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Abstract

Background: The ecological consequences of mercury (Hg) pollution—one of the major pollutants worldwide—on
microbial taxonomic and functional attributes remain poorly understood and largely unexplored. Using soils from two
typical Hg-impacted regions across China, here, we evaluated the role of Hg pollution in regulating bacterial
abundance, diversity, and co-occurrence network. We also investigated the associations between Hg contents and the
relative abundance of microbial functional genes by analyzing the soil metagenomes from a subset of those sites.

Results: We found that soil Hg largely influenced the taxonomic and functional attributes of microbial communities in
the two studied regions. In general, Hg pollution was negatively related to bacterial abundance, but positively related
to the diversity of bacteria in two separate regions. We also found some consistent associations between soil Hg
contents and the community composition of bacteria. For example, soil total Hg content was positively related to the
relative abundance of Firmicutes and Bacteroidetes in both paddy and upland soils. In contrast, the methylmercury
(MeHg) concentration was negatively correlated to the relative abundance of Nitrospirae in the two types of soils.
Increases in soil Hg pollution correlated with drastic changes in the relative abundance of ecological clusters within the
co-occurrence network of bacterial communities for the two regions. Using metagenomic data, we were also able to
detect the effect of Hg pollution on multiple functional genes relevant to key soil processes such as element cycles
and Hg transformations (e.g., methylation and reduction).

Conclusions: Together, our study provides solid evidence that Hg pollution has predictable and significant effects on
multiple taxonomic and functional attributes including bacterial abundance, diversity, and the relative abundance of
ecological clusters and functional genes. Our results suggest an increase in soil Hg pollution linked to human activities
will lead to predictable shifts in the taxonomic and functional attributes in the Hg-impacted areas, with potential
implications for sustainable management of agricultural ecosystems and elsewhere.
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Background
Environmental pollution resulting from human activities
has a great impact on the biodiversity and functioning of
terrestrial and aquatic ecosystems and is a major threat
for human health across the globe [1–4]. Importantly,
recent studies suggested that changing climate

exacerbates global mercury (Hg) pollution by releasing
historically stocked Hg in the permafrost [5, 6]. Such a
threat is of global concern as Hg can be transported glo-
bally [7]. The elevated Hg inputs into environments
could have significant effects on soil biodiversity and
their associated ecosystem functions [8, 9]. Studies con-
ducted at the local scale seemed to support the idea that
Hg pollution can alter soil microbial communities [10–
12]. Moreover, previous work based on short-term incu-
bation experiments demonstrated that Hg amendments
can alter the soil microbiome and its ecological func-
tions [13, 14]. However, much less is known on the role
of Hg pollution in shaping the taxonomic and functional
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attributes of microbial communities in natural ecosys-
tems across large spatial scale and different types of
croplands.
Recent studies suggested that microbial taxa strongly

co-occur within ecological network that often are called
ecological clusters or modules [15, 16]. Such ecological
clusters are expected to have multiple implications for
the maintenance of soil fertility, decomposition, and eco-
logical services in terrestrial environments [17–19]. The
reason is that different microbial ecological clusters
often follow very specific environmental preferences. For
example, taxa within some ecological clusters have been
found to strongly correlate with low or high pH, mesic
or arid ecosystem, and nutrient availability and processes
rates [15]. However, despite the importance of these eco-
logical clusters for the understanding of the soil micro-
biome, their response to long-term field Hg pollution
remains largely unexplored [20]. Increasing Hg concen-
trations could potentially impact the relative abundance
of major ecological clusters with implications for ecosys-
tem functioning. However, empirical evidence for such
assumptions is currently lacking.
Moreover, the response of the functional attributes of

the soil microbiome to Hg pollution has been rarely ad-
dressed. Such a task is challenging as soil microbial com-
munities are highly diverse, and most soil microbial taxa
remains uncharacterized [16, 21]. Recent advances in
metagenomic sequencing can infer the functional traits of
microbial communities [22, 23] and then determine which
are sensitive to increased soil Hg pollution. We expect
functional traits of soil microbial communities to follow
predictable responses to Hg pollution. Such an expect-
ation is based on the large body of literature reporting
consistent microbial responses to other global changes
such as climate change and nutrient additions [3, 23, 24].
Herein, we aimed to build a predictive understanding of

the response of multiple soil taxonomic and functional at-
tributes to increased Hg contents at the regional scale. Be-
cause Hg is a well-known pollutant with important
implications for life on Earth [25], we hypothesized that
soil Hg pollution will have consistent effects on taxonomic
and functional attributes (e.g., relative abundance of func-
tional genes) across different land use types. To do so, we
collected three replicated soils at each of 47 sites (24
paddy fields and 23 adjacent upland fields), resulting in a
total of 141 samples from Hg-impacted agricultural loca-
tions across two provinces in China. Most of the sites are
surrounded by historical Hg mining areas with varying soil
Hg contents, and their soils contained a wide range of Hg
concentrations under similar vegetation types. These sites
also included controls that are far away from the mining
sites, with Hg contents similar to local background levels.
As such, these locations provided a unique opportunity to
empirically evaluate the response of microbial taxonomic

and functional attributes to a gradient of soil Hg pollution.
We characterized soil bacterial community composition
via MiSeq Illumina platform. In addition, we investigated
potential shifts in the relative abundance of functional
genes linked to microbial communities by analyzing the
soil metagenomes from a subset of those sites. Finally, we
identified the associations between soil Hg concentrations
and bacterial diversity, abundance, and ecological clusters
(modules) using a combination of random forest analysis
and structure equation modeling, after accounting for
other critical environmental predictors.

Results
Mercury pollution altered soil bacterial abundance and
diversity
We found a consistent decrease in the abundance of
bacteria with increases in soil total Hg in both paddy
and upland soils (Fig. 1a, b). Bacterial abundance was
also negatively related to methylmercury (MeHg) in
paddy soils (d.f. = 1, 70, P = 0.008). In contrast, bacterial
diversity (Shannon index) was positively correlated to
total Hg (d.f. = 1, 70, P = 0.001) in the paddy soils and
tended to increase with elevated MeHg contents (d.f. = 1,
70, P = 0.08) (Fig. 1c, d). We also found a cubic negative
relationship (d.f. = 3, 65, P = 0.001) between total Hg and
bacterial diversity for the upland soils. As expected, land
use type had significant effects on soil bacterial abun-
dance and diversity (Additional file 1: Figure S1a, b), and
both bacterial abundance and diversity were higher
(ANOVA, d.f. = 1, 139, P < 0.05) in paddy soils than
those in upland soils.

Mercury pollution altered the relative abundance of
bacterial phyla
We found consistent associations between of Hg contents
and the relative abundance of some dominant bacterial
phyla in both paddy and upland fields, though the bacter-
ial community compositions were different between the
two types of land use (Additional file 1: Figure S2). For ex-
ample, increasing total Hg was positively related to the
relative abundance of Firmicutes and Bacteroidetes in both
paddy and upland soils (Fig. 2), while they were not re-
lated to MeHg. In contrast, increasing MeHg was nega-
tively correlated to the relative abundance of Nitrospirae
in the two soils, though it was not significantly correlated
to soil total Hg (P > 0.05). In addition, we found some cor-
relations, depending on land use type, between total Hg/
MeHg and the relative abundance of other dominant
phyla/classes (Additional file 1: Table S1). Random forest
analysis allowed us to further identify what genera of Fir-
micutes and Bacteroidetes were associated with increases
in Hg contents (Additional file 1: Figure S3a, P < 0.05).
Thus, the relative abundance of Chitinophagaceae Ferrugi-
nibacter, Sphingobacteriaceae Pedobacter, and Clostridium
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sensu stricto_1 were positively correlated to soil total Hg
(Additional file 1: Figure S3b, d.f. = 1, 139, P < 0.05), while
the relative abundance of Nitrospirae was negatively corre-
lated to MeHg contents (Additional file 1: Figure S4, d.f. =
1, 139, P < 0.01).

Mercury pollution shifted the relative abundance of
ecological clusters within the correlation network
The soil bacterial taxa could be grouped into five major
ecological clusters (modules), comprised of strongly
co-occurring bacterial taxa with one another (Fig. 3a).
Not surprisingly, the two different soils were dominated
by different ecological clusters in the two types of soil
(Fig. 3b). Particularly, the relative abundance of module
#0 was much higher (ANOVA, d.f. = 1, 139, P < 0.05) in

Fig. 1 Relationships between soil mercury (Hg, including total Hg and methylmercury, MeHg) and the bacterial abundance (a, b), and
diversity (c, d) in paddy and upland soils. Green and yellow dots represent samples from paddy and upland fields, respectively. Red lines
represent regressions with linear (straight) and cubic (curve) functions (P < 0.05)
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the paddy soils than that in the upland soils, while the
relative abundance of module #4 exhibited the opposite
trend. Even so, we found consistent relationships be-
tween soil total Hg/MeHg and the relative abundance of
the dominant ecological clusters (Fig. 3c). For example,
the relative abundance of module #0 was negatively re-
lated to MeHg in both of soils, where the relative abun-
dance of module #4 was positively related to MeHg. All
modules were formed by multiple phyla/classes, and the
membership of each module is shown in Additional file 2
(data S1). We also found some soil-type-specific effects
of Hg on the relative abundance of ecological clusters.
For instance, the relative abundance of modules #0 and
#4 decreased and increased, respectively, with increasing
total Hg in the paddy soil (Fig. 3c), but no similar trends
were observed in the upland soil. Meanwhile, the relative
abundance of module #2 and module #3 decreased and
increased, respectively, with increasing total Hg for the
upland soil, while no similar response was observed for
the paddy soil.

Mercury pollution is a significant predictor of soil
bacterial community and ecological clusters after
controlling for multiple environmental predictors
Random forest analysis suggested that, in general, Hg vari-
ables are major predictors of bacterial diversity and abun-
dance (Additional file 1: Figure S5a, b) and the relative
abundance of ecological clusters (Additional file 1: Figure
S6a, b). As expected, our results indicate that other environ-
mental factors were also important predictors of microbial
communities, although the relative importance of these pre-
dictors was highly taxa and module dependent. See Add-
itional file 1: Table S2 for correlations between microbial
attributes and environmental predictors.
We then used structural equation modeling (SEM), to

further clarify the role of Hg in predicting abundance, di-
versity, and the relative abundance of modules for both
paddy and upland soils, after controlling for multiple
other environmental predictors (Fig. 4a, b; Additional file 1:
Table S3, S4). Remarkably, we found a consistent negative
effect of total Hg on bacterial abundance in both soils.
Our SEM shows direct effects of MeHg on the relative
abundance of modules (Mod#3 and Mod#4) in upland
soils and effects of total Hg and MeHg on the relative
abundance of Mod#1 in paddy soils. Interestingly, we

Fig. 2 Linear relationships between soil Hg contents and the relative abundance of selected bacterial phyla in paddy (a) and upland (b) soils.
Correlations between Hg concentrations and the relative abundance of all major bacterial phyla are available in Additional file 1: Table S1
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detected multiple indirect effects of Hg on the relative
abundance of these modules via impacts on soil properties
and other modules, though there may be interactions be-
tween these microbial attributes. The SEM also shows a
direct effect of Hg on the bacterial diversity in upland
soils, while the effect was not significant in the paddy soils.
As expected, the SEM also shows strong effects of soil and
spatial properties on these microbial attributes across the
two types of land use.

Functional gene relates to soil Hg pollution
We conducted further random forest modeling to evaluate
the link between functional genes and Hg pollution, and 22
functional genes that significantly predicted changes in total
Hg across the soils were identified (Fig. 5a; Additional file 1:
Table S5). Most of those genes are likely involved in soil nu-
trient metabolisms (e.g., reduction of nitrate and phos-
phate) and Hg transformations (e.g., Hg uptake and
methylation). Furthermore, we found that the relative abun-
dance of genes encoding member protein, diphosphate

reductase, and dehydrogenase E1 component increased
along elevated soil Hg contents, while the gene encoding
3-deoxy-D-manno-octulosonic-acid transferase accounting
for glycan biosynthesis and metabolism, significantly de-
creased towards increased Hg (Fig. 5b). We also found 30
genes significantly predicting changes in soil MeHg, includ-
ing the genes involved in CoA synthetase and iron trans-
port, that are important enzymes involved in Hg uptake
and methylation (Additional file 1: Figure S7).

Discussion
Effects of Hg pollution on soil bacterial abundance and
diversity in agricultural ecosystems
Both regression analysis and SEM demonstrate that
long-term field Hg pollution had a negative effect on the
bacterial abundance from the two land use types. Such a
result is in contrast with a previous short-term incuba-
tion experiment where no effect of Hg pollution on bac-
terial abundance was found [13]. Both Hg and MeHg are
toxic to life, and thus, long-term field Hg pollution may

Fig. 3 Microbial correlation network. Panel a represents a network diagram with nodes (taxa) colored by each of the major five ecological
clusters (modules, Mod) within co-occurrence network of bacterial communities; Panel b includes the relative abundance of the five modules.
Capital letters indicate the significant differences between the paddy soils (P < 0.05). Lowercase letters indicate the significant differences between
the upland soils (P < 0.05); Panel c includes the linear relationships between soil Hg pollution (total Hg and MeHg) and the relative abundance of
the selected ecological clusters
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inhibit microbial growth and then cause a decrease in
soil microbial abundance across centuries [8]. Import-
antly, the lack of an effect of Hg pollution on bacterial
abundance in short-term experiments could be related
to the fact that relic DNA from dead bacteria is also ex-
tracted and then quantified by qPCR [26, 27], obscuring
the adverse effect of Hg on soil microbial abundance.
Such an artifact should be largely diluted in long-term
experiment and observational studies. Similarly, MeHg
as the most toxic Hg speciation also negatively corre-
lated to the bacterial abundance in the paddy soils, fur-
ther emphasizing the strong effect of Hg pollution on
bacterial abundance in soil. On the contrary, bacterial
diversity tended to increase under moderate Hg content
(< 53 mg kg−1, Fig. 1c), partially supporting the inter-
mediate disturbance or stress hypothesis [12, 28]. How-
ever, our observations are different from those from
short-term incubation experiments, in which Hg amend-
ment has been reported to reduce soil bacterial diversity
[13]. As such, our approach suggests that large-scale ob-
servational studies are needed to understand the re-
sponse of bacterial diversity to Hg pollution in
real-world ecosystems. The soils examined in this study
belong to Hg-mining areas which suffered serious Hg

pollution for more than 600 years [29]. Consequently,
the microbial community from these soils might have
had time to develop resistance to Hg stress [13]. Alter-
natively, increasing Hg pollution might increase bacterial
diversity by releasing subordinate microbial taxa via
competition. These results are partially supported by our
SEM suggesting a positive effect of MeHg on the diver-
sity in upland soils, while the effect became complicated
in paddy soils where no direct effect of total Hg or
MeHg on the diversity was observed. However, Hg pol-
lution may indirectly influence the bacterial diversity
through impacts on soil properties, which were import-
ant drivers of soil microbial diversity [17, 21]. All of
these observations illustrate the importance of Hg pollu-
tion in regulating the abundance and diversity of soil
bacteria. Importantly, these results were maintained after
accounting for multiple other drivers including soil and
spatial properties.

Mercury pollution altered soil bacterial community
composition and the distribution of ecological clusters
Importantly, we also found that Hg pollution consistently
related to the relative abundance of the dominant bacterial
phyla. For example, the relative abundance of Firmicutes

Fig. 4 Mechanistic modeling identifying the direct and indirect effects of Hg on bacterial abundance, diversity, and the relative abundance of
ecological clusters (modules, Mod) within co-occurrence networks in paddy (a) and upland (b) soils. The Hg box includes total Hg and
methylmercury, and the spatial box includes longitude and latitude. The soil box includes soil properties that were represented by the three
major components by performing principal component analysis of soil variables including pH, soil organic carbon (SOC), C: N, and others
(Additional file 1: Table S3). The thickness of the arrow represents the strength of the relationship when significant, while no arrow is showed
when the effect is not significant. Numbers adjacent to arrows are path coefficients with significant levels. R2 denotes the proportion of variance
explained. Spatial (latitude and longitude) influence was included to control spatial autocorrelation; however, in this case, path coefficients were
not included for simplicity. The BOX2 includes the significant correlations between modules, diversity, and abundance. The rest of significant
effects are available in Additional file 1: Table S4 (P < 0.05).*P < 0.05, **P < 0.01
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and Bacteroidetes increased in response to elevated total
Hg, but the relative abundance of Nitrospirae was nega-
tively related to MeHg contents. Firmicutes and Bacteroi-
detes are known to be fast-growing opportunistic types of
organisms that might benefit from environmental disturb-
ance by taking over niches commonly occupied by other
bacterial taxa. We also detected the genera of bacteria
within these groups influenced by Hg pollutions (Add-
itional file 1: Figure S3; Figure S4). For example, Sphingo-
bacteriaceae Pedobacter and Clostridium sensu stricto
have been reported to be resistant to Hg or heavy metals
[30, 31]; however, much less is known about the mecha-
nisms linking the responses of Chitinophagaceae Ferrugi-
nibacter to Hg pollution. In addition, our large-scale data
suggest a decrease in the relative abundance of Nitrospirae
with elevated soil MeHg. Previous studies have found
that this phylum is highly sensitive to heavy metal
stress at the local scale [12, 32]. The reduction in the
relative abundance of Nitrospirae was mainly attrib-
uted to a relative decrease in the genus Nitrospirales
0319.6A21sp. in response to elevated MeHg. Increased

Hg pollution is known to inhibit the processes of
nitrogen cycle driven by soil functional assembles [9,
33], which could be an important result of the inhi-
biting effect of Hg to nitrifying bacteria such as
Nitrospirae. These results suggest that the sensitive
taxa could be used as potential ecological indicators
for Hg pollution in terrestrial ecosystems.
Our random forest analysis suggested that Hg, in gen-

eral, is a significant predictor of the ecologically preferen-
tial modules within the bacterial co-occurrence network
after accounting for other key environmental predictors
(Additional file 1: Figure S6). Thus, increases in soil Hg
content also led to drastic changes in the co-occurrence
network of soil bacterial communities in the studied re-
gions. Interestingly, we found significant patterns of the
relative abundances in some modules along increased Hg
and MeHg pollution (Fig. 3c; Additional file 1: Table S6).
For example, the relative abundance of module #4 tended
to increase with elevated total Hg and MeHg in both
paddy and upland soils. This module mainly consisted of
potentially Hg-resistant microbes such as Proteobacteria,

Fig. 5 Random forest (RF) analyses identifying the significant (P < 0.05) gene predictors of soil total Hg (a). Panel b includes relationships between
total Hg contents and selected functional genes. These functional genes were annotated according to Kyoto Encyclopedia of Genes and
Genomes (KEGG) using metagenomic data derived from a subset of our soil samples. Additional information on the KEGG genes is available in
Additional file 1: Table S5
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Bacteroidetes, and Actinobacteria, which were reported to
contain the Hg-resistance gene merA [34, 35]. We also
provide a list of winner (positive effects) and loser (nega-
tive effects) community assemblies in response to Hg pol-
lution (Additional file 2: Data S1), which can be used to
test for similarities in the response of soil microbial com-
munities to Hg pollution worldwide.
Although SEM is quite a conservative procedure, the re-

sults support similar associations between Hg and the
relative abundance of modules across the two types of
land use. For example, soil Hg had direct effects on the
relative abundance of module #1 in paddy soils (Fig. 4a),
and a similar effect on this module in upland soils could
be reflected through indirect impacts of Hg on other mod-
ules (i.e., Mod#2, Mod#3, and Mod#4) due to their inter-
actions (Fig. 4b: BOX2). It is not surprising to note the
interactions between the modules in the co-occurrence
networks, because increases in a given ecological cluster
were often followed by declines in the relative abundance
of other ecological clusters [36]. These findings suggest
that variability of Hg contents in the ecosystem might
change the distributions of ecologically preferential clus-
ters. Of course, as expected, other environmental predic-
tors strongly associate with the relative abundance of
microbial ecological clusters (Fig. 4, Additional file 1:
Table S2; Additional file 1: Figure S6), which had been well
recognized in many previous studies [15–17].

Predicting soil Hg pollution from the variability of
microbial functional genes
We found that Hg pollution was also associated with im-
portant functional traits within microbial communities.
In fact, here, we provide a list of functional genes which
were strongly correlated to Hg contents across soils. Of
course, we acknowledge the current limitations for link-
ing genes to Hg pollution across large spatial scales due
to the correlative nature of these analyses (Fig. 5; Add-
itional file 1: Figure S7). Such results are in agreement
with previous studies emphasizing significant effects of
Hg stress on microbially driven processes (e.g., nitrifica-
tion potential and dehydrogenase enzyme activity)
driven by diverse soil microorganisms [9, 37]. For ex-
ample, the relative abundance of genes involved in mem-
ber protein tended to increase with the level of soil Hg
pollution, suggesting that moderated Hg stress may
stimulate the enzyme activities responsible for Hg trans-
portation through the cell membrane [38]. We also ob-
served a significant increase in the relative abundances
of genes associated with dehydrogenase with elevated
Hg. These findings are consistent with those of previous
studies showing upregulation of dehydrogenase activities
exposed to metals [39]. In addition, we identified some
genes that are relevant to Hg transport (i.e., iron trans-
port system) and methylation processes (i.e., CoA

synthetase) [40]. Previous studies has suggested that in-
organic Hg(II) could be transported into microbial cells
probably through ion transport system [41, 42], and the
cellular Hg(II) is subsequent methylated to highly neuro-
toxic MeHg by methylating genes hgcAB [43]. Thus, our
predicted iron transport system might be relevant to soil
MeHg formation. Furthermore, Hg methylation is an
enzyme-catalyzed process associated with the reductive
CoA pathway [44], which may explain our results that
the CoA synthetase is a significant predictor for MeHg
in the soil. Overall, these gene predictors are associated
with nutrient metabolisms and Hg transformations,
which are also important biomarkers of soil Hg
pollution.

Conclusions
Together, our study represents one of the first attempts to
empirically assess how the soil microbiomes respond to
long-term Hg pollution across large spatial scales and land
use type. We provides solid evidence that Hg pollution
has predictable and significant effects on multiple taxo-
nomic and functional microbial attributes including bac-
terial abundance, diversity, and the relative abundance of
ecological clusters and functional genes. Such results are
maintained after accounting for other important environ-
mental predictors of soil microbial communities. In gen-
eral, Hg pollution was negatively related to the bacterial
abundance. The relative abundance of Bateroidetes and
Firmicutes increased with elevated Hg pollution, while the
relative abundance of Nitrospirae was negatively corre-
lated to MeHg. Mercury-induced shifts in the ecological
clusters of co-occurrence network and functional traits of
microbial communities could have important implications
for soil biogeochemical cycling and service functioning of
the ecosystem. This work moves us towards a more pre-
dictable understanding of the response of microbial com-
munities and their potential function to Hg pollution—a
worldwide threat derived from both global warming and
intensive anthropogenic activities.

Methods
Study area and sampling
The soil samples were collected around two typical Hg
mining areas (Fenghuang, FH and Wanshan, WS) in
southwest China. Fenghuang is located in West Hunan
Province, and Wanshan in East Guizhou Province. Both
of them are the major grain-producing areas in China,
with a long history Hg mining for more than 600 years
[29]. Historical discharges from Hg mining operations
and ongoing atmospheric deposition has led to heavy Hg
pollution in these areas [45]. We collected soil samples
from 24 locations (Additional file 1: Figure S8) along
downstream the mining sites to obtain samples with a
large gradient of soil Hg concentrations (ranges from
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0.27 to 52.4 mg kg−1), and most of them were above risk
control value for paddy soils in China (0.6 mg kg−1) [46].
Two typical types of land use including paddy fields (24
sub-sites) and adjacent uplands (23 sub-sites, maize
planting) were chosen to compare the effects of land use
on the microbial responses to long-term soil Hg pollu-
tion. We tried to choose locations where both paddy
and upland fields are the main crop planting, and spor-
adic farmlands are excluded. Three replicated soil (0–
15 cm depth) samples were collected at each of the 47
sites to account for small scale variation in Hg pollution.
Consequently, a total of 141 soil samples were obtained
from the 24 paddy (72 samples) and upland (69 samples)
fields. These locations also included two control sites
(paddy and adjacent upland fields) located in the natural
reserve with little pollution (i.e., location no. 1 in Add-
itional file 1: Figure S8). Total Hg concentrations in the
control sites are similar the levels of local background
values (0.5~0.7 mg kg−1), which are similar to the Hg
risk control value for paddy soil in China [46]. We omit-
ted an upland site due to the lack of representative field
in the location. Sampling was conducted in August 2016
before harvesting. Collected soil samples were homoge-
nized and sieved (2.0 mm) to get a representative micro-
bial community [20, 47]. The sieved samples were
subsequently divided into two sub-samples. One
sub-sample was stored at − 20 °C for microbial analysis,
while the other sub-sample was air-dried for the analysis
of heavy metals and soil properties.

Measurement of soil heavy metals and chemical indexes
For Hg analysis, 0.20 g of each soil was digested with
10 mL mixed solution (2 mol L−1 HNO3 and 4 mol L−1

HCl) in a Teflon tube at 95 °C for 2 h. The total amount
of Hg in these extracts was determined via cold vapor
atomic fluorescence spectrometry (CVAFS) [45], and the
method detection limit was 0.2 ng L−1. For the analysis
of other heavy metals (i.e., Cu, Pb, Cd, Zn, Ni, and As),
0.30 g soil were digested by trace mixed acids (9.0 mL of
HNO3 and 3.0 mL of HF) in a MARS microwave diges-
tion system (CEM, USA). The concentrations of the
heavy metals in the final solution were measured using a
7700X Inductively Coupled Plasma-Mass Spectrometer
(Agilent, USA). For MeHg, 0.40 g soil was used for
MeHg extraction using CuSO4-methanol. The amount
MeHg was determined using an automated MeHg
analyzer (TEKRAN 2700 GC-CVAFS) [48]. Soil pH was
determined on a fresh soil to water ratio of 1: 2.5 using a
Delta pH-meter. Soil organic carbon (SOC) was mea-
sured using the K2CrO7 oxidation titration method [49].
Total carbon (TC) and total nitrogen (TN) in soils were
determined on a LECO TureMac Macro CN analyzer
(LECO, St. Joseph, MI, USA). Dissolved organic carbon
(DOC) in the soil was extracted with 0.5 M K2SO4 at a

ratio of 1:5 by shaking at 200 rpm for 1 h and filtering
through a 0.45-μm Millipore filter [50], and the DOC
concentration was measured by a TOC analyzer (TOC-L
Analyzer, Shimadzu, Japan). The ammonium and nitrate
concentrations in the filtered extracts were analyzed
within 24 h using a continuous flow analyzer (SAN++,
Skalar, Breda, Holland).

Analysis of soil bacterial communities through Illumina
MiSeq sequencing
The genomic DNA was isolated from 0.30 g of soil using
the MoBio PowerSoil DNA Isolation Kit (QIAGEN Inc.,
USA) following the manufacturer’s instructions. The
abundance of bacteria was estimated by quantifying the
16S rRNA gene copy number on an iCycler iQ5 thermocy-
cler (Bio-Rad, USA) using the primer pairs Eub338F/
Eub518R [51]. To evaluate the bacterial community com-
position, the V4 region of the bacterial 16S rRNA gene
was amplified using the primer pairs of 338F/806R [47].
The 50 μl PCR reaction mixtures consisted of 25 μl Pre-
mixTaq™ (Takara Biotechnology, Dalian, China), 1 μl of
each primer (10 μM), 3 μl of template DNA, and 20 μl of
sterilized ddH2O. The resultant PCR products were puri-
fied using the Wizard® SV Gel and PCR Clean-Up System
(Promega, San Luis Obispo, USA). The purified amplicons
were equimolarly mixed, and 2 × 250 bp paired-end se-
quencing was carried out on an Illumina Miseq sequencer
(Illumina Inc., San Diego, USA). Raw reads generated
from the MiSeq paired-end sequencing were merged to-
gether using the Fast Length Adjustment of Short reads
(FLASH). A chimera filtering approach UPARSE was
employed as the Operational Taxonomic Unit (OTU or
phylotype) picking strategy at 97% sequence similarity.
We randomly selected an even number (30,212) of reads
from each sample to account for variability in sequencing
depth before downstream analysis (Additional file 1: Fig-
ure S9). Representative sequences from individual OTUs
generated in UPARSE were processed using the Quantita-
tive Insights into Microbial Ecology (QIIME) pipeline.
The bacterial diversity index was calculated based on 97%
OTU similarity of obtained bacterial sequences. The taxo-
nomic identity of all phylotypes was determined using
The SILVA ribosomal RNA gene database project [52].

Shotgun metagenomic sequencing and gene analysis
Seven paddy soils and three upland soils were selected from
our 141 samples for metagenomic analysis. These samples
were chosen, after Hg analysis, to produce a wide range of
Hg concentrations (ranged from 0.84 to 32.43 mg kg−1). Se-
quencing was performed using an Illumina PE150 (Illumina
Inc.) at Majorbio, Inc., Shanghai, China. Raw reads (150 bp
in length) were trimmed to remove low-quality reads.
Paired reads of shotgun metagenomic sequences were
merged with FLASH using default parameters [53]. Using
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MBLASTX, merged reads were also mapped against the
protein sequence of the KEGG database (E value cutoff
1e−6), and the relative abundance of each KO gene was also
calculated. Additional details on methodology are provided
in the Additional file 3. To estimate the influence of ele-
vated Hg and MeHg contents on these genes, we focused
on the KO genes related to microbial metabolism, Hg
transformations, and other sensitive ones.

Correlation network analyses
We established a co-occurrence network to identify eco-
logical clusters of bacterial taxa across the collected 141 soil
samples. A single correlation network including all samples
was conducted so that the identified ecological clusters are
directly comparable across land use types. We kept those
taxa accounting for more than 80% of the relative abun-
dance of soil bacteria (1073 bacterial taxa in Additional file 2:
Data S1). We then calculated all pairwise Spearman’s rank
correlations (ρ) between all soil bacterial taxa using the
psych package of the R statistical software (http://cran.r--
project.org/) and focused exclusively on positive correla-
tions as they provide information on bacterial taxa that
may respond similarly to environmental conditions [54].
We considered a co-occurrence to be robust if the Spear-
man’s correlation coefficient was > 0.25 and P < 0.01 [17].
The network was visualized with the interactive platform
Gephi [55]. Finally, we used default parameters from the
interactive platform Gephi to identify ecological clusters
(i.e., modules) of soil taxa strongly interacting with each
other [55]. The relative abundance of each ecological clus-
ter was computed by averaging the standardized relative
abundances (z-score) of the taxa that belong to each eco-
logical cluster [17].

Statistical analysis
We first identified the correlations between total Hg and
MeHg with soil bacterial abundance, diversity (Shannon),
and the relative abundance of ecological clusters in both
paddy and upland soil, using linear or cubic models. We
used both regression analyses and Pearson correlation to
evaluate correlations between total Hg and MeHg and the
relative abundance of ecological clusters, and bacterial
community composition for two land use types using one
ANOVA, with land use type as the fixed factor. We con-
ducted a classification random forest analysis [56, 57] to
identify the statistically significant predictors of the bacterial
diversity, total abundance, and the relative abundance of
ecological clusters. The major aim of these analyses were to
test whether total Hg or MeHg pollution are significant
predictors of microbial attributes, after accounting for other
key environmental predictors including location, soil prop-
erties, heavy metals, and nutrient availability. We also used
random forest analysis to identify the genus predictors of
the phyla/classes that were significantly correlated to soil

Hg. The random forest model determined the importance
of each predictor variable via evaluating the decrease in
prediction accuracy (i.e., increase in the mean square error
between observations and OOB predictions) when the data
for that predictor are randomly permuted, as previously de-
scribed [58]. These analyses were conducted using the
rfPermute package [59] of the R statistical software (http://
cran.r-project.org/). Additionally, we used Spearman’s cor-
relation analyses to further evaluate the correlations be-
tween bacterial diversity (Shannon), total abundance, and
the relative abundance of ecological clusters with environ-
mental predictors. We also used random forest analysis to
identify the major functional genes predicting the concen-
trations of Hg and MeHg in our soils. In these analysis,
functional genes are used as predictors of Hg concentra-
tions. After this, we used linear regressions to evaluate the
direction of the relationships between the relative abun-
dance of selected genes and soil total Hg concentrations.
We then used structural equation modeling (SEM) [60]

to further clarify associations of Hg (total Hg and MeHg)
contents with the bacterial abundance, diversity, and the
relative abundance of ecological clusters (modules). Unlike
the analysis of regression or ANOVA, SEM allows the abil-
ity to separate multiple effect pathways and consider them
as parts of a system and thus is useful for isolating the com-
plex relationships among environmental factors commonly
found in natural ecosystems [60, 61]. The probability that a
path coefficient differs from zero was tested using bootstrap
resampling. Bootstrapping is preferred to the classical
maximum-likelihood estimation in these cases because in
bootstrapping, probability assessments are not based on the
assumption that the data match a particular theoretical dis-
tribution. Our model also includes spatial autocorrelation
(latitude and longitude) and soil properties, which were rep-
resented by the three major components by performing
principal component analysis of soil variables including pH,
soil organic carbon (SOC), C: N, and others (Additional file 1:
Table S3). We first established an a priori model according
to our current knowledge of environmental variable impacts
on soil microbiomes (Additional file 1: Figure S10). The
data matrix was fitted to the model using the
maximum-likelihood estimation method. There is no single
universally accepted test of overall goodness of fit for SEM.
Thus, we used the chi-square test (χ2; the model has a good
fit when 0 ≤ χ2/d.o.f ≤ 2 and 0.05 < P ≤ 1.00) and the root
mean square error of approximation (RMSEA; the model
has a good fit when RMSEA 0 ≤RMSEA ≤ 0.05 and 0.10 <
P ≤ 1.00 [62]. The SEM analyses were performed using
AMOS 21.0 (SPSS Inc., Chicago, IL, USA).
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Correlation coefficients (Spearman’s ρ) between bacterial abundance, richness
and modules, and soil properties. Table S3. Correlation coefficients
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