight, and
plasma leptin levels in both GF and CVZ mice com-
pared to low-fat diet (LFD) fed controls, RS feeding did
not significantly impact these parameters (Additional
file 4: Fig. S3a–c). No changes were observed in lean
mass (as measured by tibialis muscle weights) for mice
on any treatment (Additional file 4: Fig. S3d).
Both GF and CVZ C3H mice fed a control WD experi-

enced a significant increase in fasting plasma insulin and
glucose levels compared to the LFD-fed control animals
(Fig 4a, b). Feeding a RS4-supplemented WD signifi-
cantly decreased plasma insulin levels in CVZ mice
(Fig. 4a). Moreover, these improvements were associated
with substantial shifts in gut microbiota composition in
CVZ mice (described above). Such associations are often
considered an indication that the gut microbiota medi-
ates the health effects of a dietary intervention [27, 42,
43]. However, when a WD supplemented with RS4 was
fed to GF C3H mice, plasma insulin levels were signifi-
cantly decreased to levels consistent with those observed
in their CVZ counterparts, demonstrating that this RS-
mediated metabolic improvement was not dependent on
the presence of a gut microbiota (Fig. 4a). Both GF and
CVZ mice fed an RS2-supplemented WD also experi-
enced a similar trend toward decreased insulin levels,

a b

c d

Fig. 1 Germ-free C3H mice experienced similar gains in body weight as their conventionalized counterparts when fed a Western diet. Body
weight gain in germ-free (GF) and conventionalized (CVZ) male C57BL/6 (B6) mice (a) and GF and CVZ male C3H/HeN (C3H) mice (b) fed a WD.
Energy intake measured at week 4 in GF and CVZ B6 mice (c) and GF and CVZ C3H mice (d) fed a WD. **p < 0.01 versus CVZ (two-way ANOVA
with repeated measures and Bonferroni post hoc tests). Mean ± SEM. a N = 6–8 mice. b N = 8 mice. c N = 4 cages. d N = 3 cages
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although it did not reach statistical significance (p = 0.07
for CVZ and p = 0.09 for GF, Dunnett’s post hoc tests).
Hyperglycemia induced by the WD was not improved
with RS feeding (Fig. 4b). Finally, feeding RS4 significantly
improved the index of insulin resistance independently of
the gut microbiota; feeding RS2 showed a similar trend (p
= 0.07 for CVZ and p = 0.13 for GF, Dunnett’s post hoc
tests) (Fig. 4c). Dietary supplementation with RS2 and RS4
also significantly improved circulating levels of C-peptide,
a protein derived from proinsulin and a measure of insulin
secretion, independently of microbial status (Fig. 5a).
Several reports indicate a role for the incretin

glucagon-like peptide 1 (GLP-1) and peptide YY (PYY)
in bringing about the metabolic benefits of RS, especially
reductions in body weights and fat mass accumulation
[32]. To that end, we measured the colonic messenger

RNA (mRNA) expression and plasma levels of molecules
related to the regulation of these incretins. Colonic ex-
pression of proglucagon, the precursor of GLP-1, was in-
creased by RS4 feeding in a microbiota-dependent
manner (Fig. 5b); however, no significant correlations (at
the q value level) between proglucagon mRNA expres-
sion and any microbial taxa were found (data not
shown). Proglucagon expression was increased in GF
mice compared to CVZ littermates. In accordance with
the increase in colonic proglucagon mRNA expression,
active GLP-1 levels in plasma were also increased in GF
mice (Fig. 5c) as previously described [44]. However, the
RS4-induced increase in proglucagon mRNA expression
was not accompanied by a change in active GLP-1
plasma levels (Fig. 5c). This apparent discrepancy be-
tween proglucagon mRNA expression and plasma
GLP-1 levels has been reported in other studies and
could be explained by several factors, such as differ-
ences in the activity of the dipeptidyl peptidase 4 or the
prohormone convertase 1/3 [44, 45]. Colonic expres-
sion and plasma levels of PYY were not affected by the
RS diets (Fig. 5d, e). Of note, PYY levels were globally
lower in GF mice compared to CVZ counterparts, con-
sistent with previous reports [46]. WD feeding de-
creased active ghrelin levels in both GF and CVZ
animals compared to the LFD controls, but RS feeding
had no additional impact (Fig. 5f ). Neither plasma nor
subcutaneous adipose tissue mRNA levels of adiponec-
tin were affected by the dietary treatments, suggesting
that adiponectin does not play a role in the modulation
of insulin sensitivity by RS (Fig. 5g, h).

Reduced expression of adipose tissue macrophage
markers in RS-fed mice was associated with
improvements in the index of insulin resistance
To begin dissecting how RS could modulate host physio-
logical and metabolic characteristics independently of
the microbiota, we examined markers of adipose tissue
macrophages (ATM) as these innate immune cells and
their polarization phenotypes have been implicated in
the control of insulin sensitivity [4, 47]. Feeding RS4 sig-
nificantly reduced subcutaneous adipose tissue (SAT)
mRNA expression of F4/80, a tissue macrophage marker,
in both GF and CVZ mice compared to WD-fed con-
trols (Fig. 6a). SAT expression of CD11c, a marker of
antigen presenting cells and M1 macrophages, was re-
duced by RS2 and RS4 feeding in CVZ mice; a similar
change (albeit lower and not statistically significant) was
also observed in GF mice (Fig. 6b). F4/80 and CD11c
mRNA expression levels in the visceral adipose tissue
(VAT) were also decreased by the RS2 and RS4 treat-
ments in both GF and CVZ mice, but these reductions
did not consistently reach statistical significance (Fig. 6c, d).
CD11c mRNA expression in SAT and VAT was strongly

Table 1 Composition of the experimental diets. HI-MAIZE® 260
and Fibersym® RW contain 62.5 and 89.1% RS, respectively. See
Additional file 3: Table S4 for complete details

LFD WD RS2 RS4

g (%) g (%) g (%) g (%)

Protein 19.2 23.7 23.7 23.7

Carbohydrate 67.3 46.1 46.1 46.1

Fat 4.3 23.6 23.6 23.6

kcal (%) kcal (%) kcal (%) kcal (%)

Protein 20 20 21.9 21.9

Carbohydrate 70 34.1 28 28

Fat 10 44.9 49.1 49.1

Ingredient quantity g g g g

Casein, 30 mesh 200 200 200 200

L-cystine 3 3 3 3

Corn starch 550 137.3 0 41

Maltodextrine 10 150 35.5 35.5 35.5

Sucrose 0 172.8 172.8 172.8

HiMaize (RS2) 0 0 137.3 0

Fibersym (RS4) 0 0 0 96.3

Cellulose BW200 50 50 50 50

Soybean oil 25 25 25 25

Lard 20 177.5 177.5 177.5

Mineral mix S10026 10 10 10 10

Dicalcium phosphate 13 13 13 13

Calcium carbonate 5.5 5.5 5.5 5.5

Potassium citrate, 1H2O 16.5 16.5 16.5 16.5

Vitamin mix V1001 10 10 10 10

Choline bitartrate 2 2 2 2

Dyes 0.05 0.05 0.05 0.05

Energy density (kcal/g) 3.85 4.73 4.33 4.33
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correlated with the index of insulin resistance for both
CVZ and GF mice (Pearson r = 0.75 and 0.68 in SAT,
Pearson r = 0.71 and 0.74 in VAT, p < 0.0001).
To confirm our observations that RS feeding is associ-

ated with a modulation of ATM, we isolated the stromal
vascular fraction (SVF) from the SAT of CVZ mice. As
expected, feeding a WD significantly increased the abun-
dance of subcutaneous ATM as well as the ratio of M1
(F4/80+ CD11b+ CD11c+) to M2 (F4/80+ CD11b+ CD206+

or F4/80+ CD11b+ CD301+) macrophages (Fig. 6e–h; Add-
itional file 5: Fig. S4a, b). Dietary supplementation with RS2
or RS4 significantly reduced the percentage of ATM in the
SVF (Fig. 6e). Of interest, feeding RS2 and RS4 reduced
both the M1 and M2 macrophage populations (Fig. 6f–h;
Additional file 5: Fig. S4a, b). Plasma and SAT mRNA
expression levels of monocyte chemoattractant protein 1
(MCP-1; also known as CCL2), a chemokine previously
shown to affect macrophage infiltration into adipose tissues
[48, 49], were not affected by RS feeding (Additional file 5:
Fig S4c, d), suggesting that changes in this particular che-
mokine are not responsible for the decreased subcutaneous
ATM accumulation observed when mice are fed RS. All to-
gether, these data demonstrate that RS-mediated improve-
ments in insulin sensitivity are associated with a reduced
number of both M1 and M2 macrophages.
Changes in adipose tissue physiology and reduced liver

and adipose tissue macrophage infiltration in obese mice
have been associated with an improvement in gut per-
meability [50–52]. To that end, we investigated intestinal
permeability by administering 4 kDa FITC-dextran to
GF and CVZ mice but found that none of the dietary
treatments significantly altered gut permeability during

the fasting state (Fig. 7a). In accordance with this obser-
vation, ileal expression of ZO-1 and occludin were also
not affected by any of the experimental diets (Fig. 7b, c).
Altogether, these findings suggest that RS decrease ex-
pression of adipose tissue macrophage markers inde-
pendently of the gut microbiota and changes in gut
permeability.

Resistant starches redressed Western diet-induced
changes in cecal bile acid profiles in both germ-free and
conventionalized mice
Several studies report changes in the bile acid (BA) pool
composition of individuals diagnosed as prediabetic or
with type 2 diabetes [53–57]. BAs are capable of regulat-
ing both insulin sensitivity and glucose homeostasis as
well as reducing the inflammatory activity of macro-
phages via nuclear farnesoid X receptor (FXR) and
membrane-bound TGR5 signaling [45, 58, 59]. More-
over, RS feeding has been shown to alter BA levels in
both humans and rodents [60–62]. These reports
prompted us to analyze the cecal BA pool of GF and
CVZ mice fed RS.
The cecal BA pool was markedly different between GF

and CVZ mice, consistent with previous findings [63].
Specifically, profiles from GF mice were dominated by
taurine-conjugated primary bile acids (including tauro-
β-muricholic acid) whereas the patterns from CVZ mice
were more complex and included elevated levels of
secondary BAs (Fig. 8, Additional file 3: Table S3, and
Additional file 5: Figure S4e, f ). WD feeding significantly
increased the concentration of several BAs, such as
taurocholic acid (TCA) and taurochenodeoxycholic acid

a b c

d e f

Fig. 2 Resistant starches improved insulin sensitivity in C3H mice in the presence of a microbiota. Glycemic response after insulin injection in
conventionalized 15-week-old C3H/HeN (C3H) mice fed experimental diets for 7 weeks (a, b) (LFD low-fat diet, WD Western diet, RS2 WD with
resistant starch 2, RS4 WD with resistant starch 4). Body weights at necropsy (c), body weight gain over 8 weeks of dietary intervention (d),
subcutaneous adipose tissue (SAT) weights at necropsy (e), and energy intake (as recorded over a week at week 4) (f) in conventionalized C3H
mice fed experimental diets for 8 weeks. *p < 0.05, **p < 0.01, ***p < 0.001 versus WD (one-way ANOVA with Dunnett’s post hoc tests). Mean ±
SEM. a, b N = 6–9. c–e N = 8–9. f N = 4 cages
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(TCDCA), in both GF and CVZ mice while supplement-
ing the WD with RS redressed these alterations in a
microbiota-independent manner (Fig. 8). Interestingly,
we observed strong correlations between TCA and
TCDCA concentrations and plasma insulin levels, the
index of insulin resistance, and ATM markers (q values
below 0.0005 for insulin and index of insulin resist-
ance, Additional file 3: Table S3). Together, these
findings indicate that RS feeding impacts the cecal BA
pool—especially taurine-conjugated BA—in a microbiota-
independent manner.

Discussion
An understanding of how dietary compounds such as
RS can modify risk factors for complex diseases provides
an important basis for the rational development of nutri-
tional strategies for disease prevention and treatment.
The gut microbiota is generally assumed to mediate RS-
associated health benefits by fermenting RS to SCFA,
which have numerous known effects on host physiology
[64]. Consistent with this view, studies in rodents impli-
cate bacterial fermentation as a mediator of GLP-1 and
PYY secretion in bringing about the metabolic benefits

a

c

b

Fig. 3 Resistant starches changed the gut microbiota composition in conventionalized C3H mice fed experimental diets for 8 weeks. a Alpha-
diversity index. b Principal Coordinate Analysis plot of β-diversity based on binary Jaccard distance. c Log-fold change in the relative abundance
of taxa significantly affected by the dietary intervention (adjusted p value <0.05). LFD low-fat diet, WD Western diet, RS2 WD with resistant starch 2, RS4
WD with resistant starch 4. *p < 0.05, **p < 0.01 versus WD (one-way ANOVA with Dunnett’s post hoc tests). Mean ± SEM. N = 8
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of RS [32]. Indeed, GLP-1 and PYY are pleotropic, gut-
derived hormones that, among others, affect glucose
homeostasis and appetite [18]. Because microbial re-
sponses to fiber and other prebiotics can be highly indi-
vidualized [33, 65], determining how—and even if—the
gut microbiota contributes to the physiological effects is
an important step toward the development of efficient
nutritional strategies. Although our findings confirm the
pronounced effect of RS on gut microbiota composition
and structure [33, 66], they do not support a causative
role for these shifts in RS-induced metabolic improve-
ments, including insulin sensitivity. Indeed, feeding RS2
and RS4 resulted in vastly different effects on the com-
position of the gut microbiota; however, both RS types
induced physiological changes that were highly similar
(with RS4 more consistently improving metabolic
parameters as compared to RS2). Together, these find-
ings further imply the importance of a microbiota-
independent pathway in RS-mediated metabolic benefits.
Remarkably, the physiological characteristics of this

microbiota-independent pathway in C3H mice, which
include improvements in insulin sensitivity without ef-
fects on body weight, fat mass, and gut hormone levels,
mirror those observed clinically in humans where im-
provement in insulin sensitivity is the primary beneficial
outcome of feeding RS with little to no effect on body
composition [8–11]. Moreover, these RS-mediated im-
provements in insulin sensitivity in humans are also ob-
served without a concomitant increase in fasting GLP-1
levels [67]. Clearly, we cannot exclude the possibility
that the improvements in insulin sensitivity conferred by
RS consumption occur via different mechanisms in mice
versus humans. However, similar metabolic effects were
observed both during human RS feeding studies and
when RS was fed to mice in the absence of a microbiota.
Together, these findings indicate that the most import-
ant clinical improvement induced by dietary RS in
humans may occur without a contribution from the gut
microbiota, bacterial fermentation, and gut hormones
such as GLP-1 and PYY.

In contrast to our findings and those from human
clinical trials, reductions in fat mass and/or body weight
are often observed in rodent RS feeding studies in
addition to the improvements in insulin resistance [14].
These improvements in adiposity require bacterial fer-
mentation in the gut and are connected with increases
in gut hormones GLP-1 and PYY [32, 68, 69]. This dis-
crepancy can potentially be explained by a RS dose-
dependent effect. Rodent studies showing an effect of RS
on body weight and fat mass provided doses of 30% to
55% (w/w) [32, 68, 70, 71], which are substantially higher
than the doses used in the present study (10% RS) and
in human clinical trials [8–11]. Feeding a lower dose of
RS might account for the absence of an RS-mediated
effect on GLP-1 and PYY levels and the lack of im-
provement in weight and adiposity. Indeed, secretion of
GLP-1 and PYY into the intestine is stimulated by
SCFA [17, 18], which are, as metabolic end products of
bacterial fermentation, produced in a substrate-dependent
manner. However, the doses of RS required to induce fat
loss in rodents are not realistic for incorporation into hu-
man diets, leading one to question the clinical applicability
of RS for controlling adiposity. Nonetheless, diets contain-
ing lower doses of RS represent an exciting opportunity to
improve insulin sensitivity.
In addition to feeding lower RS doses to be more con-

sistent with human studies, we also formulated mouse
diets in such a way as to facilitate comparison between a
diet with native starch to a diet where a portion of the
native starch was replaced with RS. Although this ap-
proach does create differences in caloric content among
the diets, it is utilized extensively in human nutrition
and eliminates concerns over using so-called inert fibers
(such as cellulose) to control for energy density that may
actually exert their own effects on the host [14, 33, 38,
39, 72, 73]. As no significant effects of RS were observed
on energy intake, body weight, body weight gain, or adi-
pose tissue weights in the current study, the observed
metabolic improvements likely occur independently of
changes in energy intake and fat accumulation. We do

a b c

Fig. 4 Resistant starches improved plasma insulin levels and the index of insulin resistance in conventionalized (CVZ) and germ-free (GF) C3H
mice fed experimental diets for 8 weeks. a Plasma insulin levels in 6-h fasted mice. b Plasma glucose levels in 6-h fasted mice. c Index of insulin
resistance (IR), also known as HOMA-IR. LFD low-fat diet, WD Western diet, RS2 WD with resistant starch 2, RS4 WD with resistant starch 4. *p < 0.05
versus WD fed mice of the same microbial status (one-way ANOVA with Dunnett’s post hoc tests). Microbial status significantly impacted fasting
insulinemia and glycemia (analysis of all eight treatments using two-way ANOVA). Mean ± SEM. N = 7–8
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acknowledge that a lack of caloric equivalence among
diets can be considered a study limitation. Additionally,
another limitation of our work is the absence of a func-
tional assessment of glucose homeostasis in germ-free
mice fed RS. In place of this assay, we instead measured
a hallmark of insulin sensitivity (HOMA-IR), which also
allowed us to simultaneously measure several additional
metabolic parameters. Certainly, performing such functional

experiments (e.g., insulin and oral glucose tolerance tests)
would provide additional, valuable mechanistic insights.
Upon observing RS-induced improvements in insulin

sensitivity in mice independently of the gut microbiota,
we explored potential explanations for how the benefi-
cial effects of RS may occur without a microbial contri-
bution. One such possibility is that RS regulate innate
immunity. Numerous studies have implicated CD11c+

a b

c d

e f

g h

Fig. 5 Gut peptide and hormone levels in germ-free (GF) and conventionalized (CVZ) C3H mice fed experimental diets for 8 weeks. a Fasting
plasma C-peptides levels. b Proglucagon mRNA expression in the colon. c Fasting plasma glucagon-like peptide 1 (GLP-1) levels. d PYY mRNA
expression in the colon. e Fasting plasma peptide YY (PYY) levels. f Fasting plasma ghrelin levels. g Adiponectin mRNA expression in the subcutaneous
adipose tissue (SAT). h Fasting plasma adiponectin levels. Mice were fasted for 6 h prior to sampling. LFD low-fat diet, WD Western diet, RS2 WD
with resistant starch 2, RS4 WD with resistant starch 4. #p = 0.07, *p < 0.05 versus WD fed mice of the same microbial status (one-way ANOVA
with Dunnett’s post tests). Microbial status significantly impacted C-peptide, GLP-1, PYY, and ghrelin levels, as well as proglucagon mRNA
expression (analysis of all eight treatments using two-way ANOVA). Mean ± SEM. N = 7–8, except for c and f where N = 6–8
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ATMs in the development of insulin resistance [4], and
RS-mediated improvements in insulin sensitivity in rats
have been associated with reduced CD11c expression in
adipose tissue [70]. In our study, we demonstrate a
strong correlation between ATM marker expression and
the index of insulin resistance in both GF and CVZ

animals. We recognize that evaluating immune and meta-
bolic parameters in germ-free mice has its inherent limita-
tions [35, 74–76], and we cannot exclude the possibility
that the immature immune system present in germ-free
mice was not fully restored by the conventionalization
process. Nevertheless, we did observe decreases in ATM

Fig. 6 Altered expression of macrophage markers in the adipose tissues of C3H mice fed a Western diet supplemented with resistant starches for
8 weeks. a–d F4/80 and CD11c expression in the subcutaneous and visceral adipose tissues (SAT and VAT). e–h Flow cytometry analysis of the
stromal vascular fraction (SVF) isolated from the SAT of conventionalized C3H mice. e Percentage of macrophages (F4/80+ CD11b+). f Percentage
of M1 (CD11c+) macrophages. g Percentage of M2 (CD206+) macrophages. h Ratio of M1/M2, using CD11c as a M1 marker and CD206 as a M2
marker. LFD low-fat diet, WD Western diet, RS2 WD with resistant starch 2, RS4 WD with resistant starch 4. $p = 0.11, #p = 0.05–0.07, *p < 0.05,
***p < 0.001 versus WD fed mice of the same microbial status (one-way ANOVA with Dunnett’s post hoc tests). Analysis performed after
normalization by log-transformation for d (GF data) and f. Microbial status significantly impacted F4/80 expression in SAT (analysis of all
eight treatments using two-way ANOVA). Mean ± SEM. a–d N = 5–8. e–h N = 14–15 except for the LFD where N = 6

Bindels et al. Microbiome  (2017) 5:12 Page 9 of 16



markers in both germ-free and conventionalized mice fed
RS that were consistent with previous findings obtained in
immunocompetent rats [70]. Although the exact mechan-
ism by which RS improves insulin levels and influences
ATM abundance in the absence of a microbiota remains
unclear, our findings suggest that RS-induced modulation
of the BA pool may be involved. Indeed, connections
among BA signaling, insulin sensitivity, and macrophages
are emerging. Of note, deletion of the BA membrane

receptor Tgr5 specifically in macrophages increased ATM
accumulation and aggravated insulin resistance in obese
animals [59]. Considering our observations that feeding
an RS-supplemented diet redressed the concentrations
of BA elevated by a WD and the strong correlations be-
tween BAs, macrophage markers, and insulin metabol-
ism, it is tempting to speculate that RS-induced
modulation of the BA profile reduces macrophage mi-
gration, thereby contributing to improvements in

Fig. 8 Resistant starches restored the cecal bile acid profiles of germ-free (GF) and conventionalized (CVZ) C3H mice fed experimental diets for
8 weeks. Mean bile acid concentration for each dietary treatment (nmol/g of cecal content). Only bile acids with mean concentrations above
1 nmol/g for at least one experimental treatment are shown. LFD low-fat diet, WD Western diet, RS2 WD with resistant starch 2, RS4 WD with
resistant starch 4, CA cholic acid, CDCA chenodeoxycholic acid, MCA muricholic acid, HCA hyocholic acid, MuroCA murocholic acid, ACA allocholic
acid, LCA lithocholic acid, DCA deoxycholic acid, HDCA hyodeoxycholic acid, ILCA isolitocholic acid, UDCA ursodeoxycholic acid, K keto derivative,
T taurine-conjugated species. Complete abbreviation list is available in the supplemental materials and methods. °p < 0.05 versus WD fed mice
of the same microbial status (one-way ANOVA with Dunnett’s post hoc tests after normalization by log-transformation when needed). N = 7–8

a b c

Fig. 7 Markers of intestinal permeability in germ-free (GF) and conventionalized (CVZ) C3H mice fed experimental diets for 8 weeks. a Gut
permeability as assessed by administering 4 kDa FITC-dextran. b Zonula occludens 1 (ZO-1) and c occludin mRNA expression in the ileum.
LFD low-fat diet, WD Western diet, RS2 WD with resistant starch 2, RS4 WD with resistant starch 4. Mean ± SEM. a N = 6–8. b–c N = 7–8
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insulin sensitivity. Clearly, future mechanistic studies
are necessary to determine how RS improves insulin re-
sistance independently of the gut microbiota.

Conclusions
In conclusion, this study unequivocally demonstrates
that the gut microbiota is not required to bring about all
the metabolic benefits that arise from RS consumption
in mice. Instead of relying on correlations between
physiological parameters and specific microbial taxa,
which is common practice but cannot assign causality,
we experimentally determined the causative role of the
gut microbiota using germ-free mice. We argue that
similar gnotobiotic animal research could constitute an
essential component to determining the prebiotic prop-
erties of a specific dietary compound [22]. Based on our
findings and those in the literature [32], we propose a
model in which RS induces health benefits via both
microbiota-dependent and microbiota-independent path-
ways. When RS are fed at higher doses, metabolites from
bacterial fermentation are released at physiologically
relevant levels, leading to a decrease in body weight
and/or fat mass via a GLP1-PYY-dependent mechanism
[32]. When fed in clinically relevant doses, RS improves
insulin resistance independently of the gut microbiota,
possibly altering bile acid signaling as well as adipose
tissue immune modulation. Although our findings are
supported by observations in humans showing an im-
pact of RS feeding on insulin sensitivity without any
effect on fat mass or increase in fasting GLP-1 levels
[8–10, 40, 67], additional studies are necessary to eluci-
date the exact mechanisms, dose-response relation-
ships, and the role of microbiota variability in both
humans and animal cohorts.

Methods
Mice
Germ-free (GF) C3H and C57BL/6 (B6) male mice were
born and reared in flexible film isolators and maintained
under gnotobiotic conditions at the University of
Nebraska-Lincoln (UNL). Conventionalized (CVZ) mice
were used for all experiments (unless specified other-
wise) to limit genetic, maternal, and early-life-related
confounding factors when comparing to GF animals.
Experimental diets were introduced to both GF and

CVZ mice 9 and 21 days after conventionalization of
C3H and B6 mice, respectively. Body weight was moni-
tored weekly after conventionalization. Food intake was
also monitored weekly after introduction of the experi-
mental diets, but multiple measurements were ham-
pered by spillage issues due to softness and crumbling
of the Western diet. Feces were collected on the day of
necropsy. The Institutional Animal Care and Use

Committee at the University of Nebraska-Lincoln ap-
proved all procedures involving animals.
Germ-free (GF) status of all experimental mice was

confirmed at least twice (prior to introducing the experi-
mental diet and during the last week of the experiment)
by analyzing fresh feces via PCR using universal bacterial
primers targeting the 16S rRNA gene (30 cycles, primers
8F and 1391R) [77] and aerobic and anaerobic culture in
brain heart infusion, Wilkins-Chalgren, and yeast mold
broths for 7 days at 37 °C. Conventionally raised
(CONV) B6 male mice were obtained from Jackson
Laboratory (Bar Harbor, ME). Conventionalized (CVZ),
CONV, and GF mice were housed in the same room on
autoclaved bedding and fed the same autoclaved water
and diet. All mice within an experiment were born
within 5 to 9 days of one another. Three to ten mice
were obtained per litter, and littermates were assigned to
cages of two to three mice each. Mice were then ran-
domly assigned to each treatment/intervention based on
body weight at the time of conventionalization and diet
introduction. No differences in body weight variance
were observed among the treatment groups on the
day of randomization. Conventionalization, insulin
tolerance tests, and gut permeability assays are described
in Additional file 6: supplemental methods.

Diets
Mice were fed an autoclavable chow diet (LabDiet
5K67, Purina Foods, St. Louis, MO) after weaning and
during the period of time between conventionalization
and introduction of the experimental diets. Experi-
mental diets were prepared by Research Diets (New
Brunswick, NJ) and sterilized by γ-irradiation (min
50 kGy, Neutron Products, Dickerson, MD). Irradi-
ation efficacy was assessed by testing 50 spore strips of
Bacillus pumillus (NAMSA, Northwood, OH) placed
between bags of diet before irradiation and then incu-
bated after irradiation in Soybean-Casein Digest broth
at 33 °C for 7 days. Mice were fed a LFD (D12450K)
and a customized WD (45% kcal from fat and 17% kcal
from sucrose with low maltodextrine/high starch com-
pared to D12451) where part of the corn starch was
replaced by either 10% RS type 2 (RS2; HI-MAIZE®
260, Ingredion Incorporated, Westchester, IL) or 10%
RS type 4 (RS4; Fibersym® RW, MGP Ingredients,
Atchinson, KS). HI-MAIZE® 260 is derived from high
amylose corn starch; it has a caloric content of
1.5 kcal/g and contains 62.50% of RS. Fibersym® RW is
a chemically modified phosphorylated cross-linked
RS4 prepared from wheat starch [78]; it has a caloric
content of 0.44 kcal/g and contains 89.10% of RS. Diet
composition is summarized in Table 1, with full details
provided in Additional file 3: Table S4.
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Blood and tissue analyses
Mice were euthanized via carbon dioxide asphyxiation.
Blood was collected into EDTA-containing tubes and
centrifuged (13,000×g, 3 min, 4 °C). At the time of col-
lection, blood samples were treated with a DPPIV inhibi-
tor (Millipore, Billerica, MA) and a protease inhibitor
cocktail (Sigma, Saint-Louis, MO). Plasma insulin was
measured using an ELISA-based assay (Mercodia, Upp-
sala, Sweden). The index of insulin resistance (IR), also
called HOMA-IR, was calculated based on the original
model from Matthews et al.: fasting glucose (mg/dL) ×
fasting insulin (mU/L)/405. For reference, HOMA-IR
values in healthy humans are equal to 1, whereas IR
values for healthy mice are greater than one [79–82].
Percent change values were calculated to assist the
reader in understanding relative changes in the IR be-
tween each treatment compared to the WD control. Gut
peptides, gut hormones, MCP-1, and adiponectin were
measured using a Mouse Metabolic Magnetic Bead
Panel or a Mouse Adiponectin Single Plex Magnetic
Bead Kit (Milliplex, Millipore, Billerica, MA) and a
MAGPIX instrument (Luminex Corporation, Austin,
TX). Gene expression and flow cytometric analyses are
described in Additional file 6: supplemental methods.

Microbial community analysis
Gut microbiota composition was assessed by 16S rRNA
gene sequencing of fecal samples. Bacterial DNA was ex-
tracted from feces using the QIAamp DNA Stool Mini
Kit (Qiagen, Valencia, CA) with a bead-beating step as
previously described [33]. Amplicon sequencing of the
fecal microbiota was performed at the University of
Minnesota Genomics Center as described in Additional
file 6: supplemental methods.
Initial quality filtering of the reads was performed with

the Illumina Software, yielding an average of 53,426 filter-
passed reads per sample (accession numbers provided in
supplemental methods). Quality scores were visualized
with the FastQC software (http://www.bioinformatics.bab-
raham.ac.uk/publications.html), and reads were trimmed
to 250 bp (R1) and 230 bp (R2) with the FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit). Next, reads were
merged with the merge-illumina-pairs application (with p
value = 0.02, enforced Q30 check, perfect matching to
primers which are removed by the software, and otherwise
default settings including no ambiguous nucleotides
allowed) [83]. For samples with >20,000 merged reads, a
subset of 20,000 reads was randomly selected using
Mothur 1.32.1 centos 5.5 for Linux [84] to avoid large dis-
parities in the number of sequences. Subsequently, the
UPARSE pipeline implemented in USEARCH v7.0.1001
[85] was used to further process the sequences. Putative
chimeras were identified against the Gold reference data-
base and removed. Clustering was performed with 98%

similarity cutoff to designate operational taxonomic units
(OTUs). Non-chimeric sequences were also subjected to
taxonomic classification using the RDP MultiClassifier 1.1
from the Ribosomal Database Project [86] for phylum to
genus characterization of the fecal microbiota. The phylo-
types were computed as percent proportions based on the
total number of sequences in each sample. Alpha and beta
diversity indexes were calculated using QIIME [87]. PCoA
plot of the beta-diversity indexes were obtained using EM-
Peror [88]. We used LEfSe to calculate and visualize the
LDA Effect size [89] (http://huttenhower.sph.harvard.edu/
galaxy/).

Bile acid analysis
Forty-six bile acids were quantified in cecal contents by
ultrahigh performance liquid chromatography—multi-
ple-reaction monitoring mass spectrometry (UPLC-
MRM-MS) at the University of Victoria Genome British
Columbia Proteomics Centre using a protocol adapted
from Han et al. [90] (see Additional file 6: supplemental
methods).

Statistical analyses
A sample size of n = 8 was calculated for the four
treatment groups after considering a power of 80%, a
significance level of 0.05, an effect size of 0.7, and a
10% attrition rate using G*Power 3.1.9.2 [91]. Data
were analyzed using Prism 5.0 (GraphPad Software,
San Diego, CA) via a one-way ANOVA followed by
Dunnett’s pairwise comparison post hoc test with the
WD group as control. The global effects of microbial
status (presence or absence of the gut microbiota) and
dietary intervention were assessed using two-way
ANOVA. All data were checked for normality using
tests available in Prism 5.0 (Kolmogorov-Smirnov,
D’Agostino and Pearson, and Shapiro-Wilk normality
tests). Data determined to be non-normal even after
log-transformation were analyzed using a Kruskal-
Wallis test and Dunn’s post-tests as indicated in the
legend. Body weight evolution was analyzed by two-
way ANOVA with repeated measures followed by a
Bonferroni post hoc test (Fig. 1). For parametric ana-
lyses of the gut microbiota, the p value of the one-way
ANOVA was adjusted to control the false discovery
rate for multiple tests according to the Benjamini and
Hochberg procedure [92]. Robust (Huber) estimation
was used to weigh down outliers, as implemented in
JMP Pro 11 (SAS Institute, Cary, NC). R software (R
Foundation for Statistical Computing, Vienna, Austria)
[93] was used for multiple correlation analyses and p
value adjustments according to the Benjamini and
Hochberg procedure. p < 0.05 was considered statisti-
cally significant.
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Additional files

Additional file 1: Figure S1. Resistant starches improved insulin
sensitivity in B6 mice in the presence of a microbiota. Glycemic response
after insulin injection in conventional 16 week-old B6 mice fed experi-
mental diets for 7 weeks (a, b) (LFD, low fat diet; WD, Western diet; RS2,
WD with resistant starch 2; RS4, WD with resistant starch 4). Body weights
at necropsy (c), body weight gains over 8 weeks of dietary intervention
(d), subcutaneous adipose tissue (SAT) weights at necropsy (e) and energy
intake (as recorded over a week at week 4) (f) in conventional B6 mice fed
experimental diets for 8 weeks. Although RS4 feeding tended to reduce the
body and subcutaneous adipose tissue weights of B6 mice, these
differences were not statistically significant (p = 0.18 and p = 0.51,
respectively, RS4 versus WD according to Dunnett’s post-hoc tests). #p=0.08,
*p<0.05, ***p<0.001 versus WD (one-way ANOVA with Dunnett’s post-hoc
tests). Mean ± SEM. (a, b) N=5-9; (c-e) N=8; (f) N=4 cages. (PDF 30 kb)

Additional file 2: Figure S2. Feeding resistant starches changed the
gut microbiota composition. (a) Principal Coordinate Analysis plot of
β-diversity based on Bray-Curtis distance. (b) Principal Coordinate Analysis
plot of β-diversity based on Unweighted Unifrac distance. (c) LEfSe
cladogram highlighting the bacterial taxa specifically enriched in each
dietary group. (d) LEfSe results highlighting the bacterial taxa specifically
enriched in each dietary group. LFD, low fat diet; WD, Western diet;
RS2, WD with resistant starch 2; RS4, WD with resistant starch 4. N=8.
(PDF 1390 kb)

Additional file 3: Supplemental Tables. List of OTUs significantly
affected by dietary intervention. Each OTU is identified at the species
level and the percentage of homology is indicated (%ID). R_FDR_p
indicates the p-value of the one-way ANOVA adjusted to control the
false discovery rate for multiple tests according to the Benjamini and
Hochberg procedure and with Robust (Huber) estimation to down weight
outliers. LFD, WD, RS2, RS4 represent the mean relative abundance of each
OTU (as a fraction of one) for each group; SEM are indicated in the last 4
columns. *p<0.05 versus WD (one-way ANOVA with Dunnett’s post-hoc
tests). N=8. Table S2. List of bacterial taxa significantly affected by
dietary intervention. R_FDR_p indicates the p-value of the one-way
ANOVA adjusted to control the false discovery rate for multiple tests
according to the Benjamini and Hochberg procedure and with
Robust (Huber) estimation to down weight outliers. LFD, WD, RS2, RS4
represent the mean relative abundance of each bacterial taxon (as a fraction
of one) for each group; SEM are indicated in the last 4 columns. *p<0.05
versus WD (one-way ANOVA with Dunnett’s post-tests). N=8. Table S3. Bile
acid dataset summary table, including correlations between bile acids and
selected host physiological parameters. Mean concentrations (in nmole/g of
cecal contents) with SEM for each group along with fold changes. Pearson
r, and p- and q-values for the Pearson correlation tests are presented. Only
bile acids with mean concentrations above 1nmole/g for at least one
experimental treatment were included in the multiple correlation analyses.
Correlations with a p-value <0.05 are highlighted in pink and correlations
with a p- and a q-value <0.05 are highlighted in red. N=6-8/group.
Table S4. Diet composition. Ingredient quantity, energy density and
macronutrient repartition for all the experimental diets. LFD, low fat diet;
WD, Western diet; RS2, WD with resistant starch 2; RS4, WD with resistant
starch 4. References to the standard diet formulations from Research Diets
are also included. Mice were fed a low fat diet (LFD, D12450K) and a
customized Western diet (WD, 45% kcal from fat and 17% kcal from sucrose
with low maltodextrine/high starch compared to D12451) where a portion
of the corn starch was replaced by either 10% RS type 2 (RS2; HI-MAIZE®
260, Ingredion Incorporated, Westchester, IL) or 10% RS type 4 (RS4;
Fibersym® RW, MGP Ingredients, Atchinson, KS). HI-MAIZE® 260 is
derived from high amylose corn starch; it has a caloric content of 1.5
kcal/g and it contains 62.5% RS. Fibersym® RW is a chemically modified
phosphorylated cross-linked RS4 prepared from wheat starch; it has a caloric
content of 0.44 kcal/g and contains 89.1% RS. (PDF 260 kb)

Additional file 4: Figure S3. Resistant starches did not impact body
weights, white adipose tissue weights, tibialis muscle weights and plasma
leptin levels in germ-free (GF) or conventionalized (CVZ) C3H mice fed
experimental diets for 8 weeks. (a, b, d) Body, adipose tissue and tibialis
weights. (c) Plasma leptin levels. *p<0.05 versus WD fed mice of the same

microbial status (one-way ANOVA with Dunnett’s post-hoc tests).
For C, GF-RS4 data were determined to be non-normal even after
log-transformation and were analyzed using a Kruskal-Wallis test
then Dunn’s post-tests. LFD, low fat diet; WD, Western diet; RS2,
WD with resistant starch 2; RS4, WD with resistant starch 4. Mean ± SEM.
N=7-8. (PDF 29 kb)

Additional file 5: Figure S4. Resistant starches modulated
subcutaneous adipose tissue macrophage accumulation and cecal bile
acid profiles in C3H mice fed experimental diets for 8 weeks. Two
different markers were used to identify M2 macrophages in C3H mice,
CD206 and CD301. Both markers provided similar results, as shown in Fig.
5 for CD206 and Fig S5 for CD301. (a) Percentage of M2 (CD301+)
macrophages in the stromal vascular fraction (SVF) of the SAT of C3H
mice. (b) Ratio of M1/M2, using CD301 as a M2 marker. (c) Plasma
monocyte-chemoattractant protein-1 (MCP-1) levels. (d) MCP-1 expression
in subcutaneous adipose tissue (SAT). (e) Principal Component Analysis
plot of the bile acid profiles by microbial status. (f) Principal Component
Analysis plot of the bile acid profiles by microbial status and dietary
treatment. CVZ: conventionalized. GF: germ-free. LFD, low fat diet; WD,
Western diet; RS2, WD with resistant starch 2; RS4, WD with resistant
starch 4. #p=0.07, *p<0.05 vs WD fed mice of the same microbial status
(one-way ANOVA with Dunnett’s post-hoc tests). Microbial status significantly
impacted MCP-1 mRNA expression in the SAT (analysis of all 8 treatments
using two-way ANOVA). (a-d) Mean ± SEM. (a, b) N=14-15 except for the LFD
where N=6. (c, d) N=6-8. (e, f) N=7-8. (PDF 98 kb)

Additional file 6: Supplemental materials and methods. (PDF 208 kb)
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