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Abstract

Background: In pigs, gut bacteria have been shown to play important roles in nutritional, physiological, and immunological
processes in the host. However, the contribution of their metagenomes or part of them, which are normally reflected by
fragments of 165 rRNA-encoding genes, has yet to be fully investigated.

Results: Fecal samples, collected from a population of crossbred pigs at three time points, including weaning, week 15
post weaning (hereafter “week 15”), and end-of-feeding test (hereafter “off-test”), were used to evaluate changes in the
composition of the fecal microbiome of each animal over time. This study used 1205, 1295, and 1283 samples collected
at weaning, week 15, and off-test, respectively. There were 1039 animals that had samples collected at all three time
points and also had phenotypic records on back fat thickness (BF) and average daily body weight gain (ADG). Firmicutes
and Bacteroidetes were the most abundant phyla at all three time points. The most abundant genera at all three time
points included Clostridium, Escherichia, Bacteroides, Prevotella, Ruminococcus, Fusobacterium, Campylobacter, Eubacterium,
and Lactobacillus. Two enterotypes were identified at each time point. However, only enterotypes at week 15 and off-test
were significantly associated with BF. We report herein two novel findings: (i) alpha diversity and operational taxonomic
unit (OTU) richness were moderately heritable at week 15, h? of 0.15 + 0.06 to 0.16 + 0.07 and 023 + 0.09 to 0.26 + 0.08,
respectively, as well as at off-test, h? of 020+ 0.09 to 033 +0.10 and 0.17 + 008 to 0.24 + 0.08, respectively, whereas very
low heritability estimates for both measures were detected at weaning; and (ii) alpha diversity at week 15 had strong and
negative genetic correlations with BF, —0.53 +0.23 to — 045 £ 0.25, as well as with ADG, —0.53 +0.32 to —0.53 £ 0.29.

Conclusions: These results are important for efforts to genetically improve the domesticated pig because they suggest
fecal microbiota diversity can be used as an indicator trait to improve traits that are expensive to measure.
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Background

Until recently, research in physiology and production in
livestock has focused on understanding individual’s vari-
ability for a wide array of traits. With the assistance of
DNA technology, research in swine genetics has changed
to include the use of single nucleotide polymorphisms
(SNP) in identifying causative mutations that underpin
variation in phenotypic measures, as well as to predict
future performance of the pig, using all the genes or
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subsets of genes across the animal genome. However,
the pig genome contains less than half the number of
genes existing in its second genome, which is its micro-
biome [1] whose impact on the host has yet to be fully
investigated.

The literature documents a growing body of research
characterizing the microbiomes of pigs at different
stages of development, including early life [2-5], grow-
ing stage [6, 7], and later stage [8, 9]. Bacteria in the pig
gut have been shown to impact host nutritional, physio-
logical, and immunological processes in various ways
[10-15]. Though gut microbial diversity in pigs has been
described to some extent [8, 9], most of the previous
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studies have been characterized by small sample sizes
and/or by targeted manipulation of specific groups of
bacteria in the gut at specific times in the animals’ lives,
often in relation to nutrition studies. Composition and
function of a healthy microbial ecosystem however have
yet to be qualitatively and quantitatively defined to be
used as a tool to maximize animal health and perform-
ance. Particularly, microbiome diversity has not been
studied at large scales, including large sample sizes being
conducted through several stages of the production life
of the pig. Additionally, the impact of diversity has not
been investigated from a perspective that could be used
to proactively predict and manipulate health and/or per-
formance of the host.

Studies in domestic pigs have revealed how outbred
pigs carry an amount of genetic variation comparable to
that of outbred human populations [16] and are more
similar to humans than rodents in terms of anatomy,
genetics, and physiology [17]. Pigs also have similar clin-
ical manifestations and susceptibility to many enteric
pathogens detected in humans [18-22]. With regard to
the gut microbes, 96% of the functional pathways found
in the human catalog are also present in the pig catalog
[1]. Therefore, the pig model of human health studies,
especially in gut microbiome, has drawn the attention of
the research community.

The research reported herein is part of a larger project
aimed at investigating the use of microbial information
to improve pig health and production, including higher
efficiency of feed utilization, better meat quality, and
healthier pigs. Within this paper, we focused on two
main objectives: (1) characterizing temporal changes in
the microbiome community of pig feces with respect to
both composition and diversity; and (2) investigating the
potential influence of host genetics on this diversity.

Methods

Animals

The pigs used in this study were raised in a commercial
setting operated by The Maschhoffs, LLC (Carlyle, IL,
USA); therefore, animal use approval was not needed for
the collection of these data. Twenty-eight purebred
Duroc sires, from a Duroc population under selection
for lean growth, were crossed with Large White x Land-
race or Landrace x Large White sows (dam lines) to
produce the offspring that were used in this study. The
pigs were weaned at 18.6 + 1.09 days old and were
moved to a nursery-finishing facility, where they were
put in groups of 20 individuals per pen. Pen mates were
paternal half-siblings of the same gender and of similar
weaning weight. The experiment was repeated 6 times,
each of which comprised of 2 pens (1 pen of female pigs
and 1 pen of castrated male pigs that are referred to
“male” hereafter) from each of the 28 sires. Pigs that
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came together in 1 replicate were put in 1 contemporary
group (hereafter “cg”) in analyses that followed.

The test period began the day the pigs were moved to
the nursery-finishing facility. During the nursery, growth,
and finish periods, they were fed standard pelleted feed.
During the grow-finish period, they were fed standard
diets, which were based on sex and live weight. Details of
diet formulae and their nutritional values are provided
(see Additional file 1). The pigs received a standard
vaccination and medication routine (see Additional file 2).
End of test (hereafter “off-test”) was reached on a pen-
specific basis when all pigs in a pen achieved an average
live weight of 136 kg and were harvested. Their average
age at harvest was 196.4 + 7.86 days.

Rectal swabs were collected from all pigs in a pen at 3
time points, including weaning, 15 weeks post weaning
(average 118.2 + 1.18 days, hereafter “week 15”), and
off-test. Four pigs were chosen randomly per pen for
lean carcass growth measurements, and their rectal
swabs were used for microbiome sequencing. In the end,
the number of samples at weaning, week 15, and off-test
were 1205, 1295, and 1283, respectively. There were
1039 animals having samples collected at all 3 time
points. More details on the distribution of samples
across families, time points, and sex are provided (see
Additional file 3).

Back fat thickness was recorded on live animals at
weeks 18 and 22 post weaning, hereafter referred to as
BF_18 and BF 22, respectively. Live weights were
recorded at weaning as well as weeks 14 and 22 post
weaning and were used to compute average daily body
weight gain from weaning to week 14 (hereafter
“ADGw_14") and from week 14 through week 22 (here-
after “ADG14_22").

DNA extraction and purification

Total DNA (gDNA) was extracted from each rectal swab
by mechanical disruption in phenol:chloroform. Briefly,
650 pL of extraction buffer (200 mM Tris; 200 mM
NaCl; 20 mM EDTA, pH 8.0) was added to each swab
stored in a 2-mL self-standing screw cap tube (Axygen,
CA, USA). Tubes were shaken using a Mini-BeadBeater-
96 (MBB-96; BioSpec, OK, USA) for 20 s to free sample
material from the swab head. Following a brief centrifu-
gation (10 s; 500 x g) to pull down any dislodged mater-
ial, each swab head was removed from its tube using
sterile forceps. Samples were frozen solid at — 80 °C, and
approximately 250 pL of 0.1 mm zirconia/silica beads
(BioSpec) and a 3.97 mm stainless steel ball were added
to the sample (while still frozen to avoid splashing).
Samples were allowed to thaw briefly, after which
210 pL 20% SDS and 500 uL phenol:chloroform:IAA
(25:24:1, pH 8.0) were added. Bead-beating was per-
formed on the MBB-96 (4 min, room temperature),
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samples were centrifuged (3220 x g; 4 min), and 250 pL
of the aqueous phase was transferred to a new tube. One
hundred microliters of this crude DNA was then further
purified using a QIAquick 96 PCR purification kit
(Qiagen, MD, USA). Purification was performed per the
manufacturer’s instructions with the following minor
modifications: (i) sodium acetate (3 M, pH 5.5) was added
to Buffer PM to a final concentration of 185 mM to
ensure optimal binding of genomic DNA to the silica
membrane; (i) crude DNA was combined with 4 volumes
of Buffer PM (rather than 3 volumes); and, (iii) DNA was
eluted in 100 pL Buffer EB (rather than 80 pL).

lllumina library preparation and sequencing

Phased, bi-directional amplification of the V4 region
(515-806) of the 16S rRNA gene was employed to gener-
ate indexed libraries for Illumina sequencing using the
strategy described in [23]. Amplicon libraries were quanti-
fied using the Qubit dsDNA assay kit (Thermo Fisher
Scientific Inc., MA, USA) before being pooled in equimo-
lar ratios. These final pools were purified using Agencourt
AMPure XP beads (Beckman Coulter) per the manufac-
turer’s instructions. Purified pools were supplemented
with 5-10% PhiX control DNA and were sequenced on an
[lumina MiSeq machine as paired-end 2 x 250 + 13 bp
index reactions using the 600v3 kit. Un-demultiplexed
FASTQ files were generated by MiSeq Reporter. All
sequencing was performed at the DNA Sequencing
Innovation Lab at the Center for Genome Sciences and
Systems Biology at Washington University in St. Louis.

16S rRNA gene sequencing and quality control of data

Pairs of V4 16S rRNA gene sequences were first merged
into a single sequence using FLASh v1.2.11 [24], with a
required overlap of at least 100 and not more than 250
base pairs in order to provide a confident overlap.
Sequences with a mean quality score below Q35 were
then filtered out using PRINSEQ v0.20.4 [25]. Sequences
were oriented in the forward direction and any primer
sequences were matched and trimmed off; during primer
matching, up to 1 mismatch was allowed. Sequences
were subsequently demultiplexed using QIIME v1.9 [26].
Sequences with > 97% nucleotide sequence identity were
then clustered into operational taxonomic units (here-
after “OTUs”) using QIIME with the following settings:
max_accepts = 50, max_rejects =8, percent_subsample =
0.1 and —suppress_step4d. A modified version of Green-
genes [27-29] was used as the reference database. Input
sequences that had 10% of the reads with no hit to the
reference database were then clustered de novo with
UCLUST [30] to generate new reference OTUs to which
the remaining 90% of reads were assigned. The most
abundant sequence in each cluster was used as the rep-
resentative sequence for the OTU. Sparse OTUs were
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then filtered out by requiring a minimum total observa-
tion count of 1200 for an OTU to be retained, and the
OTU table was rarefied to 10,000 counts per sample.
Average good’s coverage estimates for samples at wean-
ing, week 15 and off-test were 0.99 + 0.002, 0.98 £ 0.002,
and 0.98+0.002, respectively. Finally, the Ribosomal
Database Project (RDP) classifier (v2.4) was retrained in
the manner described in [31] with 0.8 cutoff used to
assign taxonomy to the representative sequences.

Comparative analysis of microbiome composition

In order to compare microbiome composition longitudin-
ally, relative abundance counts were logarithm-transformed
and zero-centered, then plugged into Kruskal-Wallis test.
Adjustment of P values for multiple testing was completed
via Bonferroni correction. This comparative analysis was
performed at the genus and species levels.

Clustering analysis
Clustering analysis in this paper was performed in two
parts. The first part was aimed to investigate whether or
not samples at the three time points could separate from
one another based on their microbiome compositions.
OTU counts were divided by the total count for each
sample (which was 10,000), logarithm-transformed, and
zero-centered before being applied to the R function
“prcomp” for principal component analysis. This analysis
was performed at the phylum, class, order, family, genus,
and species levels. The results are presented in Fig. 2.
Part 2 of the clustering analysis was focused on identi-
fying enterotypes among the samples collected at each
time point. For that purpose, Jensen-Shannon Diver-
gence (hereafter “JSD”) [32] was calculated at three sep-
arate time points according to the relative abundance of
each genus in each sample using the “dist.JSD” function
coded in R [33]. Based on the obtained distance matrix,
the samples at each time point were clustered via parti-
tioning around medoids (PAM) by using the “pam” func-
tion in the R library “cluster” [34]. The optimal number
of clusters was chosen by maximizing the Calinski—Har-
abasz index [35], using “index.G1” function in the R
library “clusterSim” [36], and the Silhouette index [37],
using the “silhouette” function in the R library “cluster”.
The result of clustering was visualized on a PCA plot,
using the “s.class” function of the "ade4" package in R
[38], and presented in Fig. 3. To determine genera that
were differentially abundant between two enterotypes at
each time point, LEfSe v1.0 [39] was used. The software
uses the Kruskal-Wallis test to identify genera that are
significantly different between two enterotypes at each
time point, and used to build a Linear Discriminant
Analysis (LDA) model, from which the relative differ-
ence between the two enterotypes is used to rank the
genera. More details of LDA is fully described in [39].
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The clustering analyses described above were repeated
using the unrarefied microbiome data as suggested in
[40], and the clustering results were compared with the
results from using the rarefied data.

Diversity analysis

The R package “vegan” [41] was used to investigate
alpha diversity in this study. The diversity was measured
using the Shannon index, computed here as -7 | p;
In(p;) , where p; was the proportional abundance of
OTU i. A univariate linear regression model was formed
to test the significance of fixed effects,

Vitkm = H + s€X; + age; * family; + bsy + dl,,, + ejim,
(1)

in which y was the overall mean, age was the time point
(weaning, week 15, off-test), family was the paternal
half-sib family (n = 28), bs was the birth site (n=3), dl
was the dam line (n=2) and potential interaction
between the age and family, and a random residual effect
e; the response was the Shannon index. The index at
week 15 and off-test was pre-adjusted for contemporary
group (n = 6). Fixed effects that were found insignificant
from model (1) were removed from subsequent analyses.
After testing the significance of the fixed effects, we
explored longitudinal changes in the family effect using
the model (1.1), which was analyzed using function
“Imer” of the R package “lme4” [42].

(1.1)

We modified model (1) to form model (1.2) to test the
impact of enterotypes on BF_18, BF_22, ADGw_14, and
ADG14_22. Model (1.2) consisted of five fixed effects,
including days, which were the age of the animal on the
day when back fat thickness and live weight were
measured; enterotype was the enterotype at weaning,
week 15, or off-test; and sex, family, bs, and e remained
the same as previously described.

Jijik = H + sex; + bsi + ageifamilyil + eijik

Yitkn = # + sex; + days + family, + bsk
+enterotype,, + €jim,
(1.2)

Model (2) was formed to test the fixed effects of sex,
family, and bs, as well as random permanent environ-
mental effect of litter (n=718), at three separate time
points. The litter effect in this study refers to the nursing
environment provided by the mother and siblings, influ-
encing the development of individual pigs, potentially
having profound impact on fitness and other phenotypic
traits later in life. The random effects were assumed to
be uncorrelated with each other. Covariance matrices of
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the random effects were equal to Io7,. , o2, where I was
an identity matrix.

Vi = ¢+ sex; + family; + bs; + litter, + e, (2)

Genetic parameters of the Shannon index were investi-
gated using models (3), (4), and (5) as described below.
The model included fixed effects of sex and bs. Random
effects included animal and residual e in model (3).
Model (4) was an extension of model (3) to include the
permanent environmental effect litter. We estimated
heritability of the Shannon index at each time point, as
well as phenotypic and genetic correlations of the index
among the three time points. Model (5) was an exten-
sion of model (4) to include the random effects of pen
where the animals were raised after weaning. The
response in model (5) was the Shannon index at week
15 and off-test. We estimated heritability of the index, as
well as its phenotypic and genetic correlations between
these two time points. Assumptions of the random
effects of litter and pen remained similar to model (2).
The random effect of animal in models (3), (4), and (5)
was given a covariance matrix of A¢?, in which A was
the additive numerator relationship matrix, determined
from a pedigree. The animal in models (4) and (5) was
assumed uncorrelated with other random effects.

Viks = H + sex; + bsy + animal; + ej (3)
Vikps = M + seX; + bsy + litter,, + animal; + ejips (4)

Viknps = H + 5eX5} bsy + pen,, + litter, + animal;
+e]'knps

Models (3), (4), and (5) differed from each other by
the number of random effects. The goodness of fit of the
models was evaluated via Likelihood Ratio Test (LRT).
The pen effect applied to data collected only after wean-
ing; thus, model (5) was used for data from week 15 and
off-test only. Genetic parameters for OTU richness,
which was the number of OTUs obtained in our rarefied
data, were obtained in a similar manner. We also
performed bivariate analyses for pairs of traits between
Shannon index (at weaning and week 15, hereafter
“Sha_w” and “Sha_15,” respectively) and BF_18, BF_22,
ADGw_14, and ADGI14_22. All of the linear models
were tested using ASReml v.4.1 [43].

Results

Distribution of taxonomic abundance

The results shown in Fig. 1 describe the abundance of
microbial taxa at six different levels (phylum, class,
order, family, genus, and species) at three different stages
of pig development (weaning, 15 weeks of age, and off-
test). There were 14, 21, 29, 54, 106, and 202 identified
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Fig. 1 Distribution of abundance of microbiome taxa at various levels over weaning, week 15, and off-test. The y-axis is average proportion of
relative abundance. The legend boxes list only the 10 most abundant taxanomic identity at each level
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phyla, classes, orders, families, genera, and species,
respectively. Details of the distributions are provided
(see Additional file 4). Over the three time points,
95.79-97.80% of the OTUs were classified into six phyla:
Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria,
Spirochaetes, and Actinobacteria. Bacteria that were in
the phylum Firmicutes represented the largest propor-
tion of the total population followed by Bacteroidetes.
These two phyla accounted for 73.61, 95.35, and 93.03%
of all reads at weaning, week 15, and off-test, respect-
ively. As the animals aged, the proportion of OTUs in
the phylum Firmicutes increased, while the proportion
of OTUs in the phylum Bacteroidetes decreased. At the
phylum level, the proportion of OTUs that fell into the
non-classified group was 3.86, 2.12, and 2.62% at wean-
ing, week 15, and off-test, respectively.

Among the identified genera, two (Ruminobacter and
Akkermansia) were unique to the weaners, 101 were
present in all three age groups, one (Anaerotruncus) was
present only in the weaners and the 15 weekers, one
(Cellulosilyticum) was present only in the weaners and
the off-test, and one (Anaerostipes) was present only in
the 15 weekers and off-test animals. The number of
genera that had significant difference in relative abun-
dance counts (at least P < 0.01 with Bonferroni correc-
tion for multiple testing) between weaning and week 15
was 90, between weaning and off-test was 100, and
between week 15 and off-test was 82. A full list of P
values from Kruskal-Wallis tests at the genus level is
provided in Additional file 5. Clostridium significantly
increased in proportion over time, from 8.18 + 6.68%
(mean + SD) at weaning to 1550+ 6.67 and 17.80 +
4.93% at week 15 and off-test, respectively (P < 0.001 and

P <0.001, respectively). Other predominating genera at
weaning included Escherichia, Bacteroides, and Prevotella
with 7.73 +12.17, 7.30 + 7.86, and 6.78 + 5.76% of the total
sequences, respectively. The average proportions of
Escherichia and Bacteroides dropped significantly (P <
0.001) to 0.17 £0.87 and 0.15+0.45% at week 15, and
0.23+1.79 and 040+0.87% at off-test, respectively,
whereas the average proportion of Prevotella significantly
increased to 13 + 5.97% at week 15, then significantly (P <
0.001) dropped to 6.74 + 3.08% at off-test.

At the species level, there were 202 identified species,
of which 7 species (Parabacteroides goldsteinii, Blautia
glucerasea, Anaerotruncus sp. NML 070203, Anaerotrun-
cus colihominis, Bacteroides nordii, Bacteroides caccae,
Bacteroides eggerthii) existed only at weaning and week
15, 4 species (Clostridium methylpentosum, Ruminococ-
cus albus, Bacteroides galacturonicus, Porphyromonas
bennonis) existed only in the week-15 and off-test
individuals, 2 species (Cellulosilyticum ruminicola, Col-
linsella stercoris) were present only in the weaners and
off-test animals, and 3 species (Akkermansia mucini-
Pphila, Ruminobacter amylophilus, Alistipes putredinis)
were found exclusively in the weaners. Remarkable
shifts in the abundance of sequences were observed in
E. coli (7.66+12.05, 0.17+1.86, and 0.23 +1.78% at
weaning, week 15, and off-test, respectively), P. djf Isi6
(3.93£3.94, 043+0.60, and 0.13+0.12%), B. fragilis
(2.70 £6.00, 0.002+0.03, and 0.06 +0.54%), C. jejuni
(1.70 £4.01, 0.01 £0.13, and 0.01 £ 0.07%), S. gallolyticus
(1.67 £3.90, 9.19 + 5.85, and 8.64 + 5.44%).

Principal component analyses were carried out at the
phylum, class, order, family, genus, and species levels.
Scatter plots, based on the first two principal
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components (hereafter “PC1” and “PC2”), of all samples
at the three time points are presented in Fig. 2. At each
taxonomic level, PC1 mainly separated the weaners from
the other two groups, whereas PC2 distinguished the 15-
week olds from the off-test individuals. However, the
effect of PC2 was clearly seen only in analyses at the
family, genus, and species levels. Proportions of total
variance explained by PC1 and PC2 are presented in
Table 1. At the phylum level, PC1 and PC2 accumula-
tively accounted for 97.25% of the total variation. This
proportion decreased to 75.04, 69.41, 44.38, 40.78, and
41.65% in analyses using the lower taxonomic levels,
class, order, family, genus, and species, respectively.

Table 1 also reveals that bacteria in the phylum
Firmicutes were the main driver separating the weaners
from the other two groups. They contributed to 75.39%
of the variation in PC1. Two phyla, Proteobacteria and
Bacteroidetes explained a total of 81.55% of PC2, which
separated the 15-week olds from the off-test pigs. At the
species level, PC1 was heavily loaded by ten species that
distinguished the weaners from the other two groups,
including S. gallolyticus, T. sanguinis, C. butyricum, C.
catus, E. coli, B. fragilis, B. vulgatus, C. jejuni, C. scin-
dens, and C. bolteae. PC2 was heavily loaded by the
species that separated the 15 weekers from the off-test
pigs, including E. coli, T. sanguinis, L. amylovorus, O. sp.
g2, P. sp. DJF bl116, P. copri, P. sp. DJF Is16, P. sp. rs2, D.
formicigenerans, and M. elsdenii.

Clustering pigs’ fecal microbiomes into enterotypes

The highest CH and RS were obtained for two clusters
for both male and female samples collected at weaning,
week 15, and off-test. We combined male and female
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samples at each time point and re-ran the CH test for
optimal number of clusters. The CH indexes at each
time point and clusters of samples corresponding to the
optimal number of clusters are presented in Fig. 3. The
optimal number of clusters for samples at each of the 3
time points was 2. We named them A and B at weaning,
C and D at week 15, and E and F at off-test. The number
of males and females in clusters A, B, C, D, E, and F
were 166 and 226, 443 and 370, 276 and 291, 354 and
374, 399 and 438, and 219 and 217, respectively. The
samples at each time point appeared to form 2 distinct
clusters (Fig. 3).

Compositional characteristics of the enterotypes were
studied, and genera that significantly (absolute LDA
score >2) separated one enterotype from the other at
each time point are presented in Fig. 4. The overall ob-
servation was that at weaning type A and type B samples
were significantly distinguished by 41 genera, of which
14 genera, led by Escherichia, were more abundant in
type A samples than in type B samples, and 27 genera,
led by Prevotella, were significantly more abundant in
type B samples than in type A ones. Enterotypes C and
D at week 15 and enterotypes E and F at off-test were
significantly distinguished by 24 and 26 genera, respect-
ively. Both type C and type E samples at week 15 and
off-test, respectively, were significantly dominated by
Clostridium and Turicibater, whereas both type D and
type F samples at week 15 and off-test, respectively, were
significantly enriched by Lactobacillus and Streptococcus.

Using model (1.2), we tested the potential impacts of
enterotypes A, B, C, and D on BF_18, BF_22, ADGw_14,
and ADG14_22, as well as the effect of enterotypes E
and F on BF_22 and ADG14_22. Enterotypes A and B

Phylum

Class

Family

T T T T — T
4 3 2 - [ 1

principal component 2 (PC2) at six taxonomic levels

Fig. 2 Scatter plots of samples at weaning (red circles), week 15 (green circles), and off-test (blue circles) by principal component 1 (PC1) and

PC1
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Table 1 Proportion of variation explained by the first two principal
components at different taxonomic levels and contribution of the
top members to the first two principal components
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Table 1 Proportion of variation explained by the first two principal
components at different taxonomic levels and contribution of the
top members to the first two principal components (Continued)

Taxonomic level PC1  PC2 Contribution Contribution  Taxonomic level PC1  PC2 Contribution Contribution
to PC1 to PC2 to PC1 to PC2
Phylum 9366 359 Species 3349 816
Firmicutes 75.39 374 Escherichia coli 3.18 333
Proteobacteria 803 54.56 Bacteroides fragilis 1.90 1.13
Bacteroidetes 6.31 26.99 Streptococcus gallolyticus 1.83 091
Class 62.59 1245 Bacteroides vulgatus 1.74 0.25
Clostridia 4598 335 Campylobacter jejuni 1.60 0.71
Gammaproteobacteria 12.87 4.80 Turicibacter sanguinis 1.54 1.95
Fusobacteriia 791 11.20 Clostridium scindens 146 0.57
Bacteroidia 761 2258 Clostridium butyricum 144 0.66
Erysipelotrichia 4.86 343 Clostridium bolteae 1.39 0.60
Epsilonproteobacteria 451 1.19 Coprococcus catus 1.38 0.11
Order 5775 1166 PC1 and PC2 are the two principal components 1 and 2, respectively
Clostridiales 40.23 754
Enterobacteriales 11.00 14.12
Fusobacteriales 724 869 did not have significant effect on the traits (all P> 0.05).
Bacteroidales 676 550 Enterotypes C and D had significant effect on BF_18
pasteurellales 616 696 (P<0.001) and BF_ 22 (P<0.001) but not on
A A ADGw_14 and ADG14_22 (both P> 0.05). Enterotypes
Erysipelotrichales 429 146 E and F had significant effect on BF_22 but not on
8 _
Campylobacterales 413 434 ADG14_22. Enterotypes D and F were both significantly
Fibrobacterales 242 291 enriched mainly with Lactobacillus, Streptococcus, and
Family 3172 1266 Prevotella compared to Clostridium-enriched enterotypes
Enterobacteriaceae 1275 734 C and E, and our analysis revealed that enterotype D at
Bacteroidaceae 658 088 week 15 was associated with an increase of 0.08 and
) 0.10 cm in backfat thickness at week 18 (BF_18) and
Fusobacteriaceae 627 a4 week 22 (BF_22), respectively, compared to enterotype C.
Enterococcaceae 269 257 Similarly, enterotype F was associated with an increase of
Pasteurellaceae 5.50 268 0.10 cm in BF_22 compared to enterotype E.
Peptostreptococcaceae 531 377 A subset of 1039 animals that had samples collected at
Clostridiaceae 457 789 weaning, week 15, and off-test was used to evaluate the
Streptococcaceae 430 495 frequency with which individual animals transitioned
between enterotypes as they developed. The percentage
Campylobacteraceae 313 1.92 . .
of type A weaners developing into types C and D at
Prevotellaceae 305 9.18 week 15 was 43.11 and 56.89%, respectively. For type B
Genus 3056 1022 weaners, 41.26 and 58.74% of them became type C and
Escherichia 6.58 524 D, respectively. From weaning, 32.55 and 32.66% of type
Bacteroides 384 034 A and type B pigs, respectively, grew to type F pigs at
Fusobacterium 376 15 off-test. From week 15, 22.07 and 40.23% of type C
and type D pigs, respectively, joined the type F group at
Peptostreptococcaceae 347 198 off-test. A detailed breakdown of the number of samples
Enterococcus 3.06 204 in each enterotype is provided (see Additional file 6).
Turicibacter 285 3.04 We tested whether or not the distribution of samples
Clostridium 277 436 in the enterotypes (see Additional file 7) was affected by
Streptococcus 267 151 the family factor, using contingency tables and a Chi-
Actinobacillus 557 047 squarfed ‘Fest in R. Slre‘ famlllfes had significant impact on
B the distribution of animals into enterotypes at weaning
Butyricimonas 2.50 1.51

(P < 0.005), week 15 (P < 0.05), and off-test (P < 0.001).
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Fig. 3 Calinski-Harabasz indexes (CH) for number of potential clusters of samples at weaning, week 15, and off-test. The highest CH value at each
time point indicates optimal number of cluster/enterotypes. Samples at weaning formed two clusters, A and B. Samples at week 15 formed two

Longitudinal analysis of microbiome diversity

Alpha diversity of the microbiome was evaluated using
the Shannon index and plotted in Fig. 5 by sex and time
point. At weaning, the average Shannon indices for type
A and type B weaners was 3.33 + 0.67 and 4.13 £ 0.43 in
the males and 3.21 + 0.68 and 4.18 + 0.43 in the females,
respectively. Results from ¢ tests showed that those
means were significantly different between types A and
B in both male and female weaners (P < 0.001). At week
15, types C and D had an average Shannon indices of
4.50 £0.30 and 4.47 £0.29 in males and 4.60 + 0.26 and
4.57 +0.27 in females, respectively. These averages were
not significantly different between the two enterotypes
in both sex groups (P> 0.05). The average Shannon indi-
ces for type E and type F off-test pigs were 4.57 +0.32

and 4.59 + 0.31 in males and 4.67 + 0.28 and 4.73 £ 0.23
in the females, respectively. Significant difference in the
Shannon index between type E and type F animals was
observed only in the female pigs (P < 0.01).

The test from model (1) showed a significant impact
of sex (P <0.05), bs (P<0.001), and interaction between
age and family (P<0.001) on the alpha diversity of
microbiome measured using the Shannon index. The
estimated effects of the fixed factors are listed in
Additional file 8. The effect of dl was not significant
(P>0.05) and was thus removed in subsequent ana-
lyses. We compared the clustering results from the rar-
efied data to the results from the unrarefied, and found
no major differences in the clusters and enterotypes. For
the reader reference, we put the results using the

=mA mms

6.0 —4.8 =36 -2.4 -1.2 00 12 24 36 48 60
LDA SCORE (log 10)

LDA SCORE (log 10)

Fig. 4 Effect size of genera that separate two enterotypes at weaning (A and B), week 15 (C and D), and off-test (E and F). The bar length represents a
log;o-transformed linear discriminant score. The colors represent which enterotype a genus is found to be more abundant compared to the other
enterotype. Only absolute values of the effect size are considered when comparing one genus to another
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Fig. 5 Box plots of the Shannon index in each enterotype by sex at weaning, week 15, and off-test

unrarefied data in Additional file 9, Additional file 10,
and Additional file 11.

Longitudinal changes in random effects of family were
estimated using model (1.1) and are plotted in Fig. 6,
which shows a group of 14 families (1, 2, 5, 7, 8, 12, 13,
14, 15, 16, 17, 21, 23, 25) with negative estimated effect
on the Shannon index at weaning, indicating their diver-
sity was below the average of the 28 families investi-
gated. The other 14 (3, 4, 6, 9, 10, 11, 18, 19, 20, 22, 24,
26, 27, 28) families had their estimated family effect
above the population mean. The latter group appears to
show a trend, though not consistently across the 14
families, where families that had very high diversity at
weaning tended to have very low diversity at week 15
and off-test. This tendency is even less consistent in the
other group of 14 families. Pearson’s correlation for the
estimated family effect on the diversity between weaning

and week 15 was - 0.70, between week 15 and off-test
was — 0.82, and between week 15 and off-test was 0.98.

Analyses performed at individual time points and
described in model (2) revealed significant impact of sex
(P<0.05) and bs (P<0.001) and insignificant effect of
family (P>0.05) at weaning. At week 15 and off-test,
both family and sex effects were significant (P < 0.001),
whereas the bs effect was insignificant (P > 0.05).

We considered the index as a phenotypic record and
hence attempted to estimate its genetic parameters. The
results from model (3), not including the litter effect, are
presented in Table 2, suggesting that the measure was
lowly heritable at weaning and week 15 (0.04 + 0.04 and
0.15+0.06, respectively) but moderately heritable at
off-test (0.33 + 0.10). Very weak negative phenotypic cor-
relation was detected between weaning and week 15
(- 0.01 £0.03), as well as between weaning and off-test

B Weaning
B Week 15
;1 W Off-test

(e

Estimated family effect
0.0 0.1 02

-0.1

-0.2
L
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Fig. 6 Family effect on the Shannon index estimated for each family at weaning, week 15, and off-test
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(- 0.04 +0.03). Considering the standard error, those
correlations were almost zero. However, the measures
at week 15 were positively correlated with those at
off-test phenotypically, 0.15+0.03. Genetically, the
index at weaning was negatively correlated with those
at week 15 and off-test, respectively —0.17 + 0.48 and
-0.34+0.47. However, the genetic correlation for this
index between week 15 and off-test was 0.44 + 0.25.

We also estimated genetic parameters of OTU rich-
ness and observed a trend similar to the one found with
the Shannon index. Table 3 shows almost zero heritabil-
ity, 0.03+0.04, for the OTU richness at weaning, but
moderate heritabilities of 0.26 + 0.08 and 0.24 +0.08 at
week 15 and off-test, respectively. A very weak genetic
correlation was estimated between weaning and week 15
(0.07 £ 0.52), whereas the estimated genetic correlations
between weaning and off-test, as well as between week
15 and off-test, were 0.25 + 0.53 and 0.11 + 0.25, respect-
ively. Very large standard errors were observed for the
genetic correlations between weaning and week 15, as
well as between weaning and off-test for the Shannon
index and OTU richness.

Tables 4 and 5 show genetic parameters of the Shannon
index and OTU richness estimated using model (4). Heri-
tabilities of the Shannon index and OTU richness at
weaning were 0.02 +0.04 and 0.01 +0.03, respectively. It
should be noted that small estimated additive genetic
variances at weaning might have inflated the estimated co-
variances between weaning and the other two time points.
The estimated heritabilities of the Shannon index and
OTU richness slightly changed to 0.16 £0.07 and
0.24 £ 0.09, respectively, at week 15, whereas they de-
creased to 0.22 +0.09 and 0.20 + 0.08, respectively, at
off-test. Interestingly, the genetic correlation between
week 15 and off-test for the Shannon index and OTU
richness increased remarkably to 0.65 + 0.23 and 0.39
+0.27, respectively.

Tables 6 and 7 present genetic parameters of the
Shannon index and OTU richness estimated using
model (5). Adding the random effect of pen in model (5)
accounted for the immediate environment shared among
pen mates at week 15 and off-test. This led heritability
estimates for the Shannon index to decrease slightly to

Table 2 Estimated genetic parameters of the Shannon index
and their standard errors
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Table 3 Estimated genetic parameters of the OTU richness and
their standard errors

Weaning Week 15 Off-test
Weaning 0.03 + 004 0.00 + 0.03 —-002+003
Week 15 0.07 £ 052 0.26 = 0.08 0.07 £ 0.03
Off-test 0.25 £ 0.53 0.11£0.25 024 + 0.08

Model not including litter effect. Values on the diagonal are heritability, above
the diagonal are phenotypic correlations, and below the diagonal are
genetic correlations

0.17+0.08 and 0.19+0.09 at week 15 and off-test,
respectively; heritability estimates for OTU richness also
decreased slightly to 0.23+0.09 and 0.17 + 0.08 at week
15 and off-test, respectively, when compared to the esti-
mates from model (4). The genetic correlation for the
two traits between week 15 and off-test increased to
0.80 + 0.24 and 0.52 + 0.29, respectively. Our results might
suggest there is very little or no influence of the host’s
genetics on gut microbiome diversity at weaning, when the
gut microbiota may be significantly influenced by environ-
mental factors coincident with the weaning process.

The LRT revealed significant improvement in goodness
of fit when including the litter effect, model (3) vs model
(4) (P<0.001), as well as when including the pen effect,
model (4) vs model (5) (P<0.001), for both Shannon
index and OUT richness. The results suggest that it is
important to include both litter and pen in the model
when estimating genetic parameters for the two traits.

Relationships between Sha_w and Sha_15 with BF_18,
BF 22, ADGw_14, and ADG14_22 are provided in
Table 8. The phenotypic correlations between the Sha_w
and BF_18, BF_22, ADGw_14, and ADG14_22 were all
positive, between 0.03 and 0.06, whereas the correla-
tions between Sha_15 and those four traits were all
negative, between —0.10 and -0.08. Genetic correla-
tions between BF_18, BF_22, ADGw_14, and ADG14_22
and Sha_w were 0.38 + 0.43, 0.55 + 0.41, — 0.73 + 0.51, and
0.44 + 0.48, respectively, whereas their correlations with
Sha_15 were -0.53+0.23, —0.45+0.25 -0.53+0.32,
and - 0.53 +0.29, respectively. The genetic correlations
between Sha_15 and the four traits were all strong and
more consistent than the estimates between those four
traits with Sha_w, which had very large standard errors.

Table 4 Estimated genetic parameters of the Shannon index
and their standard errors

Weaning Week 15 Off-test Weaning Week 15 Off-test
Weaning 0.04 £ 0.04 -001+£003 —-0.04 £ 003 Weaning 0.02 +£ 0.04 —-001 £003 -004 +003
Week 15 -0.17+£048 0.15 + 0.06 0.15 £ 0.03 Week 15 -023+049 0.16 £ 0.07 0.16 £ 0.03
Off-test —034+047 044 £ 0.25 033 +0.10 Off-test —-096 + 043 065+ 0.23 022 + 0.09

Model not including litter effect. Values on the diagonal are heritability, above
the diagonal are phenotypic correlations, and below the diagonal are
genetic correlations

Model including litter effect. Values on the diagonal are heritability, above the
diagonal are phenotypic correlations, and below the diagonal are
genetic correlations
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Table 5 Estimated genetic parameters of the OTU richness and
their standard errors
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Table 7 Estimated genetic parameters of the OTU richness and
their standard errors

Weaning Week 15 Off-test Weaning Week 15 Off-test
Weaning 0.01+0.03 0.00 + 0.03 —-0.03£003 Weaning - - -
Week 15 - 0.24 +£ 0.09 0.08 £ 0.03 Week 15 - 0.23+0.09 0.08 £0.03
Off-test - 039+ 027 0.20 £ 0.08 Off-test - 052+0.29 0.17£0.08

Model including litter effect. Values on the diagonal are heritability, above the
diagonal are phenotypic correlations, and below the diagonal are genetic
correlations. Genetic correlations between weaning and week 15, as well as
between weaning and off-test, were not estimable

This result might suggest that Sha_15 in our data could
be a better predictor of BF18, BF22, ADGw_14, and
ADG14_22 than Sha_w.

Discussion

The data used in this project were collected from a
population of crossbred pigs whose fecal bacterial com-
munities were sampled at weaning, week 15, and off-
test. The overall goal of this project was to investigate
the potential contribution of information from the pig
fecal microbiome to the genetic improvement of the pig.
The analyses presented here are our first steps toward
better understanding temporal changes in the pig’s fecal
microbiome, with respect to both community compos-
ition and diversity, and toward exploring the potential
influence of the host’s genetic background on variation
in microbiota diversity over time.

The gut microbiota of the animals in this study were
predominated by two phyla, Firmicutes and Bacteroidetes,
in agreement with published research [6, 8, 44-46].
However, the most abundant genus at all three time points
in our dataset was Clostridium, instead of Prevotella as
reported in [8, 46, 47]. The colonization of Clostridium
and other genera, including Escherichia and Prevotella,
begins immediately following birth [48, 49] and could be
disrupted by changes in living environment and the host
conditions [50, 51]. At weaning, the pigs were removed
from their mothers and exposed to changes in both diet
and living environment. All of these changes might have
impacted the gut microbial ecosystem established prior to
weaning, during which the piglets were trained on
concentrate food. Our data suggest weaning animals can

Table 6 Estimated genetic parameters of the Shannon index
and their standard errors

Weaning Week 15 Off-test
Weaning - - -
Week 15 - 0.17 £0.08 0.16 £0.03
Off-test - 080+0.24 0.19+0.09

Model including litter effect and pen effect. Values on the diagonal are
heritability, above the diagonal are phenotypic correlations, and below the
diagonal are genetic correlations. The pen effect did not apply to weaning
samples; thus, model (5) was used for only week 15 and off-test

Model including litter effect and pen effect. Values on the diagonal are
heritability, above the diagonal are phenotypic correlations, and below the
diagonal are genetic correlations. The pen effect did not apply to weaning
samples; thus, model (5) was used for only week 15 and off-test

be divided into two distinct enterotypes: (1) a Prevotella-
enriched cluster which might represent those communi-
ties accustomed to feed rich in plant polysaccharides and
(2) an Escherichia-enriched cluster in which the presence
of Enterococcus might indicate gut health disruption [52].

Analyses of enterotypes in this study were based on
the assumption that there existed at least two entero-
types among the pigs at each time point, and we were
interested in their potential association with back fat
deposition and growth rate. The pigs used in this study
did not clustered into Prevotella and Ruminococcus
enterotypes as reported in pigs [2] nor did they group
distinctively into Prevotella, Bacteroides, and Ruminococ-
cus enterotypes as reported in human research [33, 53].
The difference in enterotypes between this research and
aforementioned studies might have been partly attrib-
uted to the difference in the genetic background of the
host. From a genetics point of view, the pigs used in this
study were from a population under selection for growth
and thus might have been less diverse than the hosts in
the other studies. In terms of association between enter-
otypes and phenotypes, the results presented herein
contradicted the findings reported in [53], in which
significant association was observed between enterotypes
at 36 days of age with average daily gain at 70 days of
age. Enterotypes identified among week 15 and off-test
pigs in our study were significantly associated with only
back fat thickness. Association between the identified
enterotypes and alpha diversity was not clear in our
study and might be further studied by investigating the
genera underlying differences among the enterotypes.

A highly diverse microbiota is beneficial to the host
[54-56]. We have demonstrated that alpha diversity in
our data was under significant influence of family strata
and have identified families whose progeny had increas-
ing microbiota diversity through week 15 and off-test.
We used paternal half-sib families in this research, thus
each family represented a breeding male pig that was
mated to several female pigs to produce the offspring.
The significant variation in alpha diversity we observed
among the families in this study suggests bacterial bio-
diversity within the pig gut might be influenced by the
host’s genetics. The diversity index used in this study, to



Lu et al. Microbiome (2018) 6:4

Page 12 of 15

Table 8 Heritability and phenotypic/genetic correlations between back fat, average daily gain, and Shannon index at weaning and

week 15

Sha_w Sha_15 BF_18 BF_22 ADGw_14 ADG14_22
Sha_w 0.04 +0.04 - 0.05+0.03 0.06 +0.03 0.04+0.03 0.07+0.03
Sha_15 - 0.18+0.08 -0.10+0.03 —0.08+0.03 —0.09+0.03 —0.09+0.03
BF_18 042 +0.50 —-053+0.23 030£0.11 - 043 +£0.03 0.31+£0.03
BF_22 0.52+049 —-045+0.25 - 0.28+0.10 - 045+0.03
ADGw_14 —0.73+051 -053+032 029+032 - 0.09 +0.06 -
ADG14_22 044 +048 -053+0.29 0.10+0.29 0244028 - 0.17£0.08

Values on the diagonal are heritability, above the diagonal are phenotypic correlations, and below the diagonal are genetic correlations. Sha_w Shannon index at
weaning, Sha_15 Shannon index at week 15, BF_18 back fat thickness at week 18, BF_22 back fat thickness at week 22, ADGw_14 average daily gain from weaning

to week 14, ADG14_22 average daily gain from week 14 to week 22

the best of our knowledge, has never been reported in
the current literature as a trait. In animal production,
there are index traits that are computed based on actual
measures on animals, such as feed conversion ratio (the
ratio of the weight of feed consumed by an animal to its
body weight gain over the same period of time) and
residual feed intake (which is modeled from feed intake,
weight gain, and fat thickness). In humans, body fat
deposition has been associated with alpha diversity of
the gut microbiota [57-59]. Disease conditions have also
been correlated with decreases in microbiome diversity
[60-64]. Despite numerous studies linking the gut
microbiota’s composition and diversity to host health
conditions, the current literature has no reports on gen-
etic parameters of the diversity of the gut microbiome.

Before this discussion extends to the genetic parameters
of microbiota diversity, it might be worth clarifying the
use of permanent environmental effect of litter in the
statistical models that we used in this paper. The perman-
ent environmental effect in this study refers to the nursing
environment provided by the mother and siblings. This
environment influences the development of individual
pigs and potentially has a profound impact on fitness and
other phenotypic traits later in life [65-67]. It is thought
that immediately after birth, newborn pigs begin acquiring
their gut microbiota from a combination of environmental
exposures and vertical transmission of maternal microbes
[68, 69]. It has been shown that maternal diet and anti-
biotic exposures may induce long lasting impacts on gut
microbiota establishment, gut biology, and the growth
performance of progeny [3, 70, 71].

This study is the first to describe OTU richness and
alpha diversity as phenotypic traits in farm animals and
the first to estimate their genetic parameters at three key
stages of pig development. The heritability of 0.15 — 0.33
reported in this study means that 15 — 33% of the vari-
ation in alpha diversity measured in our pigs, at week 15
and off-test, was due to genetics. Examples of traits with
similar heritability range include residual feed intake
(h*=0.13) and belly weight (4*=0.28) [72]; tenderness
(* = 0.26), meat color (4% =0.28), growth rate (* = 0.30),

and feed conversion ratio (4% = 0.29) [73—75]. These traits
have been targeted for selection in pig breeding programs
around the world due to their economic importance to
the pork industry. Alpha diversity, reported to be associ-
ated with gut health, and found in this study to be strongly
correlated with back fat thickness and average daily gain,
which are the two important components of feed effi-
ciency in livestock production, could very well be an indi-
cator trait for genetic selection. Our results also suggest
that diversity at weaning might not be an accurate pre-
dictor of diversity at later stages in life. If alpha diversity is
to be used as an indicator trait, its availability soon after
weaning will be beneficial to a selection process. There-
fore, we suggest further investigation into alpha diversity
at time points earlier than week 15.

Domestic pigs are similar to humans in terms of anat-
omy, genetics, and physiology [17]. They can be used as
a model to study human diseases due to their similar
clinical manifestations and susceptibility to many enteric
pathogens that afflict humans [18-22]. Furthermore,
outbred pigs, like the ones used in the present study,
best mimic animal variation reflective of outbred human
populations [16]. This study estimates the contribution
of host genetics to the diversity of pig’s gut microbiota.
Taking this finding into human studies, a better under-
standing of the relationship between host genetics and
microbiome diversity might lead to changes in research
direction to improve the human gut health.

Conclusions

This study was conducted on a group of crossbred pigs
living through three stages of life (weaning, week 15, and
off-test) and was designed to explore longitudinal
changes in fecal microbiome composition and diversity,
as well as the influence of host genetics on microbiome
diversity. Two enterotypes were identified at each stage
of life, but only enterotypes at week 15 and off-test were
proven to be associated with back fat thickness. Micro-
biome alpha diversity as measured using the Shannon
index was found to be lowly to moderately heritable at
week 15 and off-test. The diversity at these two time
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points was also found to have strong genetic correlation
to each other. The diversity index at week 15 was also
strongly correlated with back fat and average daily gain
of the pigs. These findings may lead to a new direction
of research in animal breeding and genetics and suggest
potentially significant utility for gut microbiome data in
the genetic evaluation process.
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