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Abstract

Background: Research involving microbial ecosystems has drawn increasing attention in recent years. Studying
microbe-microbe, host-microbe, and environment-microbe interactions are essential for the understanding of
microbial ecosystems. Currently, metaproteomics provide qualitative and quantitative information of proteins,
providing insights into the functional changes of microbial communities. However, computational analysis of
large-scale data generated in metaproteomic studies remains a challenge. Conventional proteomic software have
difficulties dealing with the extreme complexity and species diversity present in microbiome samples leading to
lower rates of peptide and protein identification. To address this issue, we previously developed the MetaPro-IQ
approach for highly efficient microbial protein/peptide identification and quantification.

Result: Here, we developed an integrated software platform, named MetaLab, providing a complete and automated,
user-friendly pipeline for fast microbial protein identification, quantification, as well as taxonomic profiling, directly from
mass spectrometry raw data. Spectral clustering adopted in the pre-processing step dramatically improved the speed
of peptide identification from database searches. Quantitative information of identified peptides was used for
estimating the relative abundance of taxa at all phylogenetic ranks. Taxonomy result files exported by MetaLab are fully
compatible with widely used metagenomics tools. Herein, the potential of MetaLab is evaluated by reanalyzing a
metaproteomic dataset from mouse gut microbiome samples.

Conclusion: MetaLab is a fully automatic software platform enabling an integrated data-processing pipeline for
metaproteomics. The function of sample-specific database generation can be very advantageous for searching
peptides against huge protein databases. It provides a seamless connection between peptide determination and
taxonomic profiling; therefore, the peptide abundance is readily used for measuring the microbial variations. MetaLab
is designed as a versatile, efficient, and easy-to-use tool which can greatly simplify the procedure of metaproteomic
data analysis for researchers in microbiome studies.
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Background
Microbial communities play important roles in human
health [1, 2], agriculture [3], and the environment [4]. In
humans, studying the composition, function, and inter-
action of microorganisms in samples derived from indi-
viduals during healthy and disease states holds great
promises for disease diagnosis and treatment [5]. The
microbial community is a highly diverse system, which

makes it a challenge for comprehensive investigations.
Next-generation sequencing technology can reveal the
bacteria present in a microbial community. Functional
gene compositions can be determined with shotgun
metagenomic sequencing, although it does not provide
further information on gene expression. Alternatively,
metatranscriptomics and metaproteomics can be used
[6]. As proteins are predominantly responsible for
biological functions, acquiring qualitative and quantita-
tive information by metaproteomics can significantly
augment our understanding of microbial communities.
The applications of metaproteomics have been limited

by the lack of bioinformatics tools that can handle the
extreme complexity of microbial communities. In
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proteomics studies, mass spectrometry (MS) data from
individual species can be searched against the corre-
sponding protein database using various search engines.
By contrast, in metaproteomics prior to the use of
search engines, an appropriate database needs to be
selected/constructed [7]. The metaproteomics data
analysis workflow can be divided into three parts: pre-
processing including sample specific database construc-
tion/selection; peptide identification and quantification;
and taxonomy/function interpretation [8, 9]. To make
this procedure simple and practical, the development of
a comprehensive software platform that can meet all the
requirements from pre- to post-processing is urgently
needed. Some studies have started to address this prob-
lem. MetaProteomeAnalyzer provides a graphical user
interface (GUI) for the analysis and visualization of data
sets [10], but issues related to the database size remain
unresolved. The Galaxy bioinformatics framework en-
ables metaproteomics data analysis [11], which provides
a relatively complete workflow from database generation
to downstream analysis. However, advanced computer
skills are required to implement this tool. Moreover,
because of the additional pre- and post-processing steps,
metaproteomics data analysis can be much more time-
consuming than conventional proteomics studies.
The expanded search space for metaproteomic analysis

leads to low sensitivity, difficulty in false discovery rate
(FDR) determination, and very long searches using con-
ventional proteomics tools [7]. The scale of the problem
can be appreciated by comparing the Homo sapiens pro-
tein database from UniProt (www.uniprot.org) containing
159,552 proteins (7/20/2017) to the gene catalog database
of the human gut microbiome consisting of 9.8 million
proteins, and this number is constantly increasing (meta.-
genomics.cn/meta/dataTools) [12]. To solve this problem,
we recently introduced the MetaPro-IQ workflow for the
analysis of microbiota samples [13] which uses a reduced
database. While this strategy is beneficial for peptide iden-
tification, it remains complicated and time-consuming
when processing dozens of raw files.
Quantitative techniques have been used to measure

the expression level of proteins in MS-based proteomics
studies for over two decades [14]. Moreover, the amount
of proteins from corresponding taxonomic nodes reflects
the abundance of this taxon in the community and can
be used to estimate microbiota diversity [15]. The sim-
plest form of protein abundance estimation is counting
the number of identified peptides from a protein and
dividing the total counts by the number of theoretically
observable tryptic peptides [16]. Unipept uses such a
peptide counting approach for its sunburst and treeview
diagrams [17] as an estimation of the relative abundance
of these nodes. Generally, various types of label-free
methods rely on two different strategies, spectral counts

[18] or extracted ion chromatogram (XIC) intensities
[19]. Extracted ion chromatogram-based methods are
considered superior to spectral counting, especially for
the data generated by high-resolution mass spectrome-
ters [12, 20]. However, to the best of our knowledge, tak-
ing advantage of XIC-based label-free quantitative
information of peptides to estimate the abundance of
corresponding taxa, and implementing it in a fully auto-
matic data-processing workflow, is not available in
current metaproteomics software tools.
In this work, we present an integrated software plat-

form termed MetaLab for the comprehensive analysis of
metaproteomics datasets. Briefly, MetaLab provides a
workflow which includes refined database generation,
peptide identification/quantification and taxonomic ana-
lysis. All the steps are processed automatically in series
with user intervention limited to providing the raw files.
The MetaPro-IQ approach to generate the database for
protein identification is integrated in MetaLab. More-
over, MS/MS spectral clustering is integrated in the
workflow which reduces the processing time. Quantita-
tive information for both peptides and taxon are pro-
vided as part of the results. As well, a matrix-based
format [21] of the quantitative result can be exported,
enabling the downstream analysis by other metagenomic
tools. MetaLab is designed as a “one-stop” solution
providing a complete, efficient, and convenient way to
overcome challenges in metaproteomics data analysis.
MetaLab is free for academic users and can be down-
loaded at http://imetalab.ca/.

Result
Workflow
A standard metaproteomics data analysis workflow in
MetaLab contains three modules: database construction,
peptide identification/quantification, and taxonomy ana-
lysis (Fig. 1). Each module and the whole workflow are
performed seamlessly. Alternatively, each module can
also be executed independently, enabling the users to
perform customized workflows. In this section, each
module in the workflow will be described in detail.
The function of the database construction module is to

generate a reduced, sample-specific protein database from
original large databases; for instance, the human gut micro-
bial gene catalog with 9,878,647 sequences (available on
http://meta.genomics.cn/) [22] or the mouse gut microbial
gene catalog with 2,572,074 sequences (available on http://
gigadb.org/) [23]. In this module, two approaches are avail-
able. The first approach, termed MetaPro-IQ, our previous
work, implements an iterative search strategy to reduce the
size of the original database (Fig. 2a) [13]. Here, MetaPro-
IQ is fully automated in MetaLab. The second method in-
corporates spectral clustering before searching the original
database to significantly reduce the processing time
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Fig. 1 Overview of metaproteomics workflow in MetaLab. A standard pipeline consists of three parts: database construction; peptide
identification; and taxonomy analysis. In database construction and taxonomy analysis steps, two alternative approaches are provided

Fig. 2 Iterative search and spectral clustering strategies used in database construction. a In iterative search strategy, raw files are searched against
the original database separately, then for each result file the corresponding proteins are extracted to generate a specific database. All raw files are
searched against the specific database once more, and the final database composed with proteins identified in the second search. b Firstly, a
delegate spectra list is created by the clustering algorithm, then through searching these spectra against the original database, a peptide list is
generated. The reduced protein database construction depends on this list. c Left: the total dataset contains 32 MS runs, 1,953,239 MS/MS
spectra, and after clustering, only 19.5% were reserved as delegate; middle: 95% peptide identifications from iterative searching strategy were also
found in database derived from clustering strategy; right: the common identifications in two strategies represent 90% of the total amount,
iterative search and spectral clustering strategies only have 8 and 2% unique peptides, respectively
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(Fig. 2b). The performance of this strategy is evaluated by
re-analyzing the data from the MetaPro-IQ paper and de-
tails of this analysis are presented in the following section.
The second module identifies and quantifies peptides

using the sample-specific database. In MetaLab, the
Andromeda [24] search engine from MaxQuant [25] was
adopted for the peptide characterization. Quantitative
analysis can also be accomplished in this module. If the
user sets isotope labels in the main frame of MetaLab, the
labeling information can be written to the parameter file
of MaxQuant for labeling quantification. For unlabeled
samples, XIC intensity-based quantitative information are
provided by a label-free quantification algorithm named
maxLFQ [12] in Maxquant. By default, quantitative infor-
mation is obtained by the maxLFQ algorithm.
Taxonomy analysis of the generated peptide list is per-

formed in the last module. We create a built-in “peptide
to taxonomy” database (pep2tax for short) for mapping
identified peptides to the taxonomic lineages. The con-
struction of the pep2tax database is detailed in the
Methods section. Through the pep2tax database, Meta-
Lab can match peptides to corresponding taxonomic
nodes and according to the hierarchical location of the
set of nodes, assign a lowest common ancestor (LCA).
Abundance information of both peptides and taxa are
provided according to the intensities determined in the
previous module. The quantitative information of taxa at
each phylogenetic rank is simply calculated as the sum
intensity of all distinctive peptides of that taxon. The
intensities-based quantitative information of taxa can be
used to estimate the relative abundance of each taxon in
one sample and to compare fold changes of the same
taxon between samples.

Evaluation of spectral clustering for the creation of
specific protein databases
In MetaLab, we developed a novel strategy to increase
time efficiency of database construction, by first introdu-
cing MS/MS clustering as a preprocessing procedure
before the database search in metaproteomics studies.
Briefly, all the MS/MS spectra are clustered according to
their similarity generating a non-redundant spectra list.
We adopted PRIDE Cluster (https://github.com/PRIDE-
Cluster) into our software as it is efficient in dealing
with large datasets [26]. The precursor ion mass toler-
ance was set as 2 Da to retain the isotopic envelope, and
the fragment ion mass tolerance was set as 0.02 Da for
high-resolution datasets. We also added a retention time
restriction such that spectra with retention gaps exceed-
ing 20 min will not be clustered together. The similarity
threshold was set as 0.99, which represents a high simi-
larity threshold. Following spectral clustering, the dele-
gate spectra from all clusters are searched against the
large protein database, and a peptide identification list is

obtained. The sample-specific database is then con-
structed by extracting the protein sequence according to
the peptide list and fed automatically to the next module
(Fig. 2b).
Data used in the inceptive MetaPro-IQ paper was re-

analyzed by the clustering strategy. This dataset con-
tained 32 raw files, and the total number of MS/MS
spectra reached 1,953,239. After clustering, only 381,834
delegate spectra remained for further analysis, represent-
ing 19.5% of the original number of MS/MS (Fig. 2c).
Thus, redundant or inferior spectra, 80.5% of the total,
were removed in this first step. In theory, the degree of
redundancy of spectra would increase with increasing
numbers of original spectra and samples. We also inves-
tigated the relationship between the original number of
spectra and the factor of reduction after clustering
(Additional file 1: Figure S1). For single MS runs about
20% of the spectra could be removed. However, in the
PRIDE Cluster project, over 20,000,000 spectra were
clustered into about 3,000,000 clusters, a nearly 85%
reduction [26]. These results showed that spectral clus-
tering could dramatically reduce the number of MS/MS
spectra, especially for high-through experiments with
large numbers of MS runs. Here, 1,953,239 MS/MS spec-
tra were clustered to 381,834 in 1.5 h, which shows the
great efficiency and effectiveness of this algorithm (operat-
ing environment: i7–4790 CPU @ 3.60 GHz, 16.0 GB
RAM). In the original MetaPro-IQ approach, each raw file
was searched twice whereas in the clustering strategy the
delegate spectra were searched only once. Overall, data-
base construction was shortened from 14 h using
MetaPro-IQ to 3.7 h using the clustering strategy.
The performance of the database generated by the

clustering strategy was evaluated. The size of this data-
base (169,641 protein sequences) was slightly greater
than the one created by MetaPro-IQ (157,154 protein
sequences). In the MetaPro-IQ strategy, 123,927 peptide
identifications were obtained, among which 95%
(117,263) peptides were also found in the database gen-
erated by clustering strategy (Fig. 2c). By contrast, the
database generated by the clustering strategy led to the
identification of 115,832 unique peptides at a FDR below
0.01, and the commonly identified peptides accounted
for 90% of the combined peptide list (Fig. 2c). We com-
pared the peptide score distribution between these two
peptide lists and overlapping curves were illustrated
(Additional file 1: Figure S2). This result showed the
comparable effectiveness and reliability of the two strat-
egies for sample-specific database construction.

MetaLab allows quantitative taxonomic analysis with
metaproteomics dataset
Information on the composition and abundance of bac-
teria present in microbial communities is important in
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metaproteomics studies. Currently, Unipept is a prevalent
tool that accepted a peptide list as an input to generate a
table containing LCA information for matched peptides
[17]. However, in their data visualizations the abundance
of taxa nodes were estimated by the corresponding pep-
tide counts. The count-based method is an improvement
over purely qualitative results, but the MS signal better
reflects the peptide abundance in high-resolution mass
spectrometry datasets [20]. Therefore, in the taxonomic
analysis step, MetaLab considers the qualitative and XIC-
based quantitative information of the identified peptides
to provide the taxonomic classification and abundances of
bacteria in microbiota samples.
Taking the 115,832 identified unique peptides as an

input, 65,407 peptides were assigned with a taxonomic
lineage of LCA in MetaLab (Additional file 2: Table S1).
A tree structure dataset was generated containing 2046
taxa, and for each node, the quantitative information
from all samples were calculated, which can give us
insight in the taxonomic diversity and comparisons
between samples (Additional file 1: Figure S3). The
taxonomic assignment result is in high agreement with
Unipept wherein 64,717 peptides were matched
(Additional file 3: Table S2), and the overlap between
the two methods reached 97%. We investigated the
percentages of peptides assigned to four major phyla,
Firmicutes, Bacteriodetes, Proteobacteria, and Actino-
bacteria, and consistent results were observed (Fig. 3a).
We further compared the proportion of peptides that
can be uniquely assigned at each of phylogenetic rank as
determined by the built-in pep2tax database and
Unipept (Fig. 3b). Slightly more peptides were distinctive
in phylum, order and family levels from the Unipept re-
sults. By contrast, more peptides were distinctive in the
lower ranks from the built-in pep2tax result. This differ-
ence was mainly caused by the different LCA calculation
strategies adopted in these two methods. In Unipept,
42% of taxonomic nodes were considered to be invalid
and ignored in LCA calculations, such as species con-
taining numbers in their names or having a parent node
named environmental samples [27]. This cleanup aimed
to remove artificial species, but a potential loss of infor-
mation is also possible. Therefore in our opinion, it is
appropriate to retain these types of results. The overlap
of taxa identified by these two methods in each rank is
shown in Fig. 3c. At the species level, 797 species were
found by searching the pep2tax database, and 536 spe-
cies using Unipept. Approximately 82% of the species in
Unipept were also found in MetaLab. The total number
of unique taxon identified in MetaLab was 48% more
than that obtained in Unipept. In general, the results of
taxonomic information obtained by different methods
were similar. However, because of a much comprehen-
sive usage of species for LCA calculation including those

who were ignored in Unipept, more species were ob-
tained in MetaLab.
We also compared the quantitative results of taxa

based on peptide counts, spectral counts, and XIC inten-
sities, which were calculated by summing up the unique
peptide counts, the MS2 spectra counts, and intensities,
respectively. We calculated the abundance ratios be-
tween two phyla, FIRMICUTEs and Bacteroidetes,
through peptide counts, spectral counts, and intensities
from mouse stool samples following up to 43 days of
feeding with high-fat versus low-fat diets (HFD and
LFD, respectively; Fig. 4a). An increase of Firmicutes-to-
Bacteroidetes (F/B) ratio was observed in HFD samples
using all three methods, and the trend was stronger

a

b

c

Fig. 3 a The percentages of peptides assigned to four major phyla:
Firmicutes, Bacteriodetes, Proteobacteria, and Actinobacteria. b The
distribution of peptides with calculated LCAs in different
phylogenetic ranks determined by built-in database and Unipept
web version, respectively. c Overlap of taxa in each level identified
by built-in database and Unipept web version
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when ratios were determined using intensities. Abun-
dance ratios for taxa that had numerous peptides and
spectral counts were nearly identical. By contrast, count-
based strategies were less sensitive for the determination
of the relative abundance of species with few identifica-
tion counts. For example, the abundance values of 57

species with unique peptide counts from 3 to 20 from
sample HFD2_29 (nomenclature of samples detailed in
Methods) were illustrated in Fig. 4b. Although it ap-
peared that some species did not change when using
peptide or spectral counts, the quantitative information
derived from peptide intensities revealed significant

a

b

c d

Fig. 4 a Bar chart of Firmicutes-to-Bacteroidetes (F/B) ratios in HFD (left) and LFD (right) samples calculated by peptide counts, spectral counts
and XIC intensity. After days of feedings, the ratios in HFD samples increased significantly. b Comparison of peptide counts, spectral counts and
intensities of 57 species in sample HFD2_29 (nomenclature detailed in Methods). c PCA score plot of taxon in species level among 32 samples.
Red: initial condition; blue: LFD feeding; green: HFD feeding. d Heat map of intensities of high confident species in 32 samples. Hierarchical raw
clustering was performed by Log10 (intensity). Red: initial condition; blue: LFD feeding; green: HFD feeding
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changes. Therefore, peptide intensity-based approach
provides higher sensitivity when calculating relative
abundance of species, particularly when dealing with
lower abundance species. Finally, we used the XIC
intensity-based quantitative information for statistical
analysis at the species level. In principal component ana-
lysis (PCA), three clusters corresponding to day 0 (initial
condition), HFD feeding, and LFD feeding samples were
obtained (Fig. 4c). We also performed cluster analysis
among the 32 samples. To improve the accuracy and
reduce the impact of missing values, only species with
high confidence were selected. If a species had equal to,
or greater than three unique peptides in one sample, the
species was “valid” in this sample. Species who were
valid in more than eight samples were selected for the
hierarchical cluster analysis. Finally, 150 species were
used and explicit group results between LFD and HFD
samples were obtained (Fig. 4d). Samples from the initial
condition were grouped together. After days of feeding,
the samples with different diets were evidently separated
into different clusters. The classification result was
better than that acquired by count-based approaches
(Additional file 1: Figure S4), which confirmed the value
of XIC intensity-based label-free quantitative strategy in
metaproteomics.

Generic type output format for post-analysis
To further facilitate the analysis of metaproteomics data-
set by biologists, a BIOM (Biological Observation Matrix,
http://biom-format.org/) [21] format result file was also
exported. In this format, a table was used to store the
amount of biological observations from all the samples.
For example, in metagenomics, the observation is the taxa
identity and the corresponding value is the count of reads.
In metaproteomics, the intensities of MS signal were used
to replace the counts of reads representing the abundance
of the specific taxa. Through this, the data generated by
MetaLab can be directly subjected to downstream analysis
by tools supporting this format, such as MEGAN [28], a
well-known metagenomics software providing sample
comparing functions. A notable merit of MEGAN is that
various visualization techniques are available to show the
comparison between samples. By importing the .biom for-
mat result file, various types of charts were obtained that
can be beneficial during the interpretation of the results
(Additional file 1: Figure S5).

Discussion
We have introduced MetaLab, a software which aims to
provide a comprehensive bioinformatic workflow for
metaproteomics data analysis. MetaLab provided an in-
tuitive GUI which greatly facilitated the procedure of
data processing (Additional file 1: Figures S6–S8). A pre-
vious established workflow MetaPro-IQ which showed

great performance for microbial protein identification
was incorporated in MetaLab. Additionally, the new fea-
tures in MetaLab made it more appropriate for the ana-
lysis of big datasets. In the MetaPro-IQ approach, all
raw data are first searched against the original database
and then all identified proteins are extracted to con-
struct a refined database, which works well to reduce the
size of the database, but slows the workflow. In most
cases, samples share a considerable number of peptides,
and peptides in high abundance generate multiple MS/
MS spectra, which result in repeated peptide spectra in
different or even the same MS raw files. Once a peptide
is identified in one sample, the corresponding proteins
will be recorded, so the identification of the same pep-
tide repeatedly in other samples is redundant. Theoretic-
ally through selecting one delegate spectrum from
similar spectra and subjecting instead only this single
representative spectrum to database search, the speed of
peptide identification will be improved. Here, we
employed the MS/MS clustering algorithm in the data-
base construction step, which efficiently reduced the
total number of MS/MS spectra to about 20%. The
peptide identification results of these two approaches
were similar, but the processing time was shortened by
74% in the clustering strategy.
Investigating the quantitative profile of microbial

species is an emerging field in metaproteomics [29]. In
Unipept, the quantitative information is calculated based
on the peptide numbers [17]. In this case, the incorpor-
ation of XIC-based abundance information for each pep-
tide for more accurate taxonomic profiling needs further
manual calculation. By contrast, both qualitative and
quantitative information were integrated in the MetaLab
pipeline, which allows the peptide XIC intensity infor-
mation from different samples to be used to calculate
the abundance of a specific taxa. In the LCA calculation,
a relatively conservative strategy was adopted in Meta-
Lab. In Unipept the species containing a number in their
names were ignored in LCA calculation [27]. These
species were retained in MetaLab to reduce the risk of
losing useful information. In particular, in the human
microbiome, there are many microbial species that have
not been well characterized and therefore do not have
formal names. Because of the difference in calculation
methods, 48% more species were obtained using Meta-
Lab rather than Unipept. In total 2046 taxa were quanti-
tatively identified from 32 samples. The comparison of
different quantitative strategies performed in this work
confirmed the value of XIC based technique in metapro-
teomics. Nevertheless, investigating the quantitative
composition of microbial ecosystems still remains a
challenge. For example, the abundance of each taxon
was measured by peptides uniquely attributed to this
node. The peptides shared by other species were not
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considered because the quantitative contribution of the
shared peptides was indistinguishable. To obtain accurate
quantitative information of taxon, how to improve the pre-
cision of taxonomic assignment still needs to be resolved.

Conclusions
Metaproteomics is a promising technology for functional
analysis of microbial communities. However, interpret-
ation of the data still remains a challenge for researchers.
MetaLab allows users to get both the peptide and taxa
abundance information from their raw MS data directly
and automatically. Firstly, MetaLab enabled the gener-
ation of a sample-guided reduced protein database from
large gene catalog databases. Identifying peptides from
this reduced database can significantly improve the effi-
ciency and reliability. Moreover, a novel strategy intro-
ducing MS/MS clustering as a preprocessing procedure
before the database search was incorporated for the first
time in a metaproteomics study. This strategy dramatic-
ally improved the processing speed without loss of sensi-
tivity and accuracy. Secondly, both peptides and taxa are
exported with the information of abundance giving
researchers a quantitative profile of the samples. From
this result, statistical analysis can be easily accomplished
either at the peptide or taxon level. Finally, the result file
can be exported and used for post-analysis and
visualization in other widely used software tools in meta-
genomics such as MEGAN. Taking advantage of the
workflows in MetaLab, conventional processing steps
such as analyzing each data file step-by-step manually,
switching on different tools, or converting data format
for input/output are no longer needed for metaproteo-
mics data analysis.

Implementation
MetaLab is developed in Java, a platform independent
language, so it can be executed on any platform with a
Java Runtime Environment (JRE). MetaLab integrates
several open source third-party libraries: MzJava is a
versatile tool for MS data analysis and the functions con-
cerning spectrum processing and protein digestion are
used in MetaLab [30]. Spectral clustering is performed
by PRIDE Cluster [26, 31], which is an open source algo-
rithm used in PRIDE database [31]. MetaLab uses
SIGAR (https://github.com/hyperic/sigar) to display the
system information such as utilization of CPU and
memory. Database search engines Andromeda [25] and
X!Tandem [32, 33] are involved for peptide identifica-
tion. Users need to download MaxQuant separately (due
to license terms) and implement a simple configuration
following the detailed instructions in our manual.
Msconvert [34] is adopted for the conversion of MS
spectra data format. MetaLab supports both GUI and
command line operation modes. The parameter

settings can be saved as a single parameter file which
adopts JSON format for the convenience of human
reading and data exchange. MetaLab can also be exe-
cuted on command line through the compiled param-
eter file making it easily incorporated with other
data-processing workflows. The online version is
under development.
MetaLab is readily available after being downloaded

without need for installation. It occupies 32.6 GB disk
space, including a “peptide to taxonomy” database,
which accounts for 32.6 GB. MetaLab could also run
without the “peptide to taxonomy” database, and in this
case the taxonomy analysis can be processed in Unipept
API mode. Quad-Core processors with speeds of
3.0 GHz are recommended. Typically 8 GB of memory
is required while the application is running.
In the main frame of MetaLab, there are two tabs,

“Raw files” and “Parameters”. In “Raw files” panel users
can add raw files and set the experiment names, and
specify the output directory for the results (Additional
file 1: Figure S6). In “Parameters” panel, parameters such
as variable modifications, fixed modification, enzymes,
isotope labels, and the database used for protein identifi-
cation can be set (Additional file 1: Figure S7). After
these settings are complete, users can start the task by a
click of the “Run” button. The progress bar will show
the progress rate and the text field will show the status
of the processing. After the task is finished, three folders
will be generated in the result directory, including
“database”, “parameter”, and “result”. The constructed
sample-specific database will be saved in the “database”
folder. Database search engines are used in the database
construction and peptide identification steps, and the
corresponding parameter files are copied to the “param-
eter” folder for further check. The log file containing the
task property and history is also saved to the “parameter”
folder. There are three folders in the “result” directory:
“pre_processing”, “pep_iden” and “taxonomy”. The clus-
tered spectra list and corresponding identification results
are stored in the “pre_processing” folder. The peptide
identification results from the sample specific database are
saved in “pep_iden” folder. In the “taxonomy” folder, infor-
mation including identified peptides and taxa are stored in
a XML format file, and a human readable table file is
exported in xlsx format. Additionally, a biom format file is
saved for the downstream analysis of this data set, which
can be used by other tools such as MEGAN.
The result file exported by MetaLab contained two

parts: peptide list and taxa list. In the peptide list, the
following attributes were provided for each peptide: the
identification information from Maxquant containing
the score, PEP value and number of missed cleavages;
the taxonomic lineage of LCA; the MS2 spectra counts
and MS1 peak intensities in different samples. In the
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taxa list, all possible organisms were listed, including the
identified LCAs and their ancestors, which can be used
to generate a complete taxonomic tree for this dataset.
The MS2 spectra counts and XIC intensities were calcu-
lated by summing up all the corresponding peptides
attributed to this taxon.
The setting panel of MetaLab was used to specify cus-

tomized workflows and set basic parameters (Additional
file 1: Figure S8). Users can choose to partially or com-
pletely perform the three steps in the workflow: sample-
specific database construction; peptide identification/
quantification; taxonomy analysis. Alternative strategies
for step 1 and step 3 were provided so users need to de-
termine which method should be used. For the instru-
ment resolution there were two options, “high-high”
means both MS1 and MS2 were performed in high reso-
lution mass analyzer (e.g., Orbitrap) and “high-low”
means MS1 was taken in high resolution mode and MS2
was taken in low resolution mass analyzer (e.g., ion
trap). If no change is made, MetaLab will execute using
the parameters specified the previous time it was used.

Construction of the pep2tax database for taxonomy analysis
This database was configured based on the entire
UniProt protein dataset (http://www.uniprot.org/). The
UniProtKB database may contain redundant protein
sequence, so we utilized the non-redundant database
UniParc (http://www.uniprot.org/uniparc/) for in silico
digestion. The corresponding UniProtKB IDs can be
found for each entry in UniParc, which were used for
retrieving the information about taxonomic lineage IDs
of this protein. Totally, 128,524,116 protein entries were
in silico digested by trypsin with a maximum of two
missed cleavage sites. Peptides with less than 6, or more
than 35 amino acids, were discarded. Finally 2,071,800,323
unique peptide records were complied with the sets of
taxonomic information from the corresponding protein
entries to form the pep2tax database used to automatically
perform taxonomic analysis in MetaLab. The size of the
pep2tax database is 32.6 GB and can be downloaded
separately from the core of MetaLab. MetaLab can also be
run without the pep2tax database. The Unipept API has
been integrated in MetaLab. The taxonomic analysis can
instead be performed using Unipept API automatically.
Because miss cleavages were not considered in Unipept
API, less taxa will be obtained in this mode. The users can
choose one or both of the two methods to perform the
analysis in this module. The formats of the resulting files
from both methods are uniform.

Analyzing metaproteomics data from mouse gut
microbial samples in MetaLab
The detailed information of samples and experiment
design was described in our previous work [13]. The

name of each sample consists of three pieces of informa-
tion: diet type, mouse ID and the number of days on diet
when sample was collected. For example, LFD2_D29
means the ID of the mouse is 2, fed with low-fat diet
and the fecal samples were collected at day 29 on diet.
The original mouse gut microbiota protein database was

downloaded from GigaDB (http://gigadb.org/dataset/view/
id/100114/token/mZlMYJIF04LshpgP) [23]. The metapro-
teomics data was generated on a Q Exactive mass
spectrometer (ThermoFisher Scientific Inc.) so the instru-
ment resolution option “high-high” mode was selected in
MetaLab. Other parameters contained: carbamidomethyla-
tion of cysteine as a fixed modification; oxidation of
methionine and acetylation of protein N-terminal as vari-
able modifications; trypsin as enzyme with maximum of
two missed-cleavages. In the peptide identification step the
FDR was set as 0.01.

Statistical analysis
PCA and hierarchical clustering analysis were performed
by an online tool named MetaboAnalyst 3.0 (http://
www.metaboanalyst.ca/) [35]. After the submission of
datasets, missing value estimation was applied and
k-nearest neighbors algorithm (KNN) was used in this
step. In the sample normalization step, the data were
normalized by median, then transformed to logarithm
format. In the cluster analysis, the distance was mea-
sured by Pearson correlation.

Additional files

Additional file 1: Figure S1. In spectral clustering, the reduction rate of
MS/MS spectra will increase with the growth of number of raw files.
Figure S2 The distributions of peptide scores in iterative searching
strategy and spectral clustering strategy. Figure S3 The quantitative
profile of the phylogenetic tree dataset. Figure S4 Heat map of (A)
peptide counts; (B) spectral counts of bacterial species in 32 samples.
Figure S5 Charts illustrate the taxonomy profiles between different
samples. Figures S6–S8 The GUIs of MetaLab. (DOCX 1319 kb)

Additional file 2: Table S1. List of LCAs calculated by MetaLab built-in
database module. (XLSX 17593 kb)

Additional file 3: Table S2. List of LCAs calculated by Unipept.
(CSV 9146 kb)
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