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The hologenome concept of evolution after
10 years
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Abstract

The holobiont (host with its endocellular and extracellular microbiome) can function as a distinct biological entity,
an additional organismal level to the ones previously considered, on which natural selection operates. The holobiont can
function as a whole: anatomically, metabolically, immunologically, developmentally, and during evolution. Consideration
of the holobiont with its hologenome as an independent level of selection in evolution has led to a better
understanding of underappreciated modes of genetic variation and evolution. The hologenome is comprised
of two complimentary parts: host and microbiome genomes. Changes in either genome can result in variations
that can be selected for or against. The host genome is highly conserved, and genetic changes within it occur
slowly, whereas the microbiome genome is dynamic and can change rapidly in response to the environment
by increasing or reducing particular microbes, by acquisition of novel microbes, by horizontal gene transfer,
and by mutation. Recent experiments showing that microbiota can play an initial role in speciation have been
suggested as an additional mode of enhancing evolution. Some of the genetic variations can be transferred to
offspring by a variety of mechanisms. Strain-specific DNA analysis has shown that at least some of the microbiota can be
maintained across hundreds of thousands of host generations, implying the existence of a microbial core. We argue that
rapid changes in the microbiome genome could allow holobionts to adapt and survive under changing environmental
conditions thus providing the time necessary for the host genome to adapt and evolve. As Darwin wrote, “It is not the
strongest of the species that survives but the most adaptable”.
Background
Ten years ago, we introduced the hologenome concept,
which considers the holobiont with its hologenome as
an independent level of selection in evolution [1, 2].
During the last few years, the hologenome concept of
evolution has received considerable support and legitimate
criticism, both of which have enriched the concept and
led to a better understanding of what constitutes an
organism, and how it evolves.
Regarding definitions, the term holobiont, first intro-

duced by Margulis in 1991 [3], now refers to an animal
or plant host together with all associated microorganisms
living on or in it, exosymbionts and endosymbionts, re-
spectively. The microbiome refers to all of the microbes as-
sociated with an animal or a plant [4]. The term microbiota
preceded the term microbiome and by some is considered
synonymous to it. In this paper, we refer to microbiota as
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being the microbes associated with an animal or plant, but
not necessarily the entire community of microbes. The
union of all the genes in the holobiont, i.e., all the genes
in the microbiome plus the genes of the host, consti-
tutes the hologenome [1, 2]. The definition of a species
for bacteria is controversial [5]. The most widely used
bacterial species definition is a group of strains showing
over 97% of 16S rDNA gene-sequence identity [6].
The hologenome concept of evolution was, and still is,

based on accumulated findings, from which we have ex-
tracted four basic principles:

1. All animals and plants harbor abundant and diverse
microbiota and are thus considered holobionts.

2. The host with its microbiome, the holobiont,
functions generally as a distinct biological entity
anatomically, metabolically, immunologically, during
development and in evolution. (An entity is defined
as “an independent thing; that which contains in
itself the conditions essential to individuality; that
which forms of itself a complete whole.”)
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Table 1 Numbers of bacterial species associated with animals
and plants: examples

Host Number of
bacterial species

Reference

Invertebrates

Drosophila 209 Wong et al. [183]

Marine sponge 2996 Schmitt et al. [184]

Coral 2050 Ainsworth et al. [185]

Honey bee 336 Moran et al. [186]

Termite gut 800 He et al. [187]

Nemotode C. elegans 87 Dirksen et al. [188]

Butterfly. H. erato 45 Hammer et al. [189]

Vertebrates

Human gut 5700 Nam et al. [190]

Human skin 1000 Ying et al. [191]

Bovine rumen 5271 Jami and Mizrahi [192]

Great ape gut 8914 Ochman et al. [124]

Cottonmouth snake 503 Colston et al. [193]

Marine iguana 896 Hong et al. [194]

Folivorous flying bird 580 Godoy-Vitorino et al. [195]

Panda gut 781 Xue et al. [196]

Plants

Rice Edwards et al. [197]

Alga Ulva australis 642 Burke et al. [198]

Carnivorous plant 1000 Koopman et al. [199]

Arabidopsis 8000 Bai et al. [200]

Phyllosphere 87 Bulgarelli et al. [78]

Oak rhizosphere 5619 Mendes et al. [201]
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3. A significant fraction of the microbiome genome
together with the host genome is transmitted from
one generation to the next and thus can propagate
unique properties of the holobiont.

4. Genetic variation in the hologenome can be brought
about by changes in the host genome as well as by
changes in the microbiome genome. Since the
microbiome genome can adjust to environmental
dynamics more rapidly and by more processes than
the host genome, it can play a fundamental role in
the adaptation and evolution of the holobiont.

The hologenome concept considers all holobionts to
exist on a spectrum from extreme symbiosis (obligatory)
to a looser state of symbiosis. The endosymbionts with
their host are usually an example of an extreme case of
mutual metabolic and genetic adaptation with clear vertical
transmission. Humans with their exosymbionts, however,
are an example of a much more complex and seemingly
looser symbiosis and mode of transmission; however, in
both cases, the fitness (and in many cases survival) of most
of the holobionts tested to date depends on the mutual in-
teractions between all of its participants and on reasonably
accurate transmission of the microbiota.
In this review, based on recent experimental and the-

oretical research, we discuss the current status of each
of the four principles of the hologenome concept, their
pros and cons, and thereby derive a fuller picture of the
evolution of holobionts with their hologenomes.

All animals and plants are holobionts
The initial generality that all natural animals and plants
contain abundant and diverse microbiotas has now been
substantiated by analyses of numerous organisms (Table 1).
However, as will be discussed below, the complexity
and dynamics of microbiomes are only beginning to be
appreciated.
The last few years have witnessed calls for major na-

tional and international efforts to characterize holobiont
microbiomes [7, 8]. Knowledge about microbiomes has
come primarily from studies on bacteria of the human
and ruminant gut, but many more hundreds have been
examined to date. From the published information, several
generalizations have emerged that enable better under-
standing of what determines abundance and diversity and,
as a result, what determines the relationship between the
microbiome and its host.

Quantitative considerations
The human gut contains approximately 4 × 1013 bacteria,
similar to the total number of human cells in the body [9].
Because of the large diversity of bacterial species, the gut
microbiome contains ca. 9 million unique protein-coding
genes or 400 times more bacterial genes than human genes
[10]. It is important to realize that the bacterial count of the
different bacterial species can differ by several orders of
magnitude. In some cases, as few as 40 abundant bacterial
species accounts for ca. 75% of the human gut microbiome
[11]. However, bacterial species that are present at less
than 4 × 107 copies (0.00001% of the total) cannot be
detected by current methods. Such relatively rare bacterial
species should not be ignored since they have the potential
to amplify under different conditions and play a role
in adaptation and evolution of the holobiont. Clearly,
analyses of the taxonomic diversity associated with the
human microbiome will continue to be an area of great
importance.
The gut microbiome also contains abundant and di-

verse viruses [12] and fungi [13], but they have not been
studied extensively.

Individual variation: core and conserved function
High-throughput sequencing has demonstrated that
although the bacterial species composition within the
human gut is unique to each person, microbiomes of
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different individuals are closer to each other than to
microbiomes of other primates [14]. These data sug-
gest that there is something common (a core) to the
human microbiome. Part of the Human Microbiome
Project (HMP) has provided an opportunity to exam-
ine and better define what constitutes the taxonomic
core within and across body habitats and individuals
[15]. Shapira [16] has emphasized the differences between
conserved core microbiota and flexible, environmentally
driven microbiota with regard to their maintenance and
contributions to host adaptation. However, attempts to
identify “core” bacterial species in the gut microbiome
have yielded only a few common species. Nonetheless, as
discussed above, the presence or absence of a bacterial
species depends on technical limits of detection. Methods
developed to detect rare species may reveal that there are
many more common species than currently considered
and that individual variation may be the result of quantita-
tive rather than qualitative differences that are caused by a
different diet or some other environmental factor.
An alternative explanation is possible. Although human

gut microbiomes vary between individuals in taxonomic
composition, the biological functions they perform are
surprisingly invariable between different people. Humans
harbor phylogenetically distinct gut communities that can
carry out the same functions [17, 18]. This means that there
is considerable metabolic redundancy, genes, or isogenes
for the same function being distributed across many
species, so that a healthy gut microbiome can be as-
sembled in many ways [19]. This idea was expressed in
2009 by Turnbaugh et al. [20] and lately in an article by
Doolittle and Booth [21], titled: “It’s the song, not the
singer….”. This is consistent with the hologenome con-
cept, which considers all of the genes of a holobiont,
not necessarily specific species.

Variation with time and environmental conditions
The composition of human gut microbiomes and their
corresponding hologenomes change with age, diet, medi-
cation, and many other factors. Gut microbiomes of
newborns are dominated by facultative anaerobes such
as the Proteobacteria, after which the diversity of strict
anaerobes within the Firmicutes and Bacteroidetes phyla
increases towards an adult-like profile by approximately
1 year of age [22]. Throughout this early developmental
stage, microbial composition is shaped by mode of deliv-
ery [23], infant diet [24], antibiotic treatment [25], and
exposure to environmental factors, such as furry pets
[26]. During most of adult years, the microbiome seems
to be more or less stable [27]. The gut microbiome in
older people (> 65 years), however, is extremely variable
between individuals and differs from the microbiome of
younger adults [28]. Microbiomes of people in long-stay
care centers are less diverse than that of community
dwellers and are correlated with low fiber diets and in-
creased frailty [29].
Food, food additives, and essentially any material that

is put in the mouth affects the gut microbiota at all ages.
Both long-term [30] and short-term [31] diet influences
the human gut microbiota. An “animal-based diet,” rich
in meats, eggs, and cheeses increases the abundance of
bile-tolerant microorganisms (Alistipes, Bilophila, and
Bacteroides), whereas a “plant-based diet,” composed of
grains, legumes, fruits, and vegetables, increases the
levels of Firmicutes that metabolize dietary plant poly-
saccharides. Not only macronutrients, but also other
components that are consumed affect the microbiome,
such as red wine [32], tea and coffee [33], chocolate [34],
food emulsifiers [35], artificial sweeteners [36], and, of
course, antibiotics [37]. Also, the microbiome is affected
by other factors such as, physical activity [38] and ill-
nesses, e.g., cancer [39] and diabetes [40].

Host genetics affects the microbiome
In addition to environmental factors, host genetics plays a
role in the acquisition, maintenance and stability of gut
microbiota [41–43]. The three components, environment,
host genetics, and microbiome, interact to maintain homeo-
stasis in the gut. The disruption of this stability by modifying
one or more of these three interacting components may
trigger the development of diseases. It has been shown that
a single host gene can have a large effect on the diversity
and population structure of the gut microbiota. Most of the
genes shown to have an impact on the composition of the
gut microbiome are components of the immune system.

Endosymbionts and exosymbionts
Although exosymbionts are present in all animals and
plants, it is well documented that non-pathogenic endo-
symbiosis is common only among plants and invertebrates
(e.g., insects and corals). To the best of our knowledge, en-
dosymbionts are not present in vertebrates. Invertebrates
and plants have developed homeostatic interactions with
the endosymbionts to benefit both. Moreover, they have
developed specific immunological systems that participate
in maintaining and controlling this important relationship
[44, 45]. The close proximity of endosymbionts to host nu-
clei may enhance exchange of genetic material, as discussed
in the section on “Genetic variation and evolution of
holobionts.” In vertebrates, the more complex immune
system appears to limit penetration of microorganisms
into organs and cells [46, 47], while enabling a homeo-
static and often beneficial relationship to develop with
the exosymbionts.

Interactive fitness in holobionts
Since the original presentation of the hologenome con-
cept of evolution [2], a large number of studies have
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demonstrated the beneficial interactions between micro-
biomes and their hosts, leading to a better-adapted
holobiont. In obligatory symbioses, the interdependence
between host and microbiome is absolute. In many other
holobionts, the measure of interdependence of the partici-
pants differs. Though it is not always easy to demonstrate
the effect of the microbiome on survival and reproduction
with facultative symbionts, it has been demonstrated in a
number of systems. Stunted growth, shortened lifespan,
and deteriorating reproduction were demonstrated in water
fleas [48], termites [49], and firebugs and cotton strainers
[50]. However, a large volume of data has demonstrated
that microbiomes participate in many functions within the
holobiont, as will be described immediately, though the
extent of their requirement is not always clear.

Protection against pathogens
In general, germfree (GF) animals are more sensitive to
infection by pathogens than conventional (CV) animals
[51]. Following oral infection, the numbers of Listeria
monocytogenes, a pathogenic bacteria, were 10,000-fold
higher in the small intestine of GF mice compared to
CV mice [52]. Staphylococcus aureus infection is prevented
by resident Corynebacterium species [53]. Recently ac-
quired symbiotic bacteria protect corals against the
bleaching pathogen Vibrio shiloi [54]. Production of an-
tibiotics is a common mechanism by which resident
bacteria protect the holobiont against pathogens [55].
One of the strongest arguments for the role of bacteria
in combatting infectious disease is the successful treat-
ment of patients, suffering from severe diarrhea caused
by Clostridium difficile infection, with fecal transplants
from healthy donors [56]. Bacteria have also been shown to
protect plants against infectious diseases by inhibiting the
phytopathogen and by inducing systemic resistance [57, 58].

Provision of nutrients
An important general fitness contribution of microbiomes
to their hosts is carrying out metabolic processes that the
animal or plant cannot carry out by themselves [59]. There
are many examples: nitrogen fixation in legumes [60], cellu-
lose degradation in ruminants [61], termites [62] and cock-
roaches [63], essential amino acid synthesis in insects [64],
photosynthesis by microalgae in corals, mollusks and
sponges [65], and oxidation of inorganic compounds
[66] and hydrocarbons in deep-sea invertebrates [67].
In humans, gut bacteria have been shown to perform

several beneficial biochemical reactions that cannot be
carried out by the host. For example: (i) production of
metabolites from dietary components, such as the con-
version of dietary fiber to the short-chain fatty acids,
acetate, propionate. and butyrate [68]; (ii) modification
of metabolites that are produced by the host, such as
primary bile acids that are converted to secondary bile
acids, thus assisting in bile acid recycling [69]; (iii) de
novo synthesis of compounds, such as the important mi-
crobial immune modulator polysaccharide A, produced
by the common gut bacterium Bacteroides fragilis [70];
(iv) synthesis of vitamins. Certain gut bacteria can pro-
duce vitamin K as well as most of the water-soluble B
vitamins [71].

Fat storage and obesity
Not only is the composition of the gut microbiome of
obese and lean individuals different [72], but more sig-
nificantly, fecal bacteria transferred from obese humans
to germ-free mice caused a greater increase in body weight
than transplants from lean humans [73], suggesting that
the microbiome in combination with diet and genetic fac-
tors causes obesity. Although bacteria that contribute to
obesity could be considered harmful, under certain condi-
tions they are beneficial. During the third trimester of preg-
nancy, these so-called “obese bacteria” become abundant
and induce metabolic changes that promote energy storage
in fat tissue that in turn encourages growth of the fetus [74]
and milk production in the mother. Also, during our evolu-
tion, food insecurity was a frequent occurrence, and the
ability to store energy in the form of fat was probably ad-
vantageous for survival.

Development and behavior
It is has been known for many years that certain micro-
bial symbionts (once termed primary symbionts) interact
with their hosts to benefit the holobionts: Rhizobia
strains cooperate with legume plants to produce root
nodules that perform nitrogen fixation [75]. Vibrio fisheri
triggers the formation of the light organ in squid, where
luminescence occurs to help the squid avoid predation
[76]. Intracellular algae of the genus Symbiodinium carry
out photosynthesis that provides nutrients to their host
coral [77]. In recent years, it has been shown that co-
development of the microbiome with animals and plants
is not limited to primary symbionts. In plants, microbes
associated with root tips acquire nutrients from plant se-
cretions and in turn produce indole acetic acid that stimu-
lates root elongation and lateral root formation [78]. In
vertebrates, the gut microbiome promotes the develop-
ment of the immune system and body organs [79]. Expos-
ure to microorganisms educates the immune system,
induces innate and adaptive immunity [80, 81], and initi-
ates memory B and T cells that are essential to combat
various pathogens. In addition, the gut microbiome en-
courages also the development of bone mass [82] and
blood vessels in the intestinal wall [83].
Hydra is an evolutionarily ancient multicellular organism

which has been used as a model system in developmental
biology. Recently, it has been shown that Hydra microbiota
plays an essential function in reproduction [84] and
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influences the spontaneous contractions, likely by modu-
lating the pacemaker activity movement [85].
Bacteria in the mammalian gut also modulate brain

development and behavior, including anxiety and mood
disorders [86]. Data from experiments performed in ro-
dents with altered intestinal microbiota, whether germ-free
mice, or conventionally raised animals treated with probio-
tics and/or antibiotics, all indicate that rodent behavioral
responses are impacted when the bacterial status of the gut
is manipulated [87]. Microbial gut–brain signaling is bidir-
ectional. The circuitry of neurons, hormones, and chemical
neurotransmitters allows messages to be transmitted
between the brain and the gut. For example, the rate at
which food is being moved and how much mucus is
lining the gut—both of which can be controlled by the
brain—have a direct impact on the environmental con-
ditions the microbiota experiences. On the other hand,
the gut microbiota influences the body’s level of the po-
tent neurotransmitter serotonin, which promotes in
addition to gut functions also feelings of happiness and
peacefulness [88].

Microbiomes warm their hosts
Recently, we suggested that provision of heat is an un-
derappreciated general contribution of microbiomes to
holobionts [89]. Microbiomes produce heat as a by-product
of the enzymatic catabolism of substrates and synthesis of
cell material. It was reported that bacteria have specific
rates of heat production of ca. One hundred sixty-eight mil-
liwatts per gram [90, 91]. Based on these findings, it can be
calculated [92] that about 70% of human body heat produc-
tion at rest is the result of bacterial metabolism in the gut.
Consistent with the concept that microbes warm their

hosts are reports that treatment of rabbits [93] and rodents
[94] with antibiotics lowered their body temperature. Heat
output by gut microbiota may also help explain the obser-
vation that germ-free mice had 40% less total body fat than
conventionally raised mice, even if their caloric intake was
29% higher [95]. The warming effect of microbiomes has
also been reported in plants [96]. Heat produced by the
sugar catabolism of yeast populations inhabiting floral nec-
tar increased the temperature of the nectar and modified
the within-flower thermal microenvironment.
Though the significance of heat production by micro-

biomes has scarcely been studied, its contribution may
have far-reaching implications. It may help warm-blooded
animals avoid hypothermia, and in cold-blooded animals,
it can raise their body temperature.

Transmission
For holobionts to be considered units of selection in evo-
lution, both the host and microbiome genomes, i.e., the
hologenome, are expected to be transferred between gen-
erations. The conservative mechanism for transmission of
host DNA is well understood and need not be discussed
here. Transmission of the microbiome also occurs, but
with a variety of mechanisms and with less precision than
the host genome. This section will describe the different
modes of microbiome transmission and the evidence that
it is transferred for many generations. Table 2 summarizes
examples of the main modes of microbiome transmission.
Vegetative reproduction occurs in many plants and some

animals. In plants, this type of asexual reproduction can
involve adventitious roots, corms, tubers, bulbs, and leaf
plantlets. Vegetative reproduction in animals includes bud-
ding and fragmentation. As a consequence of vegetative
reproduction, the microbiome is transferred vertically to
offspring. Transmission of microbiota via oocytes and seeds
is another example of vertical transmission. Endosym-
bionts, such as Buchnera in aphids [97] and Wolbachia
in many insects [98], are transferred vertically via oocytes.
Vertical transmission in plants has been shown to occur via
seeds in many species of herbaceous flowering plants [99],
suggesting that this may be a widespread phenomenon.
In vegetarian or omnivore animals, eating mother’s feces

(coprophagy) is practiced by many young animals, thereby
obtaining the bacteria required to properly digest complex
polysaccharides found in their diet. Koalas use a special
adaptation of coprophagy [100]. From birth to about
6 months, the joey remains in the pouch, relying only on
the mothers’ milk. At the end of this period, the mother
produces a liquid form of feces, referred to as pap, which
the joey ingests over several days. The pap contains the
appropriate gut microbiota for digestion of eucalyptus
leaves, enabling eventual weaning from the mother. In the
termite hindgut–microbiota symbiosis, feces of adult ter-
mites are fed to newly hatched juveniles by workers in the
colony [101]. Many insects lay eggs in their feces, which
are consumed by larval offspring upon hatching [102]. De-
pending on the extent that the feces mix with microbes in
the environment, transmission by coprophagy can be ver-
tical (e.g., koala) or both vertical and horizontal.
Although it has been reported that the human fetus

contains bacteria [103, 104], a recent study using very
careful methodologies [105] did not find microbial DNA
in the human placenta, suggesting that the human placenta
and fetus are sterile. Also, the ability to raise Cesarean-
derived germ-free animals in the laboratory argues against
a microbiota colonizing the placenta and fetus [106].
Colonization of the newborn human gut occurs initially

via inoculation with maternal vaginal and fecal microbes
when the baby transits the birth channel (vertical trans-
mission). Some of these pioneers are facultative anaerobic
bacteria, such as Escherichia coli, which convert the new-
born aerobic gut to anaerobiosis, allowing growth of strict
anaerobes [107].
Breastfeeding has been shown to provide an additional

route of maternal vertical microbial transmission in



Table 2 Examples of modes of symbiont transmission

Mode of transmission Examples

Vegetative reproduction (vertical) Plants, worms [99], corals [202], echinoderms [203]

Via oocytes (vertical) Drosophila/Wolbachia [98], aphid/Buchnera [97], sponge [204], herbs/fungi [205]

Coprophagy (vertical and horizontal) Many animals: termites [101], rabbits [206], koala [100], insects [102]

Mother’s milk (vertical) Mammals [108–110]

Physical contact starting at birth (Vertical and horizontal) Most animals: fish [207], amphibians [208], mammals [209]

Horizontal Grasses/endophytes [120], squid/Vibrio fischeri [119]

Adapted from Roughgarden et al. [182]. Vertical transmission is defined as the movement of microbiota from parent to offspring without mixing with microbes in
the environment
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humans [108–110], nonhuman primates [111], and
cows [112]. Human milk contains ca. 105 bacteria per
ml, composed of hundreds of species [113]. Analyses
of the DNA of several bacterial strains isolated from
mothers’ milk demonstrated that they were identical to
those found in the offspring [114], providing reinforcement
for vertical transmission. Mother’s milk is also a continuous
source of modified oligosaccharides that support the
growth of the major group of these bacteria, Bifidobacterium
species, but are not digestible by the infant [115]. The
Bifidobacterium species contain unique genetic loci
responsible for vigorous growth on these oligosaccharides
[116]. These findings suggest a remarkable co-evolution
between the symbiotic bacteria and their human host enab-
ling gut colonization that benefits both. The Bifidobacteria
is provided with environmental gains such as food and
protection. The infant benefits by being protected
against pathogens, by diverse carbohydrate breakdown
and cross-feeding activities of the Bifidobacteria with
other microbes in the gut, thereby enhancing short-
chain fatty acid synthesis, and also by specific molecu-
lar interactions of the Bifidobacteria with infant gut
components [117, 118].
Transmission of microbiota from parent to offspring

can also occur horizontally, i.e., via the environment. A
well-studied example is responsible for maintaining the
squid light organ-Vibrio fischeri symbiosis [119]. The
female host lays clutches of hundreds of fertilized eggs,
which hatch almost synchronously at dusk. In parallel,
adult squid releases large amounts of V. fischeri into the
water at dawn every day. The growing embryos develop
an immature light organ, which is free of bacteria but
has pores leading to separate epithial-lined crypts. These
crypts become colonized by the released V. fischeri. Fur-
thermore, the developing squid provides a niche in which
only V. fischeri that emits light is able to maintain a stable
association. However, there is no evidence that the V.
fischeri acquired by the offspring came from one of its
parents. It could have come from a different squid in the
same environment. Nevertheless, in this horizontal trans-
mission, the holobiont is reconstituted. The reconstruc-
tion has to be accurate; otherwise, it does not function
[119]. Another example of a reliable horizontal transmis-
sion of microbiota is in different kinds of grasses, where
the microbes are transferred from one plant to other
plants of the same species [120].
As has been discussed above, vertical and horizontal

transmissions represent the extreme cases. In most situa-
tions, transmission occurs via a mixed mode. Obligatory
symbiosis usually relies on vertical transmission while a
looser form of symbiosis can be based on a less precise
transmission. It is important to note that vertical trans-
mission enables an accurate transfer of the hologenome
and ensures continuation of the mutual metabolic activ-
ities within the holobiont. Horizontal transfer of micro-
biota, on the other hand, increases the possibility of the
holobiont acquiring novel genetic material. As will be dis-
cussed in the next section, acquisition of novel microbes
from the environment is one mechanism for gene vari-
ation and evolution of holobionts.
Given that several mechanisms exist for the transmis-

sion of microbiomes, what is the evidence that micro-
biomes are actually transferred with fidelity for multiple
generations and over evolutionary time scales? One of
the first indications that human microbes can be transmit-
ted for many generations came from a detailed analysis of
the sequence diversity of DNA isolated from Helicobacter
pylori present in different geographic human populations
[121]. The fact that the distinct sequence remains for cen-
turies in offspring of an individual that has migrated to a
different geographical location argues for accurate vertical
transmission and has led to the use of H. pylori in resolving
details of human migration [122]. Another early experiment
demonstrating that microbiotas can be maintained for
many holobiont generations involved two closely related
species of Hydra that differed greatly in their bacterial
microbiome [123]. Even though these Hydra were kept in
the same laboratory environment for > 30 years, they main-
tained their characteristic microbiomes. The authors point
out that the microbiotas could have been maintained by
vertical transmission or by horizontal selective and differen-
tial attachment sites on their membranes.
Long-term transmission of microbiota was studied by

comparing the 16S ribosomal gene sequences of bacteria
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associated with great apes, including humans [124]. The
host species phylogenies based on the composition of
these microbial communities was completely congruent
with the known evolutionary relationships of the hosts.
The authors concluded that over evolutionary timescales,
the composition of the gut microbiota among great ape
species is phylogenetically conserved and has diverged in
a manner consistent with vertical inheritance.
However, Moran and Sloan [125] correctly pointed out

that vertical transmission of bacterial species, based on
16S rRNA gene sequences, cannot be used to prove co-
evolution because it is possible that over evolutionary
timescales other strains of the same species (97% identity
in 16S rDNA sequence) could be acquired from the en-
vironment. To overcome this problem, Sanders et al.
[126] developed an elegant analytical tool, beta-diversity
clustering, which distinguishes between shared evolu-
tionary history and environmental filtering. The basic
idea is that in the case where co-diversification is the
primary factor leading to similarity among microbiomes,
recent host speciation should be reflected by recent
symbiont speciation. By contrast, in the case where host
environment selects for different microbes, the most re-
cent common ancestor of a pair of microbes in the two
hosts may far pre-date the last common ancestor of the
hosts. Using beta-diversity clustering on the previously
published great ape data [124] led to the conclusion that
apes acquire species-specific microbiota largely horizon-
tally, while retaining a proportion of vertically transmit-
ted microbes over longer timescales. Application of this
test to turtle ants (genus Cephalotes) indicated a high
degree of partner fidelity in the ant microbiota, suggest-
ing that vertical transmission of the entire community
could play an important role in the evolution and main-
tenance of the association [126].
Moeller et al. [127] used rapidly evolving gyrB gene

sequences in fecal samples from humans, from wild
chimpanzees, and from wild bonobos to profile strain
diversity within the gut microbiomes of great apes. Un-
like 16S rDNA sequencing, this technology allows infer-
ence of the phylogenies of closely related bacterial lineages,
thereby enabling tests for co-speciation between gut bac-
teria and the Hominidae. The analysis revealed that strains
of the common gut bacteria, Bacteroidaceae and Bifidobac-
teriaceae, have been maintained exclusively within host lin-
eages across hundreds of thousands of host generations.
Divergence times of these co-speciating gut bacteria are
congruent with those of hominids, indicating that nuclear,
mitochondrial, and gut bacterial genomes, i.e., hologen-
omes, diversified in concert during hominid evolution. Gut
bacteria therefore are not simply acquired from the envir-
onment, but have co-evolved for millions of years with
hominids to participate in their development, especially in
shaping their immune systems.
Using the honeybee as a model system, with relatively
few microbial species though with similarities to mam-
malian microbiomes, Kwong and Moran [128] have con-
cluded: “Together, these bacteria form a specialized
microbial community that has co-evolved and diversified
with its bee hosts over millions of years.” The authors
mentioned the importance of sociality to the reliable
transmission of microbiota in these species and others.
Phylosymbiosis was proposed to describe the eco-

evolutionary pattern, whereby microbiomes parallel the
phylogeny of related host species [129]. In support of
this hypothesis, it was observed that (i) intraspecific micro-
biota variation is consistently less than interspecific micro-
biota variation; (ii) congruence analyses of each group’s
complete phylogeny and microbiota dendrogram reveal
significant degrees of phylosymbiosis, irrespective of host
clade age or taxonomy. This is consistent with selection of
host–microbiota interactions driving phylosymbiosis; (iii)
there are survival and performance reductions when in-
terspecific microbiota transplants are conducted between
closely related and divergent host species pairs.
Co-evolution of animal hosts with their microbiome

is made possible by creating a homeostatic relationship
between the host and the microbiome. This relationship
must be based on prevention of pathological effects of
the microbiome in addition to control over the com-
position of microbial consortia together with immune
tolerance towards the microorganisms. It has also to in-
clude adaptation of the microorganisms to the specific
conditions, in or on the host, and a functional integra-
tion of the microorganisms within the holobiont.
It is difficult to imagine such co-adaptation that does

not involve a core of microorganisms that fulfills these
kinds of homeostatic requirements and that is albeit ob-
served individual species variation (see also discussion
above: individual variation: core and conserved function).

Genetic variation and evolution of holobionts
In our original presentation of the hologenome concept
of evolution [2], we suggested that genetic variation and
evolution occur not only via changes in host genomes
but also via changes in microbiome genomes. In addition
to the well-recognized modes of genetic variation in all
organisms, mutation, sexual recombination, chromosome
rearrangement and epigenetic changes, we considered three
underappreciated modes of genetic variation that are char-
acteristic of microbiomes in holobionts: (i) amplification or
reduction of the number of a specific microbial group, (ii)
acquisition of novel microbes, and (iii) horizontal gene
transfer (HGT).

Amplification or reduction
Amplification/reduction refers to the increase or de-
crease of one group (e.g., species) of symbionts relative
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to others, which can occur rapidly when conditions
change. The holobiont is a dynamic entity with certain
microorganisms multiplying and others decreasing in
number as a function of local conditions within the
holobiont. An increase in the number of a particular mi-
crobe is equivalent to amplification of a whole set of
genes. Considering the large amount of genetic informa-
tion encoded in the diverse microbial population of
holobionts, often more than in the host genome [10],
microbial amplification/reduction can be a powerful
mechanism for contributing to adaptation, development,
and evolution of holobionts. Reported examples of envir-
onmental factors that lead to changes in symbiont popu-
lations and thereby to variations in hologenomes include
nutrient availability [130–134], artificial sweeteners [36,
135], food emulsifiers [136], disease states [137–140],
pH [141], temperature [142], and of course antibiotics
[143–145]. Prebiotics, food ingredients that induce the
growth or activity of beneficial microorganisms [146], is
an applied example of the amplification principle [147].
Since genetic variation by amplification is driven by the

environment, it has a Lamarckian aspect to it, as discussed
by us in a previous paper [148]. As will be reviewed in the
next section, amplification is a crucial step in genetic vari-
ation and evolution by acquisition of novel microbes. For
a pioneer microbe to become established in its host it
must multiply.

Acquisition of novel microbes from the environment
Microbes were on this planet for 2.1 billion years before
there were any animals or plants. During this time, they
evolved enormous biochemical diversity and split into
two domains, Bacteria and Archaea. The first eukaryote
was probably formed by the acquisition of bacteria to
eventually form mitochondria [149] and chloroplasts
[150] and possibly by the uptake of an Archaea by Bac-
teria to form the nucleus [151]. Uptake of microbes into
multicellular organisms continued to provide genetic vari-
ation for holobionts throughout evolution. Many of the
beneficial interactive fitness traits of holobionts discussed
above fit into this category.
Animals and plants come into random contact with bil-

lions of microorganisms during their lifetime, via air, water
and interaction with organic and inorganic surfaces. Occa-
sionally some of these microbes will find a niche and under
appropriate conditions amplify in the host and affect the
phenotype of the holobiont. Unlike mutation, which causes
small changes in existing genomes, acquisition of a microbe
introduces hundreds of new genes into the holobiont.
Rather than reinvent the wheel, animals and plants can
acquire pre-evolved genetic information in the form of mi-
crobes. It is likely that after the microbe is acquired, muta-
tions and selection occur in the microbe and host to
optimize the interaction.
An example of a major evolutionary event that was
driven by the acquisition of bacteria is the ability of
many animals to use plant material, in the form of cellu-
lose and other complex polysaccharides, as nutrients.
However, animal genomes do not contain the informa-
tion for synthesizing enzymes for degrading cellulose.
Instead, animals such as termites, cockroaches, and ru-
minants rely on cellulolytic microorganisms that are
present in their digestive tract. These microbes anaer-
obically convert cellulose to fatty acids that are the
major source of carbon and energy for their host animal
[134]. How did they gain access to these specialized mi-
crobes? It is likely that the evolution of termite and
cockroach hindgut microbiotas occurred by the gradual
process of internalizing from the environment microor-
ganisms that digest plant litter. Instead of plant cellulose
being broken down in the soil prior to ingestion, it “rots”
in the hindgut after consumption [152]. It has also been
suggested that cockroaches acquired cellulolytic microbes
by eating the dung of dinosaurs [153], which are known to
have been hindgut fermenters [154].
There are many other examples of important evolu-

tionary events that were driven by the acquisition of mi-
crobes by animals and plants. Such examples include
acquisition of zooxanthellae by corals and other marine
invertebrates, which formed photosynthetic animals and
led to the construction of coral reefs [155], acquisition
of diverse chemosynthetic bacteria by deep sea animals,
which allowed for life in the absence of light [156], ac-
quisition of anaerobic bacteria by the gut of ants, which
supported herbivory [157], and acquisition of nitrogen-
fixing bacteria by legumes, which permitted plant
growth under limiting nitrogen conditions [158].

Horizontal gene transfer
Another important mode of genetic variation in holo-
bionts, referred to as horizontal gene transfer (HGT) or
lateral gene transfer, involves the transfer of groups of
genes between bacteria of different taxa and from micro-
biomes to their hosts. HGT is generally associated with
gene transfer between different bacteria, but can also
take place from microorganisms to animals and plants
and the other way around. The intimate contact between
microbes and host genomes in holobionts would pro-
mote HGTs [159]. On average, bacteria in the human
gut contain a minimum of 49 observed horizontally ac-
quired genes [160]. It has been suggested that nutritional
adaptation is one of the key selective pressures on the
microbiome in the mammalian gut and that HGT pro-
cesses contribute to that adaptation [161].
An interesting example of evolution of humans by

HGT between bacteria is the ability of Japanese to break
down agar (an abundant ingredient in their diet) since
they have a bacterium in their gut that contains genes



Rosenberg and Zilber-Rosenberg Microbiome  (2018) 6:78 Page 9 of 14
that code for the porphyranases that degrade the poly-
saccharide agarose of agar. Westerners lack this bacter-
ium in their gut and therefore cannot digest agar. The
group of genes coding for agarose digestion was driven
into a resident gut bacterium by HGT from a marine
bacterium that was present on raw seaweed [162]. Al-
though HGT usually occurs between bacteria in the
same ecological niche, apparently the marine bacterium
was present in the gut long enough to have some of its
genes transferred to a resident gut bacterium. Further-
more, the bacteria with the transferred genes spread
throughout the Japanese population by vertical and hori-
zontal transmission [163].
Until 2010, only a few examples of HGT from mi-

crobes to animals were recognized: Wolbachia genes to
the chromosomes of their insect hosts [164], bacterial
and fungal genes into the telomere region of rotifers
[165], fungal genes to aphids [166], and cellulose genes
from bacteria to nematodes [167]. However, an examin-
ation of the recent availability of a large number of high-
quality genomes has led to the conclusion that HGT in
animals and plants typically results in tens or even hun-
dreds of active foreign genes [168]. Analysis of the 13.7-
megabase genome of the extremophile red alga Gal-
dieria sulphuraria revealed that 5% of its protein-coding
genes were acquired by HGT from bacteria and archaea
[169]. Examination of the genomes of 12 Drosophila spe-
cies showed on average 40 foreign genes that had been
horizontally transferred from bacteria and fungi [170].
When the Drosophila species were placed on a phylogen-
etic tree, there was a correspondence between the number
of HGT events and the length of each branch, suggesting
that HGT has occurred throughout Drosophila evolution
and is likely to be ongoing. This paper also pointed out
that HGT events were more frequent in invertebrates than
in vertebrates, an observation that may be explained by
the closer proximity between invertebrate endosymbiont
(intracellular) and host genetic material.
In humans, 145 genes (not present in other primates)

were attributed to HGT [170]. These genes are distrib-
uted throughout the genome and play a variety of
roles, such as amino-acid metabolism (two genes),
macromolecule modifications (15 genes), lipid metab-
olism (13 genes), antioxidant activities (5 genes), and
innate immune response (7 genes). Most of the 145
genes identified in the study came from bacteria, but some
originated from viruses and yeasts. Analysis of the moss
Physcomitrella patens identified 128 genes found in land
plants but absent from algae [171]. These genes were ac-
quired by HGT from prokaryotes, fungi or viruses. Many
of these genes are involved in some essential or plant-
specific activities such as xylem formation, plant defense,
nitrogen recycling, and the biosynthesis of starch, poly-
amines, hormones, and glutathione.
A key event in the evolution of placental mammals, in-
cluding humans, was the acquisition by HGT, from a
retrovirus, of the gene coding for the protein syncytin
[172]. Initially, the function of syncytin was to allow ret-
roviruses to fuse host cells so that viruses could move
from one cell to another. Now, syncytin is necessary for
the development of the placental syncytium, the essen-
tial part of the mother-fetus barrier. Knockout of syncy-
tin genes in genetically modified mice provided evidence
for their absolute requirement for placenta development
and embryo survival [173]. Similarly, retroviral-derived
molecules appear to have played a crucial function in
the generation of the progesterone-sensitive uterine de-
cidual cell, allowing nutrient provision to the developing
embryo [174]. These data indicate that the integration of
viral DNA into a host genome played a primary role in a
major evolutionary leap by enabling growth and matur-
ation of the fetus in placental mammals. In general, it is
clear that introduction of genes by HGT into eukaryote
genomes has been a major force propelling genetic vari-
ation and evolution.

Role of microbiomes in speciation
Experiments on speciation in animals provide further
support for the hologenome concept of evolution. In
1989, Dodd reported that splitting a homogenous popu-
lation of Drosophila and propagating some of the flies
on a molasses medium and the others on a starch
medium resulted in mating preference [175]. The “mo-
lasses flies” preferred to mate with other molasses flies,
and “starch flies” preferred to mate with other starch
flies. However, the data could not be explained by exist-
ing evolutionary theory because the mating preference
was too rapid, especially since there was no selection for
mating preference. The experiment was considered im-
portant because mating preference is an early event in
the emergence of new species [176].
Consideration of the hologenome concept led us to

hypothesize that changes in the microbiome were re-
sponsible for the diet-induced mating preference. To test
this hypothesis, flies were treated with antibiotics. The
antibiotics abolished the mating preference, suggesting
that fly bacteria were responsible for the phenomenon
[177]. This was confirmed when it was shown that infect-
ing antibiotic-treated flies with pure cultures of Lactoba-
cillus plantarum isolated from starch flies reestablished
mating preference. Furthermore, analytical data showed
that L. plantarum changed the levels of cuticular hydro-
carbon sex pheromones emitted by the flies [178]. In gen-
eral, volatile metabolites produced by animal microbiomes
may play an important role in mate-choice recognition
and selection [179].
The microbiome can also play a role in post-zygotic

reproductive success. When recently diverged wasp species
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were artificially cross-bred, the hybrids died during the
larval stage. However, if the wasps were treated with antibi-
otics prior to mating, the hybrids survived [180]. The
authors concluded: “In this animal complex, the gut
microbiome and host genome represent a co-adapted
hologenome that breaks down during hybridization,
promoting hybrid lethality and assisting speciation.”
Similar results were obtained in two house mice sub-
species, suggesting that microbiomes could also con-
tribute to reproductive isolation in vertebrates [181].

Conclusions
There is now considerable evidence supporting the
hypothesis that holobionts with their hologenomes
can be considered levels of selection in evolution. The
first principle we posited, all animals and plants harbor
abundant and diverse microbiota, is now supported by
abundant data. The second principle, the holobiont func-
tions as a distinct biological entity, and interactions
between microbiomes and their hosts affect the fitness
of holobionts, has also been largely substantiated. How-
ever, the extent to which the microbiota contributes to
holobiont fitness and survival varies enormously. The
third principle, where genomes of both hosts and a signifi-
cant fraction of microbiomes are transferred between gen-
erations, is the most contentious. Although there is now
evidence that in some animals, microbiota can be main-
tained by vertical transmission for thousands of genera-
tions, it is not possible to generalize on these findings.
Finally, regarding the fourth principle, molecular studies
have demonstrated that genetic variation and the evolu-
tion of holobionts involve acquisition of novel microbes
and HGT of microbial genes into host chromosomes.
As the evolutionary biologist Elizabeth Lloyd recently

wrote [182], “the holobiont with its hologenome is a
level of selection since it is an “interactor”, a “replicator”,
a “manifestor of adaptation” and a “beneficiary” of the
selection process.” Evolution proceeds by both cooper-
ation and competition, working in parallel. An initial
mathematical model of holobiont evolution has been re-
ported [182]. Future microbiome research should be ex-
panded to include a larger number of different animal
and plant holobiont species and the role of protists and
viruses in holobionts.
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