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Abstract

Background: Although culture-independent methods have paved the way for characterization of the lung microbiome,
the dynamic changes in the lung microbiome from neonatal stage to adult age have not been investigated.

Results: In this study, we tracked changes in composition and diversity of the lung microbiome in C57BL/6N mice,
starting from 1-week-old neonates to 8-week-old mice. Towards this, the lungs were sterilely excised from
mice of different ages from 1 to 8 weeks. High-throughput DNA sequencing of the 16S rRNA gene followed
by composition and diversity analysis was utilized to decipher the microbiome in these samples. Microbiome
analysis suggests that the changes in the lung microbiome correlated with age. The lung microbiome was
primarily dominated by phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in all the stages from
week 1 to week 8 after birth. Although Defluvibacter was the predominant genus in 1-week-old neonatal mice,
Streptococcus became the dominant genus at the age of 2 weeks. Lactobacillus, Defluvibacter, Streptococcus, and
Achromobacter were the dominant genera in 3-week-old mice, while Lactobacillus and Achromobacter were
the most abundant genera in 4-week-old mice. Interestingly, relatively greater diversity (at the genus level)
during the age of 5 to 6 weeks was observed as compared to the earlier weeks. The diversity of the lung
microbiome remained stable between 6 and 8 weeks of age.

Conclusions: In summary, we have tracked the development of the lung microbiome in mice from an early
age of 1 week to adulthood. The lung microbiome is dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and
Actinobacteria. However, dynamic changes were observed at the genus level. Relatively higher richness in the microbial
diversity was achieved by age of 6 weeks and then maintained at later ages. We believe that this study improves our
understanding of the development of the mice lung microbiome and will facilitate further analyses of the role of the lung
microbiome in chronic lung diseases.
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Background
The lower respiratory tract is continuously exposed to
microorganisms carried by inhaled air. In humans, the
inhaled air passes through the mouth and oropharynx,
carrying resident microbes from these sites to the lungs.
Despite such persistent exposure to microbes, the lower
respiratory tract was considered to be sterile [1–4]. This
viewpoint arose from the inability to culture microbes
from specimens, such as sputum or lung aspirates, using
culture-based methods. Due to this prevailing view,

exploration of the lung microbiome was not included in
the human microbiome project [5]. However, this para-
digm has been contested using culture-independent
methods via next-generation sequencing of the highly
conserved 16S ribosomal RNA (16S rRNA) gene marker
[6]. These culture-independent methods have shown
that the lower respiratory tract of healthy humans har-
bors a diverse microbial community [7]. The microbial
community residing in the lungs undergoes significant
changes in terms of composition and diversity in a num-
ber of pulmonary diseases such as cystic fibrosis [8],
asthma [9, 10], and chronic obstructive pulmonary dis-
ease (COPD) [11]. It is also speculated that changes in
composition and diversity of the lower respiratory tract
may determine pre-disposition and severity towards lung
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diseases. Systematic assessment of the role of the lung
microbiome in disease manifestation and its control
could improve our understanding about the relevance of
lung microbiome in respiratory diseases.
Current understanding of the lung microbiome has

primarily arisen through analysis of microbial communities
recovered in sputum samples, aspirations from intubation,
tracheal aspirates, sterile brushings, and bronchoalveolar
lavage samples. Although such assessments of composition
and diversity of the lower respiratory tract microbiome are
valuable, they are limited by potential contamination with
microbial flora from the mouth and upper respiratory tract.
Several studies have reported that the microbiome of the
lower respiratory tract is different from that of the upper
respiratory tract and oral cavity [7, 12, 13]. However, it
must be noted that in humans, the main route of passage
of bacteria into the lower respiratory tract are microaspira-
tions from the oral cavity (with oral commensals) and the
upper respiratory tract [14] and it remains to be under-
stood as to why only a few selected bacteria can settle
down and enrich in the lower respiratory tract. Further-
more, differences in microbiome composition were ob-
served between bronchoalveolar lavage samples and
dissected lung tissues of mice [15]. Thus, more work is re-
quired to establish the role of diversity and composition of
the lower respiratory microbiome and their association
with the pulmonary pathologies. Analysis of the micro-
biome of the lower respiratory tract and its role in pulmon-
ary disease pathogenesis in humans is limited due to
ethical concerns and the availability of limited numbers of
samples. Therefore, small animal models may be utilized
for establishing the lung microbiome. In these models, it is
possible to physically separate the lower respiratory tract
from the upper respiratory tract thereby allowing for inves-
tigation of the contribution of the lung microbiome in lung
physiology. In fact, the National Institutes of Health (NIH)
has recommended development of animal models to study
the mechanistic aspects observed in human studies of host
pulmonary interactions with the lung microbiome [16].
Such animal models have been extensively used to under-
stand the physiological aspects associated with the gut
microbiome [17]. Furthermore, evidence emerging from
animal models suggests that the lung microbiome can be
manipulated through inhalation of desired microbes to
improve the outcome of harmful pulmonary infections
[18, 19]. Although a few studies have utilized mice
models to implicate the role of microbiome in lung
pathologies [20, 21], one of the major unanswered
questions in the field of pulmonology is whether the
manipulation of the lung microbiome can be utilized to
alleviate pulmonary pathologies.
Exposure to a variety of microbes during the early ages

of development has been associated with higher tolerance
for common allergens and a lower risk of developing

immune-related diseases such as asthma at a later stage
[22–25]. It can be hypothesized that the lung microbiome
develops quite earlier in life and that microbiome may
guide the development of the immune system. In fact, a
study has conclusively demonstrated that lung microbiota
can at least in part “educate” the immune system during
early life [24]. Furthermore, the lung microbiome also de-
pends on environmental factors such as geographical loca-
tion, presence of animals or pets, and presence of dust
[26, 27]. However, details about the compositional dynam-
ics of the lung microbiome with age have been examined
in few studies only [28–30]. As most of these studies were
performed during the course of disease development, they
do not provide an insight in the healthy lung microbiota.
A better understanding of microbiome development in-
side the lung could be established using animal models,
and such knowledge may further our understanding of the
effects of the lung microbiome on lung diseases. In this
study, we monitored the lung microbiome from postnatal
to adulthood in C57BL/6N mice. We analyzed the micro-
biome of the lower respiratory tract from groups of neo-
nates and tracked changes in microbial diversity into
adulthood. To this end, we used deep sequencing of 16S
rRNA amplified from genomic DNA isolated from the
lungs of mice.

Results
The developing lung harbors temporally dynamic
microbial diversity
The development of the lung microbiome cannot be
thoroughly tracked in humans due to technical limitations
and associated ethical issues. In light of these limitations,
we used an inbred mouse strain for exploring the develop-
ment of the lung microbiome. The use of inbred mice in
this study is supported by previous studies in which mice
were used as an animal model for several pulmonary dis-
eases [31, 32]. Pulmonary development happens during
early postnatal periods [33, 34], and this development may
be associated with changes in the lung microbiome; there-
fore, we tracked the changes in the pulmonary micro-
biomes in mice from age of 1 week until the age of
8 weeks. It must be noted that we have not included week
7 in this work. This time point was omitted since the pub-
lished literature suggest that the development of the mice
body including the nervous system is finished by 6 weeks
of age [35]. Furthermore, the development of the lung is
also completed by 6 weeks post-birth [33, 34]. A total of
72 mice from 1 to 8 weeks old were sacrificed, and the
lungs were dissected out and homogenized under sterile
conditions for genomic DNA isolation. Since lung tissue
represents low microbial biomass specimens and is highly
vulnerable to contamination by bacterial DNA introduced
at any step during harvest, processing, DNA isolation, and
sequencing, we used phosphate-buffered saline in place of

Singh et al. Microbiome  (2017) 5:61 Page 2 of 16



lung tissue as negative control. Genomic DNA isolated
from the lung samples and the negative control was used
to amplify the V4 variable region of the 16S rRNA gene
with PCR primers targeting the +515/806 region. The
primers were barcoded and PCR products were subjected
to high-throughput Illumina sequencing (MiSeq). A total
of 2,919,116 16S rRNA (V4 region) reads were obtained
with an average of 45,037 reads across samples. Import-
antly, we observed only a few sequence reads in the
negative control. The sequence reads were filtered and
quality-checked before assigning taxonomy using Green-
genes software (http://greengenes.secondgenome.com/
downloads). Mapping of reads was undertaken to generate
a total of 95,343 operational taxonomic units (OTUs) that
could be further grouped into ~500 unique OTUs. Collect-
ively, these sequences represented 269 unique genera. The
average Shannon Diversity Index [36], taking into account
both the number of OTUs and their relative abundances,
for all time points ranged from 3–4, with a mean of 3.5
(confidence intervals for all the SDI values are provided in
Additional file 1: Table S1). There was an overall agree-
ment of trends when comparing between Shannon and
Simpson’s diversity indices. These trends can be clearly vi-
sualized using the Simpson’s Diversity Index (SDI) [37]
(Fig. 1). The Simpson diversity depicts an increase in diver-
sity at week 2, followed by a slight decrease at weeks 3 and

4. Thereafter, diversity increases until week 5 and remains
relatively constant until week 8. This trend was repro-
ducible using the Inverse Simpson’s Diversity Index
(Additional file 2: Figure S1a). The median and inter-
quartile range (IQR) are provided in Additional file 2:
Figure S1b.
To have a better understanding of the proportion of

reads mapping to each genus, the abundance levels of
each genus per week were represented as percentage
values (Fig. 2). Hierarchical clustering of these read abun-
dance levels (number of reads corresponds to abundance
proportions—represented as percentage) revealed inde-
pendent clusters of genera dominated each week, with
reads mapping to weeks 4, 5, and 8 representing the lar-
gest genera clusters. Overall, the developing lung is host
to diverse and dynamic microbial communities, which are
dominated by clusters of unique genera (also see Fig. 7).

Identification of the core microbial population during
mice growth
The number of mice per week ranged from seven to 17
with week 8 (adult mice) having the maximum number
of samples (Additional file 3: Table S2). We thus test the
consistency of log-transformed microbial abundances
(per week) in the grouping of 269 genera using variabil-
ity analysis. For each of the time points studied, the
intraclass correlation coefficient (ICC) iteratively accesses
intra-subject similarity by comparing the variability of
log-transformed abundance levels of each genus across
a single week to the total variation across that week for
all genera (Table 1). The consistency of ICC values (be-
tween 0.002 and 0.007) reveals that the abundance
levels of the genera were evenly distributed and consist-
ent within the groups of the animals of each week
point. For further comparison of abundances across
weeks, we plotted the weighted UniFrac distances for
all the weeks (Fig. 3). As can be clearly seen, the intra-
week weighted UniFrac distances are lesser than the
inter-week weighted UniFrac distances.
When comparing the relative percent abundance at the

phyla level, more than 85% (two-tailed z test; p value <0.01)
of the microbial communities in mice from week 1 to week
8 consisted of phyla Proteobacteria, Firmicutes, Bacteroi-
detes, and Actinobacteria. We used 97% 16S rRNA pairwise
sequence identity via QIIME [38] for allocating the OTUs.
During the first week, the most abundant phylum was Pro-
teobacteria; however, at week 2 after birth, Firmicutes be-
comes the predominant phylum along with Proteobacteria
(Fig. 4). Both these phyla remain predominant throughout
the lung development. The mean abundance measure along
with the standard error has also been plotted for individual
phyla (Additional file 4: Figure S2). It is important to note
that the percent abundance of different phyla varied at each
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Fig. 1 Simpson diversity for all 72 samples representing the
developmental weeks. Early developmental weeks (1–4) have lower
diversity than later stages (Pearson chi-squared; p < 0.01). The increase
in diversity from week 5 can be clearly visualized from the box plots
that display the following values: lower whisker, minimum; lower box
border, first quartile; middle box line, median; upper box border,
third quartile; and upper whisker, maximum. The dots represent
the outlier values
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week thereby indicating a dynamic microbial ecosystem in
the murine lungs.

Grouping of microbial abundance in the mice lungs
shows temporal signatures
Removal of low-abundance genera (log10-transformed
values with abundance levels <10) from 72 samples resulted
in 138 genera. This filtered dataset was used for further
statistical analysis. To identify similarities and differences
between the microbial communities of different samples,
we initially implemented hierarchical clustering and then
calculated the beta diversity indices. Cluster analyses, based
on weighted UniFrac distances [39], revealed distinct clus-
ters pertaining to weeks 1, 2, 6, and 8. Weeks 3, 4, and 5

showed an admixture affect by forming two distinct clusters
(Fig. 5). Many samples clustered with other samples from
the same week, thereby depicting high specificity (samples
from weeks 1, 2, and 8). Samples from other weeks either
clustered with nearest neighboring time point (weeks 3–4;
4–5) or non-specifically with other samples (squares with
dashed border).
Weighted UniFrac distances for the principal coordi-

nates analysis (PCoA) were used to visualize whether the
samples grouped into distinct clusters as a resultant of
beta diversity differences between the time points.
Whereas samples from week 1 (green circle) and week 3
(yellow circle) formed distinct groups (along PC1 axis),
the remaining samples (weeks 2, 4, 5, 6, and 8) (red circle)
were all grouped together in a large cluster (Fig. 6a). In
order to better visualize these binning, we calculated the
“sum of squares” distance measures from raw abundance
measures, before employing the principal component ana-
lysis (PCA) and k-means clustering. Four non-overlapping
clusters can be seen in the 2D PCA plot (Fig. 6b). Al-
though none of these four clusters contains unique sam-
ples from the developmental weeks, each of the clusters
contains samples from two adjacent time points. This
clear trend of binning alongside ones’ adjacent time point
suggests the existence of a quantitative gradient in taxo-
nomic abundance of lung metagenomic data.
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Fig. 2 Weighted UniFrac distance box plots. The intra-week weighted UniFrac distances are smaller than the inter-week distances

Table 1 ICC values along with the number of mice per week

Week ICC No. of replicates

Week 1 0.004660935 10

Week 2 0.007651562 7

Week 3 0.002102421 10

Week 4 0.005535202 10

Week 5 0.002466764 10

Week 6 0.002825806 8

Week 8 0.005390442 17
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To determine the sets of OTUs that might be common
or distinct among the developmental weeks, an OTU
network (no. of nodes = 399; no. of edges = 1195) linking
the seven developmental weeks with the OTUs was con-
structed (Fig. 7a). Using force-directed graph drawing al-
gorithm, the OTU network could be visualized for
further analysis. The most “central” nodes, identified by
the betweenness centrality (defined by the number of
shortest paths from all nodes to all others that pass
through that node), have larger nodes. These nodes rep-
resent the developmental weeks and depict the numbers
of OTUs associated with each timescale. As an OTU as-
sociated with a week node could either be unique to that
time point or could be shared with other week nodes,
this phenomenon leads to the network having a modular
structure—depicted by different colors. Modularity ana-
lysis therefore enables us to detect the communities in
the network. The OTUs that are common between a

single week point and the rest of the weeks, along with
the unique OTUs in that particular week, form a commu-
nity structure (Additional file 5: Figure S3). As seen from
similar color-coding, many OTUs are shared between dif-
ferent week nodes, thereby imparting a modular structure
to the network. Although the numbers of week points are
7, the numbers of communities are 4. Weeks 1, 2, 3, and 4
form a single large community (colored green) as the ma-
jority of OTUs they contain are shared among these
4 weeks. The colors associated with these four communi-
ties are just for visualization purposes. Analyzing nodes
with single edges (leaves of the network) enables us to
more clearly visualize those OTUs that are distinct for
each time scale (ranges from 8 (week 2) to 34 (weeks 4
and 8), Fig. 7b). Proteobacteria, Firmicutes, Bacteroidetes,
and Actinobacteria were the dominant phyla of these
unique OTUs, with singular Firmicutes showing elevated
levels at week 2 and week 3, while the unique
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Week Three (17)
Geobacillus 
Dorea 
Rubricoccus 
Salinicoccus 
Hyphomicrobium 
Phascolarctobacterium 
Macrococcus 
Luteimonas 
Listeria 
Idiomarina 
Sinorhizobium 
Thermus 
Klebsiella 
Ellin506 
Friedmanniella 
Nocardioides
Fimbriimonas

Week Four (44)
Brachybacterium 
Rheinheimera 
Flavisolibacter 
Cupriavidus 
Pontibacter 
Ruminococcus 
Bifidobacterium 
Roseburia 
Micrococcus 
Enhydrobacter 
Sphingobacterium 
Janibacter 
Bacteroides 
Agrococcus 
Faecalibacterium 
Dietzia 
Planococcus 
Parabacteroides 
Peptostreptococcus 
Leucobacter 
Arthrobacter 
Butyrivibrio 
Paenibacillus 
Desulfovibrio 
Knoellia 
Psychrobacter 
Polaromonas 
Sutterella 
Campylobacter 
Steroidobacter 
Exiguobacterium 
Helicobacter 
Flexispira 
Anaeromyxobacter 
Niabella 
Cellulomonas 
Tetrasphaera 
Microbispora 
Diaphorobacter 
Georgenia 
Dyadobacter 
Planomicrobium 
Spirosoma 
Kytococcus 

Week One (27)
Gordonia 
Facklamia 
Defluvibacter 
Chryseobacterium 
Pseudoclavibacter 
Leuconostoc 
Lautropia 
Propionicimonas 
Candidatus Rhodoluna 
Dermacoccus 
Saccharopolyspora 
Myxococcus 
Rummeliibacillus 
Allobaculum 
Natronobacillus 
Candidatus Koribacter 
Flavobacterium 
Alloiococcus 
Hydrogenophaga 
Kurthia 
Streptomyces 
Mycoplana 
Polymorphum 
Truepera 
Tolumonas 
Polynucleobacter 
Bdellovibrio 

Week Five (45)
Corallococcus 
Ethanoligenens 
Candidatus Aquiluna 
Anaerococcus 
Kocuria 
Rubellimicrobium 
Rhodobacter 
Agrobacterium 
Enterobacter 
Pseudomonas 
Brevibacterium 
Lysobacter 
Paracoccus 
Trabulsiella 
Cloacibacterium 
Riemerella 
Pseudonocardia 
Deinococcus 
Roseomonas 
Kingella 
Lactococcus 
Amaricoccus 
Roseococcus 
Novosphingobium 
Thermomonas 
Nocardia 
Gemmata 
Turicibacter 
Alicyclobacillus 
Peptoniphilus 
Rhodococcus 
Rubrobacter 
Anaerospora 
Rhodocytophaga 
HTCC 
Acidovorax 
Limnohabitans 
Providencia 
Opitutus 
Pseudochrobactrum 
Candidatus Xiphinematobacter 
Petrobacter 
Moryella 
Chitinimonas 
Perlucidibaca 

Week Two (20)
Parvimonas 
Mannheimia 
N09 
Citrobacter 
Anoxybacillus 
Streptococcus 
Actinobacillus 
Enterococcus 
Akkermansia 
Brevibacillus 
Gemella 
Oscillospira 
Thermicanus 
Elizabethkingia 
Rubrivivax 
Longilinea 
AF12 
Arsenicicoccus 
Marinibacillus 
Mycoplasma 

Week Eight
Halomonas 
Pedobacter 
Filifactor 
Pigmentiphaga 
Catenibacterium 
Curtobacterium 
Eikenella 
Erwinia 
Aquimonas 
Morganella 
Wolbachia 
Paludibacter 
WAL_1855D 
Trichococcus 
Collinsella 
Phyllobacterium 
Rhodoplanes 
Carnobacterium 
Azospirillum 
Zoogloea 
Gracilibacillus 
Treponema 
Shuttleworthia 
Fluviicola 
Devosia 
Epulopiscium 
Parvibaculum 
Schlegelella 
Blautia 
Prauseria 
Dokdonella 
Nesterenkonia 
Virgibacillus 
Marinobacter 

Week Six (16)
Veillonella 
Kineosporia 
Hydrogenophilus 
Thermoanaerobacterium 
Skermanella 
Z-35 
Chloronema
Variovorax 
Tsukamurella
Leptotrichia 
Tannerella 
Prevotella 
Wautersiella 
Phenylobacterium 
Oceanobacillus 
Aggregatibacter   

Week Eight (60)
Ramlibacter 
Finegoldia 
Saccharomonospora 
Myroides 
Porphyromonas 
Sphingobium 
Sediminibacterium 
Delftia 
Sphingopyxis 
Fusobacterium 
Hymenobacter 
Coprococcus 
Balneimonas 
Dialister 
Selenomonas 
Mesorhizobium 
Neisseria 
Achromobacter 
Burkholderia 
Methylobacterium 
Janthinobacterium 
Haemophilus 
Ochrobactrum 
Serratia 
Clostridium 
Bradyrhizobium 

Fig. 3 Mapping abundance levels of reads to OTUs. The proportions of reads mapping to genera, for each week, grouped into clusters that
represented distinct sets of genera. Read counts were first converted to percent proportions before undertaking cluster analysis. Hierarchical clustering
using Euclidean distances of read abundance levels was used to construct the heatmap. The adult mice formed the largest cluster with maximum
number of reads mapping to unique OTUs. The genera with maximum abundance per week out of the 269 genera has been given below
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Proteobacteria increased from week 5 onwards (data
not shown). Betweenness centrality measure also re-
vealed that ~60 OTUs were shared among all of the
weeks (nodes at the center of the network; data not
shown).

Microbial diversity increases with the age of mice
Employing the test for equal proportions (using Pear-
son’s chi-squared test statistic), a total of 16 dominant
genera (p value <0.05) were recovered from the lungs at
different weeks (Fig. 8). From this relative abundance
OTU plot, it is clear that Defluvibacter was the predom-
inant genus in neonatal mice at age of week 1. At this
age, Lactobacillus was also present. At the age of week
2, Streptococcus becomes the dominant genus along with
minor representation of Defluvibacter and Lactobacillus.
At the third week after birth, Lactobacillus, Defluvibac-
ter, and Achromobacter became the dominant genera
and abundance of Streptococcus is significantly reduced.
At the fourth week, Lactobacillus and Achromobacter
were the most abundant genera. Interestingly, after this
age, the abundance of Defluvibacter, which was the dom-
inant genus at the earlier periods, is tremendously re-
duced. However, around an age of 5 weeks, significant
increase in the microbial diversity in terms of genera
was achieved. At this age, Lactobacillus remains the pre-
dominant genus, along with significant presence of
Streptococcus, Achromobacter, Veillonella, Lactococcus,
Corynebacterium, Cloacibacterium, Acinetobacter, and
Mycobacterium. At an age of 6 weeks, microbial diversity

333444        445445544556666    222222 888888888    11111111115538883683855658332  

Week One 

Week Eight 

Week Two 

Week Three and Four 

Week Four and Five 

Week Six 

Similarity    Dissimilarity

Mice (week)

Fig. 5 Heatmap generated and hierarchical clustering of the 72 samples: Clustering was undertaken using Ward’s method [62], and maximum
linkage was applied to the log10-transformed abundance levels. Heatmap was generated from the weighted UniFrac distance matrix. This heatmap
reveals distinct clusters for weeks 1, 2, 6, and 8. The increasing shades of blue denote greater similarity between samples. Red shade represents
dissimilarity. Squares with dashed border contain single samples from different weeks. These dashed border clusters therefore represent the noisy
grouping of samples where the neighboring samples do not belong to the same week points (represent non-specific clustering between samples).
The numbers in the X-axis represent the week to which a particular box belong
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Fig. 4 The majority of the ~500 OTUs were dominated by four phyla:
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the
dominant phyla in the lung microbial communities. Identities were
established using sequence homology with 16SrRNA gene sequences.
Different proportions of phyla can be seen at different developmental
stages of the lung. More than 85% of the reads belonged to these four
phyla (two-tailed z test; p < 0.01). PBS alone was used as a control
which shows less abundance among the four dominant phyla
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further increases, with significant abundance of Lactoba-
cillus, Veillonella, Achromobacter, Streptococcus, Bacillus,
Lysinibacillus, Actinobacillus, Acinetobacter, Propionibac-
terium, and Mycobacterium. This richness in the microbial
diversity achieved by 6 weeks is maintained to the age of
8 weeks. In all, Lactobacillus and Streptococcus were the
most prominent throughout the development of the lungs.
Pearson’s chi-squared test favors large differences between
dominant taxa on the one hand, while exaggerating small
differences between low-abundance taxa on the other.
This may be considered as a disadvantage in some cases.
As can be seen from Fig. 7, the 16 genera account for 50–
60% of the total genera present per group. In order to
clearly visualize the remaining OTUs, we are providing
the bar plot for the average abundance of OTUs per week
as in Additional file 6: Figure S4. The remaining large per-
centage is occupied by large numbers (n = 602) of ex-
tremely low-abundance taxa.
In order to analyze the genera with maximal temporal

variation (genera that underwent large fluctuations in
their abundance levels, throughout the developmental

cycle), a time series was created for each of the 138
genera (week 1 to week 8). Out of the 138 genera, 40
were selected for further analysis by visually inspecting
their time series and lag (=1) profiles. Considering
autoregressive model of order 1 (AR1), it was feasible
to employ regression analysis for further model elucida-
tion. This resulted in the selection of 10 genera based
on significant (so as to include majority of the genera
with maximal temporal variation, genera with the coef-
ficient estimates p < 0.1 was considered as significant)
p values of the coefficient estimates (Fig. 9). The
non-normalized absolute abundances plots were also
generated (Additional file 7: Figure S5). These models
depicting the change on the abundance levels over
time suggest that microbial populations change sig-
nificantly over time and some of these changes can
be modeled using a time series analysis. Although we
were able to analyze the genera that show large fluc-
tuations in their abundance levels across the develop-
mental time points, it must be noted that the genera
Mycobacterium, Aggregatibacter, Cloacibacterium, and
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Fig. 6 The diversity and distribution of OTUs across different developmental weeks. a Principal coordinate analysis (PCoA) of weighted UniFrac
distances as a measure of beta diversity (between samples diversity): Samples from week 1 (green circle) and week 3 (yellow circle) grouped together
into clusters (when viewed in 3D along the PC1 axis). The PCoA plot has been scaled in the direction of PC1 as it explains the maximum percent
variation. b 2D PCA plot shows four non-overlapping clusters containing samples from two adjacent time points. The samples, shown in the right, are
colored according to the cluster membership. Samples that do not belong to adjacent time points are colored in red
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Lactococcus have significantly low/negligible abun-
dance levels. These fluctuations having low-abundance
levels could be attributed to sequencing and/or
normalization artifacts. These temporal fluctuations of
different microbial populations generally show that
microbial communities in the developing lung are dy-
namic over time. We speculate that environmental
factors such as diet, geographical locale, and gut
microbiota play a role in development of the lung
microbiome. Eventually, a rich diversity is achieved in
mice at 5 weeks of age, and this diversity is main-
tained in adult mice.

Microbial populations define and discriminate between
the different stages of lung development
As the microbial communities were dynamic over time,
we further investigated whether these dynamic abundance
levels could discriminate between different developmental
stages. In other words, we wanted to assess the feasibility
of microbial abundance levels in all samples of different
developmental stages to discriminate between individual
developmental stages. The recursively partitioned mixture
model (RPMM) for beta and Gaussian mixtures [40] is a
model-based clustering algorithm that produces a hier-
archy of classes. Using a normal (Gaussian) distribution

Week Two
Week Three

Week Four

Week Six

Week Five

Week Eight

Week One

Week No. of OTUs No. of unique OTUs

Week One 186 25

Week Two 135 8

Week Three 153 9

Week Four 201 34

Week Six 181 22

Week Six 156 15

Week Eight 183 34

a

b

Fig. 7 The OTU network reveals common and unique genera associated with each developmental stage. Different colors represent different modules.
a Weeks 1, 2, 3, and 4 (green central nodes) formed the single largest module due to their association with shared/common OTUs, whereas weeks 4
and 8 had the most unique OTUs (n = 34). The OTUs (nodes) at the center of the network (~60) are shared by all weeks. Week nodes are scaled
according to the betweenness centrality measures. b The table represents the total number of OTUs and the number of unique OTUs
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on the log10-transformed abundance levels, we were able
to group developmental weeks according to class compos-
ition of each of the respective samples within each of the
classes/clusters. Comparing the two clusters generated by
RPMM, it was feasible to discriminate between different
ages. As seen from Fig. 10, microbiomes from weeks 4 to
8 cluster independently. This clustering arises from rich-
ness in the diversity acquired with the age of mice. We
also observed clustering of the microbiome from weeks 1
to 3, representing gradual development of diversity.
Therefore, microbial communities in the lung may facili-
tate towards discriminating between normal developmen-
tal stages (neonatal, alveolarization, and fully developed
lungs) associated with age of the mice.

Discussion
Susceptibility towards a number of immune-related dis-
eases such as asthma, COPD, and respiratory disease of
newborns is influenced by exposure to microbes and al-
lergens during early life. However, systematic studies re-
lating to postnatal development of the lung with
acquisition of the lung microbiome and its correlation
with chronic disease susceptibility are lacking. Thus, we
analyzed the composition of microbes residing in the
lungs of mice at different ages to create a temporal map
of microbial diversity during postnatal development. To
this end, we used culture-independent high-throughput
16S rRNA pyrosequencing in order to study the devel-
oping lung microbiome. We used mice of different ages
ranging from 1 to 8 weeks (neonatal to adult). We ob-
served that the phyla Proteobacteria, Firmicutes, Bacteroi-
detes, and Actinobacteria dominate the lung microbiome
at all the stages of development. We also demonstrated

that the Defluvibacter, Lactobacillus, and Streptococcus are
the dominant genera at the early ages (1–2 weeks), while
significant richness and diversity are achieved during 4 to
6 weeks of age. The maximum diversity is achieved during
the age of 5–6 weeks and then maintained in the adult life.
We believe that these findings significantly enhance our
understanding of lung microbiome development.
Advances in high-throughput sequencing have made

composition-based microbial time series and longitu-
dinal studies possible by analyzing temporal variations in
microbial communities. These time series studies reveal
unique ecological observations pertaining to microbial
community stability, diversity, and dynamics. Large-scale
projects such as MetaHIT primarily explore the phylo-
genetic composition of the healthy human microbiome
while focusing on variations between individuals [41, 42].
Studies investigating temporal data are still rare, and many
published studies focus on only a few time points of many
subjects. Complex interactions among microbiota can ei-
ther take place between microorganisms or between the
microorganism and its niche environment. These factors
contribute to the temporal dynamics of microbial commu-
nities. In this study, we used a variety of statistical
methods to address specific aspects of the developmental
lung microbiome. Using well-established statistical meth-
odologies, such as hierarchical clustering, principal coor-
dinates analysis (PCoA), principal component analysis
(PCA), and the recursively partitioned mixture model
(RPMM), we traced the dynamic changes in the lung
microbiome during the development of neonatal mice
into adult mice.
One of the most important findings of this study is

that the microbial diversity in the mice increases with as
the mice grow from a neonate into an adult. The diver-
sity at various periods of growth was measured using
well-established indices. Importantly, we observed that
similar to the development of gut microbiome [43], the
number of unique OTUs and their relative abundances
in the lung samples increased with the age of mice. An-
other important finding of this study was that micro-
biome from mice at the similar age grouped together in
the cluster analyses, based on weighted UniFrac distances.
At all the ages, the lung microbiome was dominated by
four phyla, namely, Proteobacteria, Firmicutes, Bacteroi-
detes, and Actinobacteria. Importantly, Proteobacteria and
Firmicutes were the most dominant phyla at all the ages.
This is noteworthy as in the healthy human lungs, Bacter-
oidetes and Firmicutes are the most dominant phyla [44]
suggesting that the human and the mice microbiomes dif-
fer from each other in composition at the phylum level.
This could be due to the fact that human subjects use
nose as well as mouth for breathing, while the mice are
obligate nasal breather. Moreover, at the genera level, we
observed significant increase in diversity with the age.
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Fig. 8 Microbial communities in the developing lung are dynamic
over time. The stacked bar plot revealed that 16 genera dominated
the developmental lung microbiota (test for equal proportions
p < 0.05). The bars represent the average abundance of OTUs per
week. Lactobacillus and Streptococcus were most prominent among
the mice of all of the weeks. Defluvibacter was present in neonatal
mice, while Veillonella started to appear at the age of 5 weeks. PBS
instead of the lung tissue was used as a negative control
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Fig. 9 Few genera show large fluctuations in their abundance levels, across the developmental cycle. Ten genera underwent maximum temporal
variation. The highly dynamic variations in these 10 genera (a-j) are depicted using average log10-transformed abundance levels (along with
standard error values as error bars). The significant p-values (p < 0.1) of the coefficient estimates are shown on the plot corners. The genera
Mycobacterium, Aggregatibacter, Cloacibacterium, and Lactococcus have low-abundance levels. For better inspection, we have divided these plots
onto three sections (red, green and blue) reflecting their relative abundances
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Interestingly, we observed that Defluvibacter and Lactoba-
cillus are the predominant genera at 1 week of age. The
presence of Defluvibacter in the lung tissue was surprising
since this bacterium has not been earlier associated with
the lung microbiome. On the other hand, the presence of
the Lactobacillus has been earlier reported in human and
mice. In fact, the intranasal administration of Lactobacil-
lus protects from viral infections [45]. At 2 weeks of age,
the microbiota of the mice lung is dominated by the
Streptococcus. Although a number of Streptococcus species
are known pathogens for lung infections, Streptococcus is
one of the abundant genera that is associated with the
lungs [6]. Importantly, the abundance of Streptococcus is
tremendously reduced at the age of 3 weeks. At this age,
Defluvibacter along with Lactobacillus and Achromobacter
dominates the lung microbiota. Additionally, the presence
of Achromobacter in the lung has been correlated with
cystic fibrosis [46]. At the age of 4 weeks, a dip in the di-
versity was observed, whereas during the age of 5–6 weeks,
higher richness was achieved at the genera levels. The di-
versity thus achieved was maintained at the age of 8 weeks.
Importantly, we have observed the presence of number of

bacteria capable of the anaerobic respiration such as Acti-
nobacillus,Veillonella, Lactobacillus, Streptococcus, Propi-
onibacterium, and Cloacibacterium. Anaerobic bacteria
are found in the lungs, and an increase in their abundance
is associated with lung pathologies such as cystic fibrosis
[47]. The mechanisms and the factors that play an import-
ant role in the control of growth of these bacteria remain
unknown and will play an important role in modulation of
several lung pathologies. The presence of Mycobacter-
ium in the lung was a surprising finding. Interestingly,
atypical mycobacterium was earlier detected in the re-
spiratory tract of adult patients with cystic fibrosis [48].
Knowing that a number of mycobacterial species are as-
sociated with lung infections, identification of the
Mycobacterium to the species levels could be crucial
for further understanding the association of Mycobac-
terium with the lungs and its effect on the development
of the immune system.
Development of the lung includes morphogenesis of the

alveoli and secondary septation, which is marked by an in-
crease in the number and size of the capillaries and alveoli.
This process is termed alveolarization and is considered to
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Fig. 10 Lung microbiota discriminate between early and late developmental stages. Heatmap generated from the recursively partitioned mixture
model (RPMM) for beta and Gaussian mixtures. The columns represent weeks, and the rows are the clusters. Color reflects the within-cluster mean
abundance levels for each of the developmental stages. The different stages of lung development clustered with their respective neighbors,
thereby indicating the ability of microbial populations to discriminate between the developmental weeks. Weeks 1–3 cluster together, whereas
weeks 4–8 form independent clusters
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be a key feature of lung function. Interestingly, alveolariza-
tion occurs in postnatal stages, and development of the
microbiome could be related to it. Notably, alveolarization
of the lung (in mice) happens in two postnatal phases:
phase 1 (day 4 to day 21 after birth), wherein new alveolar
septa are formed from immature pre-existing septa, and
phase 2 (14–36 days after birth), characterized by the lifting
off of new alveolar septa from pre-existing septa [33, 34].
Here, we have tracked the composition of lung micro-
biome over various ages of mice and observed a coinciden-
tal association between the composition and diversity of
the lung microbiome and the process of alveolarization.
We further show that the composition of the lung micro-
biome is dynamic and substantial diversity is established in
4 to 6 weeks, concurrently with the completion of the sec-
ond phase of alveolarization inside the lungs. Conversely,
the alveolarization could be affected by the lung micro-
biome. An earlier study has suggested that alveolar size
and number correlate with the lung microbiome [49]. Al-
though one of the emerging hypothesis is that bacteria may
influence lung growth and alveolarization, this testable hy-
pothesis awaits further studies that could conclusively
demonstrate the association of lung microbiome with post-
natal development of alveolar structures. Lactobacillus
could be used as one of the genera in experiments sug-
gesting a role of microbiome in lung development. We be-
lieve that this issue will be addressed shortly. We also
observed Proteobacteria and Firmicutes as the dominant
phyla among groups of mice of different ages. These ob-
servations are supported by studies in adult mice where
these phyla were found in the mouse lungs [15, 49]. Fur-
thermore, it should be noted that an earlier study has ob-
served that the murine lung microbiome influences the
alveolar number and size [49]. Another study has demon-
strated that lung microbiome modulates the features of
asthma in mice model [20]. Importantly, another study
demonstrated that vitamin D is needed for the optimal
murine lung health [21]. Interestingly, it was also observed
that vitamin D may influence the lung microbiota in a
sex-specific fashion [21]. These observations suggest that
changes in the microbiota are associated with the toler-
ance to allergens. Another study has demonstrated the al-
lergen tolerance is dictated by programed death ligand-1
(PD-L1)-dependent development of Helios −T regulatory
cells [24]. In this study, we observed that the microbiome
of 8-week-old mice was predominated by genera Ach-
romobacter, Lactobacillus, Streptococcus, Actinobacillus,
Bacillus, and Veilonella. Studies from human lung micro-
biome suggest that the human lung microbiome is domi-
nated by Streptococcus, Prevotella, and Veilonella [50, 51].
These data appear to show that the mice lung microbiome
shares partial similarity to the human lung microbiome,
while harboring many other genera. This observation sug-
gests that mouse can be used as a model for studying the

lung microbiome. It will be interesting to analyze the
changes in the mice lung microbiome upon induction of
lung pathologies and comparing them with the available
data from human clinical studies. This aspect remains be-
yond the scope of this study.
Although this study has tracked the changes in the

composition and diversity of the lung microbiome with
age, there are several important questions that remain
unanswered. These include whether the lung micro-
biome is influenced by the sex or the weight of the mice.
Some of the earlier studies have demonstrated that the
gender of the mice may influence the lung microbiome
[21, 52]. Since this study has not factored the effect of
sex on the development of the lung, this is one of the
weaknesses of the current study. Besides the weight and
sex, mating experience and experience as mother also
could also influence the lung microbiome of the mice.
However, in this study, data about these factors was not
collected and did not correlate the lung microbiome and
thus represent a weakness of this study. Further studies
could be performed to analyze if the abovementioned
factors could influence the lung microbiome. An import-
ant observation of this study was that changes in the
lung microbiome have a weak correlation with the devel-
opmental stages of alveolarization. This correlation
was not further analyzed and represents another po-
tential weakness of the current study. In future, the re-
lationship between lung microbiome and alveolar
development could be examined through inhalation of
different bacterial species and analysis of the alveolar
size and numbers. Additionally, inhalation of intrana-
sal or intravenous antibiotics could be utilized to alter
the lung microbiome [52] and alveolarization patterns
at different ages could be studied. On the contrary, the
strongest point of this study is that lung microbiome
composition was correlated with the age. Towards
this, the mice of different age were randomly selected
and the lung microbiome analysis was performed. Sev-
eral rigorous analyses were performed to conclude the
relationship between the lung microbiome and the age
of mice.
This study is different from other studies where the in-

fluence of the gut microbiome on lung immunity or lung
diseases has been addressed [53, 54]. In this study, we
have tracked the changes in the lung microbiome with
the growth. However, there could be many other con-
founding factors that could influence the lung micro-
biome, including antibiotics, feed type, and stress, as
seen in the gut microbiome [55]. In summary, using
deep sequencing, we have tracked the changes associated
with the lung microbiome at different ages from 1-week-
old mice to adult age. This analysis indicates a correl-
ation between microbial composition and alveolarization
of lung in mice.
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Conclusions
Recently published literature demonstrate the presence of
a unique microbiome in the lungs. Furthermore, studies
have suggested that this microbiome plays an important
role in protection against a number of lung pathologies.
However, the development of lung microbiome with tem-
poral resolution has been lacking. Such an understanding
is essential for creating new interventions for curing the
lung diseases. In the present study, we have traced the
changes in the lung microbiome from neonatal (1 week)
age to adulthood (8 weeks of age). The first breath of new
born initiates numerous changes within the lungs of
mammals and humans. We have observed that the mice
lung microbiome is highly dynamic, and it undergoes
major changes during the growth of the mice. During the
early stages of lung development after birth, the lung
microbiome is dominated by the genera, namely, Defluvi-
bacter, Streptococcus, Lactobacillus, and Achromobacter.
By 6 weeks of age, a considerable higher diversity in the
composition of lung microbiome is achieved and main-
tained thereafter to adulthood.

Methods
Experimental design
The primary goal of this study is to understand the
changes in composition of microbiome of the lung during
the growth of mice. We studied the microbiome from
week 1 onward to adulthood at 1-week intervals. We se-
lected C57 black 6 mice, as they comprise one of the most
common inbred strains of laboratory mice.

Ethics statement
The animal experiments in this study utilized the mice
and were approved by the Institutional Animal Ethics
Committee of CSIR-IMTech (Approval No. IAEC/13/27).
All the experiments reported herein were performed ac-
cording to the guidelines issued by the Committee for the
Purpose of Supervision of Experiments on Animals (No.
55/1999/CPCSEA), Ministry of Environment and Forest,
Govt. of India. The mice used in this study were main-
tained and bred under specific pathogen-free conditions
in the animal house facility of CSIR-IMTech.

Animal breeding and selection
All the animals used in this study were housed at CSIR-
IMTech animal facility. Initially, a few breeding pairs of
C57BL/6N were procured from Charles River Laborator-
ies International, USA. These pairs were used, and a col-
ony having 200 monogamous (one male to one female)
pairs was established through in-breeding. The average lit-
ter size of the animals was 5–6 mice pups. The mice were
fed ad libitum feed and autoclaved water. The standard
solid pellet feed (Nutrilab rodent feed from Provimi,
Bangalore, India) primarily contained 3.83% moisture,

21.1% crude protein, 6.04% fat, 3.62% fiber, and 57.3%
nitrogen-free extract (all w/w). The diet was verified to be
pathogen-free with total bacterial count less than
100 CFU/g. The mice were housed in conventional cages.
Post-birth, they were primarily fed on breast milk till the
age of 2 weeks. In the third week, the animals used both
solid pellet diet as well as breast milk. Animals were
weaned at the age of 3–4 weeks and they used ad libitum
diet. Mice were maintained at 22 ± 3 °C temperature with
12-h cycle of day and night. Similar housing conditions
were provided to all the animals. For this study, at the spe-
cified age, healthy mice were randomly picked from the
~200 breeding pairs without any preference of sex, weight,
or breeding experience of the breeding pair. It was
ensured that the animals selected for this study at each
time point were not littermate. This random selection
ensured that the selected sample represented the po-
pulation in general. Therefore, factors like food, water,
co-house, mating experience of breeding pair, and
colonization do not contribute towards the confound-
ing effects.

DNA extraction, amplification of 16S rRNA, and sequencing
The mice were housed at 22 ± 3 °C temperature under
sterile conditions. The animals used in this study were
not littermates to avoid bias arising from residing gen-
etic inheritance. One- to 8-week-old C57Bl6 mice were
sacrificed, and the lungs were isolated under aseptic
conditions. The lungs were homogenized using the bead
beater (Omni prep) for 30 s. Genomic DNA was isolated
from the lung lysate using the Qiagen genomic DNA
isolation kit. The isolated genomic DNA was sent to the
MR DNA lab (Shallowater, TX, USA) for sequencing.
Briefly, 515F primer (5′-GTGCCAGCMGCCGCGGTAA)
and 806R primer (5′-GGACTACHVGGGTWTCTAAT-3′)
were used to amplify the V4 variable region of the 16S
rRNA as described earlier [56]. For amplification, a
single-step 30-cycle PCR was performed using the Hot-
StarTaq Plus Master Mix Kit (Qiagen, USA) using the
below-mentioned cycling conditions: 94 °C for 3 min
for denaturation, followed by 28 cycles of 94 °C for
30 s, 53 °C for 40 s, and 72 °C for 1 min, and followed
by a final elongation at 72 °C for 5 min. Amplified PCR
products are analyzed on 2% agarose gel. Multiple sam-
ples are pooled together, and the pooled samples were
purified using calibrated Ampure XP beads. Then, the
pooled and purified PCR product was used in the prep-
aration of the DNA library by following Illumina Tru-
Seq DNA library preparation protocol. Sequencing was
performed on an Illumina MiSeq as per the manufac-
turer’s guidelines. Since lung samples are prone to the
problems of low DNA yields in the DNA extractions,
analysis of such low DNA samples is riddled with the
contaminating DNA from the DNA isolation kit and
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sequencing. In order to eliminate bias from the contamin-
ating DNA/low reads, we have used 10 negative controls.
In these negative controls, phosphate-buffered saline was
used in DNA isolation instead of the lung tissue. The
resulting DNA was processed similar to the tissue samples
from the lungs in 16S amplification and sequencing.

Microbiome and statistical analysis
The primary goal of statistical analyses was to examine, in
parallel, the relative abundance and diversity of the lung
microbiome during developmental stages. Abundance
levels, deemed to be proportional to the number of reads of
a taxonomic unit per week, were generated using QIIME.
Briefly, the raw reads were demultiplexed, filtered, quality-
checked, and analyzed using QIIME 1.8.0 [38]. Clustering
into operational taxonomic units (OTUs) was done at 97%
similarity levels. The reads from the 10 negative controls
were first demultiplexed using the respective barcodes and
then analyzed along with the previously demultiplexed
week data points. As the sequence reads from week points
had been already analyzed without the 10 negative controls,
the new analysis allowed us to do this analysis with the 10
negative controls. We did not find any evidence for bias or
skew arising from the 10 negative control sequences.
Greengenes [57] and RDP datasets [58] were employed to
assign taxonomy. ICC values were calculated by using the
ICCest() method of R library “ICC.” This method estimates
the ICC values using the variance components from a one-
way ANOVA. In order to account for uneven sample
counts and low-depth samples as an artifact of sequencing,
we employed standard rarefaction protocols provided in
QIIME. However, it has been shown before that rarefaction
may not always be the appropriate methodology to
standardize all the samples [59]. Therefore, we also log10-
transformed the sample data for statistical analysis of OTU
data. Both alpha and beta diversity indices were calculated
after following standard rarefactions steps for each week
points. For these indices, rarefaction was done looking at
the graphs of diversity vs. sequencing depth. In order to
select the most appropriate sequencing depth, the first
quantile value of the number of ordered reads was taken
to be the threshold value. The number reads at the first
quantile was 15,451 with 34,268 being the median. As the
number of reads from all the 10 negative control samples
were extremely low (relative to the threshold of 15451
taken for the specific week samples), this threshold value
of 15451 resulted in majority of the reads being discarded.
Only ~18% of the reads passed the threshold value of
15451 for PBS control. Principal coordinates analysis
(PCoA) was undertaken thereafter using weighted UniFrac
distances [39]. In order to better visualize PCoA’s binning,
we calculated the “sum of squares” distance measures
from raw abundance measures, before employing the
principal component analysis and k-means clustering. The

number of clusters was determined by employing within-
group sum of squares (WSS). The cluster number (K) was
chosen by first plotting the number of clusters vs. the
WSS and then visually looking for the break point
(“elbow”) in the plot. A value of k = 6 was chosen for fur-
ther analysis. The R method clara (package: cluster) using
“Euclidean” distances were used to define the clusters for
the two-dimensional PCA plot. The OTU table generated
by QIIME was further used for statistical analysis using
in-house R (https://cran.r-project.org/) scripts. Diversity
was evaluated using Simpson’s Diversity Index [60] and
UniFrac distances (measure of beta diversity [61]). Both
“inverse” (1/λ) and “complement” (1-λ) SDI were calcu-
lated. Higher SDI values depict greater microbial diversity.
Microbial abundance levels were log10-transformed, and
then hierarchical clustering using the “Ward.D2” [62]
method and maximum linkage were used to generate the
heatmap (Fig. 3). The R function prop.test() based on
Pearson’s chi-squared test was used for equal proportions.
The success and failure values were calculated from the
percentage abundance values for each genus. For time
series analysis, average of all the samples per week was
taken. A time series was created for each of the 138 genera
(week 1 to week 8). Genera were selected for further ana-
lysis by visually inspecting their time series profiles as well
as lag (=1) plots. ACF (autocorrelation function) and
PACF (partial correlation function) plots were generated
for each of the genera to inspect whether the time series
was stationary. Whenever required, differencing (for re-
moving trend) and logs (in case of unequal variance) were
taken in order to stationarize the time series. Augmented
Dickey-Fuller test for stationarity was also undertaken for
all the time series. As we followed the simplest autoregres-
sive model or order 1, it was feasible to undertake linear
regression analysis for the time series. The p value was
generated from the regression model and represents the
probability that the coefficient estimate is significantly dif-
ferent from 0.
RPMM, a model-based hierarchical clustering method-

ology that has been previously employed to analyze
high-dimensional microbial abundance datasets [40],
was used to cluster the log10-transformed abundances.
The OTU network files generated by QIIME were input
into Cytoscape (http://www.cytoscape.org/) and Gephi
(https://gephi.org/). Modularity analysis, betweenness cen-
trality, and degree indices were used to format and color
the layout of the network.
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Additional file 1: Table S1. The median and IQR values for Fig. 1.
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Additional file 2: Figure S1. (a) Inverse SDI follows the same trend as
the SDI. (b) The table represents the median and inter-quartile range
(IQR). (PDF 29 kb)

Additional file 3: Table S2. The number of replicates per week and
reads mapping to each sample. (PDF 180 kb)

Additional file 4: Figure S2. Represents the mean abundance measure
along with the standard error for the individual phyla. (PDF 65 kb)

Additional file 5: Figure S3. The figure shows the OTUs that are
common between a single week point and the rest of the weeks, along
with the unique OTUs in that particular week. (PDF 470 kb)

Additional file 6: Figure S4. Represents the mean abundance measure
along with the standard error for the individual genera. (PDF 61 kb)

Additional file 7: Figure S5. Represents the line plot showing the
mean percent abundance measure along with the standard error for the
10 genera. (PDF 180 kb)
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