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Abstract

Background: The gut microbiota evolves from birth and is in early life influenced by events such as birth mode,
type of infant feeding, and maternal and infant antibiotics use. However, we still have a gap in our understanding
of gut microbiota development in older children, and to what extent early events and pre-school lifestyle modulate
the composition of the gut microbiota, and how this impinges on whole body metabolic regulation in school-age
children.

Results: Taking advantage of the KOALA Birth Cohort Study, a long-term prospective birth cohort in the
Netherlands with extensive collection of high-quality host metadata, we applied shotgun metagenomics
sequencing and systematically investigated the gut microbiota of children at 6–9 years of age. We demonstrated an
overall adult-like gut microbiota in the 281 Dutch school-age children and identified 3 enterotypes dominated by the
genera Bacteroides, Prevotella, and Bifidobacterium, respectively. Importantly, we found that breastfeeding duration in
early life and pre-school dietary lifestyle correlated with the composition and functional competences of the gut
microbiota in the children at school age. The correlations between pre-school dietary lifestyle and metabolic
phenotypes exhibited a striking enterotype dependency. Thus, an inverse correlation between high dietary fiber
consumption and low plasma insulin levels was only observed in individuals with the Bacteroides and Prevotella
enterotypes, but not in Bifidobacterium enterotype individuals in whom the gut microbiota displayed overall lower
microbial gene richness, alpha-diversity, functional potential for complex carbohydrate fermentation, and butyrate
and succinate production. High total fat consumption and elevated plasma free fatty acid levels in the Bifidobacterium
enterotype are associated with the co-occurrence of Streptococcus.
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Conclusions: Our work highlights the persistent effects of breastfeeding duration and pre-school dietary
lifestyle in affecting the gut microbiota in school-age children and reveals distinct compositional and
functional potential in children according to enterotypes. The findings underscore enterotype-specific links
between the host metabolic phenotypes and dietary patterns, emphasizing the importance of microbiome-
based stratification when investigating metabolic responses to diets. Future diet intervention studies are
clearly warranted to examine gut microbe-diet-host relationships to promote knowledge-based
recommendations in relation to improving metabolic health in children.
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Introduction
Microbial colonization in early life is crucial for infant
health and may affect health status in later life [1, 2].
Substantial effort has been devoted into studying the devel-
opment of the gut microbiota during infancy. Throughout
the first year of life, the gut microbiota increases dramatic-
ally in diversity and stability, and reportedly reaches an
adult-like configuration in the subsequent years [3–5].
Many studies have demonstrated that early events such as
birth mode, type of infant feeding, the presence of older
siblings, and maternal and infant antibiotics use affect the
establishment and composition of gut microbiota during
infancy [4, 6–8]. After weaning, dietary patterns moreover
have a profound impact on shaping the childhood gut
microbiota [9]. However, we still have a gap in knowledge
of the roles played by early events and lifestyle in the de-
velopment of the gut microbiota during childhood.
Studies conducted with animal models and adult human

beings have provided strong indications of metabolic
cross-talk between gut microbes and the host. The gut
microbiota influences the development and regulation of
the immune system, and energy and metabolic homeosta-
sis of the host via the production of a vast array of metab-
olites such as short-chain fatty acids (SCFAs) and
secondary bile acids [10–12]. For instance, SCFAs pro-
duced by gut bacterial fermentation of complex diet-
ary carbohydrates interact with G protein-coupled
receptors (GPCRs) and affect adiposity and insulin resist-
ance [13]. Nevertheless, our understanding of how dietary
patterns interact with the gut microbiota and subsequently
affect metabolic traits of children is limited.
In this study, we examined the composition and func-

tional potential of the gut microbiota of 281 Dutch children
at early school-age (6–9 years of age) and revealed the im-
pact of early events and pre-school dietary patterns on the
gut microbiota of children. We identified enterotype-based
differences of not only the structure and functional potential
of the microbial communities, but also differences in the
correlations between metabolic phenotypes and dietary pat-
terns in children. Our results provide new insights into the
normal developmental trajectories of the gut microbiota and
the environmental factors affecting microbiota development

in school-age children, and increase our understanding of
the microbiota-dependent interactions between diets and
host metabolic phenotypes.

Results
Characterizing the gut microbiome of early school-age
Dutch children
To investigate the gut microbial characteristics of healthy
early school-age Dutch children as well as the relationship
between their gut microbiota and multiple phenotypic pa-
rameters, we collected stool samples from 281 children at
6–9 years of age (mean age 7.3 years) enrolled in the
KOALA Birth Cohort Study [14], subjected the samples to
shotgun metagenomic sequencing, and analyzed the re-
sults against additional measures of 45 phenotypic param-
eters classified into four categories: (1) early events; (2)
pre-school lifestyle, including diet, both collected through
repeated questionnaires up to 5 years of age; (3) blood pa-
rameters collected in parallel with fecal samples at 6–
9 years of age; and (4) anthropometric measurements col-
lected at both 4–5 years and 6–9 years of age (Fig. 1a,
Additional file 1: Table S1). After performing shotgun
metagenomic sequencing and quality control, we acquired
a total of 1.28 Tb of high-quality non-human clean reads,
corresponding to 49.24 million reads per child. Genes
were identified by aligning the clean reads to the 9.9M hu-
man gut microbiome integrated gene catalog (IGC)
[15]with an average of 80.1% reads in each sample being
mapped (Additional file 1: Table S2). Screening the Maas-
tricht Irritable Bowel Syndrome Cohort (MIBS-CO) [16]
for healthy adult controls who fitted our inclusion criteria
provided 62 metagenomic datasets from healthy Dutch
adults for our age-based comparison (Additional file 1:
Table S3). We applied the same pipeline as used for pro-
cessing the children’s samples to analyze the published
adult samples, resulting in 26.9 million clean reads per
adult and a 77.4% IGC mapping ratio per adult.

Comparison of gut microbiota in Dutch children and
adults, and overweight and lean children
Comparison of gut microbial gene diversity in Dutch
adults and children revealed an adult-like alpha diversity
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in the school-age children (Wilcoxon rank-sum test, P >
0.05, Fig. 1b). Principal component analysis (PCA) based
on genus profiles showed no separation between Dutch
children and adults (Fig. 1c). Within- and between-
group β diversity of genus profiles further revealed a
slightly more similar microbial composition within children
compared to within adults (Fig. 1d). In line with previous
studies comparing healthy infants, children (1–12 years),
and adults [3, 17, 18], Dutch children showed a relative en-
richment in abundance of the genus Bifidobacterium com-
pared to adults (adjusted P < 0.05, Fig. 1e, Additional file 1:
Table S4). Of note, the abundance of Bifidobacterium

adolescentis, a reported adult-type Bifidobacterium species
with no or poor ability for human milk oligosaccharides
(HMOs) degradation [9, 19, 20], showed no differences
between children and adults (Wilcoxon rank-sum test,
P > 0.05, Additional file 1: Table S5). Comparisons fur-
ther revealed that children were enriched in bacteria
from the phylum Bacteroidetes including Bacteroides and
Prevotella, while Firmicutes assigned to the genera Eubac-
terium, Clostridium, Dorea, and Coprococcus were more
abundant in adults (Additional file 2: Figure S1a) (adjusted
P < 0.05, Fig. 1e). A recent large gut microbiome cohort
study on 1135 Dutch adult participants also reported

a

b
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Fig. 1 Comparison between early school-age Dutch children and adults. a Categories of phenotypic data collected within the KOALA cohort. b
Box plot showing the gene-based α-diversity (Shannon index) in early school-age Dutch children (n = 281) and healthy Dutch adults (n = 62). c
Genus-based principal component analysis (PCA) of children and adults. d Box plots of intra- and inter-group beta diversity based on genus
profiles in children and adults. The “Intra-children” and “Intra-adults” indicate the genus-based beta diversity in children and adults, and the “Inter-
groups” indicates the genus-based beta diversity between children and adults (***P < 0.001; Wilcoxon rank-sum test). e Box plots displaying the
ten most abundant genera among children and adults. Genera indicated with red font are enriched in children, and genera in blue are enriched
in adults. Boxes are ordered according to median relative abundance of genus in children
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higher abundances of Firmicutes (63.7%) than Bacteroi-
detes (8.1%) [21]. By contrast, findings from a USA co-
hort revealed greater abundances of Firmicutes and
significantly lower abundances of Bacteroidetes in
healthy children aged 7–12 years than in healthy adults
[17], indicating that the composition and development
of bacterial communities varies in populations with dif-
ferent geographic and genetic origins.
At the functional level, a total of 6771 KEGG (Kyoto

Encyclopedia of Genes and Genomes) orthologues (KOs)
were identified in the childhood samples (median of
4695 per individual) and assigned to eggNOG (evolu-
tionary genealogy of genes: Non-supervised Orthologous
Groups) functional categories. An adult-like stable com-
position based on 25 eggNOG functional categories was
observed in children (Additional file 2: Figure S1b).
In order to determine if the previously reported relation

between bacterial gene richness and BMI in adults [22]
was also observed in children, we examined whether bac-
terial gene richness differed between overweight children
(BMI z-score ≥ 1.04, n = 23) and lean children (BMI
z-score < 1.04, n = 258). A BMI z-score ≥ 1.04 was used as
the threshold for identification of overweight in children
as recommended by the Dutch National Growth Study
[23]. Interestingly, we observed a bimodal distribution of
bacterial gene counts in the overweight group (Additional
file 3: Figure S2) where the children with a gene number
< 600,000 (n = 8) exhibited significantly higher BMI
z-score (Wilcoxon rank-sum test, P = 0.016). By contrast,
no such gene distribution pattern was observed in lean
children. We did not identify significant differences in
relative species abundances between overweight and lean
children (Wilcoxon rank-sum test, adjusted P > 0.05).

Stratification of Dutch children based on their gut
microbiome
Although, the concept of gut microbiota enterotyping
has been highly debated [24], a consensus concerning
enterotypes, including guidelines for rational enterotyp-
ing, was recently achieved [25]. Previous studies have
suggested that human adult fecal metagenomes can be
stratified into enterotypes that are independent of na-
tionality, health status, age, BMI, or sex [26, 27], but as-
sociate strongly with long-term dietary patterns [28]. To
examine this phenomenon in children, we here con-
ducted a Dirichlet multinomial mixtures (DMM)-based
enterotype analysis [29] to investigate the presence and
characteristics of enterotypes in children based on the
underlying compositional structure of their gut micro-
biome (see details in “Methods” section).
Three enterotypes were identified and found to be driven

by a relatively high abundance of the genera Bacteroides
(enterotype 1 (E1), n = 143), Prevotella (enterotype 2 (E2),
n = 74), and Bifidobacterium (enterotype 3 (E3), n = 64),

respectively (Fig. 2a, b, Additional file 1: Table S6). Surpris-
ingly, the abundances of 50 out of 81 detected genera and
132 out of 214 detected species (species with ≥ 100 detected
genes in any enterotype) differed significantly between
enterotypes (Kruskal-Wallis test, adjusted P < 0.05, Add-
itional file 1: Tables S7, S8). All Bifidobacterium spp. exhib-
ited higher abundances in enterotype 3 (E3), with the
adult-type species B. adolescentis and B. catenulatum dom-
inating this genus (58.8% of the genus) (Additional file 1:
Table S8). SparCC analysis revealed strong positive correla-
tions between species enriched within enterotypes while
negative correlations were found between species
enriched in different enterotypes (Fig. 2c). For in-
stance, the relative abundance of Prevotella copri (E2)
negatively correlated with both the abundance of Bac-
teroides uniformis (E1) and Bifidobacterium longum
(E3) (SparCC, pseudo P < 0.01, Fig. 2c).
Comparative analyses further revealed distinct compos-

itional and functional differences of the gut microbiota be-
tween the three enterotypes. Interestingly, children with a
gut microbiota belonging to E1 and E2 showed similar
gene count and diversity (Dunn’s post-hoc test, P > 0.05)
while children with E3 harbored about 110,000 (15%)
fewer genes (median value: 604,692 genes/child, Dunn’s
post-hoc test, P < 0.05) compared to the children with the
other two enterotypes (Additional file 1: Table S6,
Additional file 3: Figure S2a). Kruskal-Wallis tests on
differences between the numbers of genes in each
genus further demonstrated that E3 harbored signifi-
cantly fewer genes from unannotated bacteria and
several abundant genera including Bacteroides,
butyrate-producing Faecalibacterium, Eubacterium,
and Roseburia (Additional file 1: Table S9). E3 also
exhibited lower Shannon diversity (Dunn’s post-hoc
test, P < 0.05, Additional file 4: Figure S3b), and
higher reads mapping rates (median of 64.2%) to
taxonomically annotated genes than the other two
enterotypes (Dunn’s post-hoc test, P < 0.05, Additional
file 4: Figure S3c). At the functional level, E3 showed
a slightly lower number of KOs than E1 (Dunn’s
post-hoc test, P < 0.05, Additional file 4: Figure S3d).
However, compared to the other enterotypes, E3 dis-
played similar functional diversity (Dunn’s post-hoc
test, P > 0.05, Additional file 4: Figure S3e) and higher
reads mapping ratios to the KO annotated genes
(Dunn’s post-hoc test, P < 0.05, Additional file 4: Figure
S3f). Lower β diversity was identified between E1 and
adults, as compared to that of adults vs. E2 or E3 (Krus-
kal-Wallis test, P < 0.05, Additional file 4: Figure S3g),
overall suggesting that the gut microbiota development
may continue beyond 6–9 years of age. Altogether, our
data points to a more adult-like gut microbiome in chil-
dren belonging to E1 and much simpler structured gut
microbiome in children belonging to E3.
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KEGG pathway enrichment analysis revealed distinct
differences in microbial functional patterns between enter-
otypes. Metabolic modules involved in biosynthetic path-
ways for leucine, lysine, serine, methionine, proline, and
histidine production, together with amino acid transport
systems for glutamate, branched-chain amino acid
(BCAA), and D-methionine, were highly enriched in the
microbiome of E3 (Reporter score > 1.96, Additional file 5:
Figure S4a). Conversely, the module for cysteine biosyn-
thesis was less represented in E3 (Reporter score < − 1.96,
Additional file 5: Figure S4a), in agreement with prior
studies reporting the lack of cysteine synthetase in the ge-
nomes of Bifidobacterium species [30, 31]. Furthermore,
compared to the other two enterotypes, the gut micro-
biota of children belonging to E3 showed higher enrich-
ment of functions involved in metabolism of simple
sugars including glycolysis and the pentose-phosphate

pathway, while functions for utilizing complex carbohy-
drates such as pectin, uronic acids, and glycosaminoglycan
degradation were depleted (Additional file 1: Table S10,
Additional file 5: Figure S4a). Consistently, Bacteroides
and Prevotella have been reported to possess large num-
bers of genes for fermentation and utilization of complex
polysaccharides [32]. In contrast, in vitro culture experi-
ments reported that Bifidobacterium strains grew well on
glucose or ribose containing media but exhibited poor or
no growth on media containing non-HMO-derived com-
plex carbohydrates such as inulin or exopolysaccharide
[33, 34]. Besides these differences, we also observed
enterotype-dependent differences in the potential for bio-
synthesis of several water and lipid-soluble vitamins. For
instance, children with a gut microbiota belonging to E1
showed higher potential for biosynthesis of cobalamin
(B12) and biotin (B7), whereas children belonging to E2

a

c
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Fig. 2 Stratification of early school-age children into three enterotypes based on their gut microbiome. a Scatter plot representing the three
enterotypes identified using Dirichlet multinomial mixtures (DMM)-based clustering among early school-age Dutch children. MDS multidimensional
scaling. b Genus abundance box plots showing the main contributors of each enterotype. c Correlations between enterotype enriched species, with
the log10-transformed relative abundance of each species indicated by the circle area. Only the top 10 most abundantly enriched species in each
enterotype are displayed. Red line indicates positive correlation and gray line indicates negative correlation (SparCC, pseudo P < 0.01)
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exhibited higher potential for biosynthesis of menaquin-
one (vitamin K), pantothenate (B5), and riboflavin (B2)
(Additional file 5: Figure S4a). A list of KEGG modules
that differed significantly in abundance between entero-
types is provided in Additional file 1: Table S10. A heat-
map showed that the relative abundance profiles of eight
selected KOs, which are responsible for key steps in amino
acid biosynthesis and carbohydrate metabolism, allowed
to distinguish children in E3 from the two other groups
(Additional file 5: Figure S4b).

Associations between early events and pre-school
lifestyle and gut microbiota in school-age children
In order to identify interactions between early environ-
mental factors and the microbiota, we first conducted a
PCA to assess the multivariate variation in children of
the early events, pre-school dietary, and non-dietary life-
style factors (Additional file 1: Table S1). We found that
breastfeeding duration, educational level of mother at
childbirth, and pre-school dietary patterns including in-
take of protein, fiber, and milk products contributed
most to the variability in PC1 (15.05%, Fig. 3a), and total
intake of carbohydrates and fat represented the second
most important variation among children, as displayed
in PC2 (12.74%, Fig. 3a). Interestingly, children in E3 ex-
hibited lower PC1 scores but higher PC2 scores than
children in E1 (Fig. 3a, Wilcoxon rank-sum test, P <
0.05). This inter-enterotype difference was governed by
specific major contributors of the PC1 scores, including
shorter breastfeeding duration and less intake of dietary
fiber and plant-based protein in E3 as compared to the
two other enterotypes (Kruskal-Wallis test, P < 0.05)
(Fig. 3b, Additional file 1: Table S11). Next, we per-
formed permutational multivariate analysis of variance
(PERMANOVA) to assess the interactions between early
events, pre-school lifestyle, and microbial gene profiles
among all individuals and then went on to evaluate their
interactions in each enterotype. Based on the entire
population of children, early events including breastfeed-
ing duration, the pre-school lifestyle including intake of
plant-based protein and dietary fiber were significantly
correlated with the microbial composition at 6–9 years
of age (adjusted P < 0.05, Bray-Curtis distance, Fig. 3c).
In addition, we identified several different correlation
patterns within each enterotype (Fig. 3c). For instance,
plant-based protein intake was significantly correlated
with the gut microbiota in E2 (adjusted P < 0.05), but
not in E1 and E3 (adjusted P > 0.05).
Spearman’s rank correlation analyses further revealed

significant correlations between early events, pre-school
lifestyle, and the relative abundance of certain microbial
species (Additional file 6: Figure S5a, adjusted P < 0.05).
Interestingly, bacteria enriched in E3 such as B. adolescen-
tis, B. angulatum, and B. breve were negatively correlated

with breastfeeding duration (Additional file 6: Figure S5a).
The relative abundances of several Streptococcus species,
reported to be part of the oral cavity microbiota of chil-
dren [35–37], were positively related to maternal BMI
(Additional file 6: Figure S5a, adjusted P < 0.05). The rela-
tive abundances of B. angulatum, B. dentium, and Strepto-
coccus mitis were negatively correlated with plant-based
protein intake (adjusted P < 0.05). Moreover, several spe-
cies showed correlations with both early events and
pre-school dietary patterns before age 5. For instance,
Streptococcus parasanguinis and Streptococcus gordonii
that associated with maternal BMI were also positively
correlated with animal-based protein intake (adjusted P <
0.05). Similarly, the relative abundances of Collinsella
intestinalis showed a positive correlation with maternal
BMI and a negative correlation with dietary fiber in-
take (adjusted P < 0.05). Collectively, our findings indi-
cate that both early events and pre-school dietary
lifestyle contribute to shaping of the gut microbiota
in school-age Dutch children, with different factors
influencing each enterotype.

Enterotype-dependent associations between school-age
metabolic phenotypes and pre-school lifestyle
An increasing number of studies has linked the gut
microbiota with host metabolic phenotypes, including
glucose and insulin homeostasis, and amino acid metab-
olism [38–40]. We examined the association between
the gut microbiota and metabolic phenotypes including
glucose, insulin, and amino acids levels measured in
blood samples collected 3.5 h after the last meal on the
same day as the fecal samples were collected (Additional
file 6: Figure S5b). We observed that the relative abun-
dances of Bacteroides spp., including Bacteroides xylani-
solvens, B. dorei, B. vulgatus, and B. eggerthii, enriched
in E1, were negatively correlated with plasma branched-
chain amino acid (BCAA) levels. It has been demon-
strated in a single mouse study that certain Bacteroides
strains may contribute to BCAA degradation and hence
reduce the circulating levels of BCAA in the host [41].
In addition, we also observed positive correlations be-
tween Dorea longicatena, Coprococcus comes, and
plasma glutamate levels, which is in line with a recent
study reporting an enrichment of these species and
plasma glutamate levels in young obese Chinese adults
[42]. The abundance of S. gordonii positively correlated
with plasma total triglyceride and glucose.
Next, we examined if the measured levels of blood

metabolic parameters, such as insulin and glucose, in
school-age children differed between the three enterotypes.
No differences were observed between individuals
within the three enterotypes (Additional file 1: Table
S11, Kruskal-Wallis test, P > 0.05).
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Given the multi-relationships between gut microbiota
and the above-mentioned early events and pre-school
lifestyle, we next asked whether these factors would im-
pact metabolic responses in the early school-age chil-
dren. We first conducted Spearman’s rank correlation
analyses between early factors and school-age metabolic
phenotypes across the entire children cohort. We found
that insulin levels exhibited negative associations with
the pre-school lifestyle related to intake of plant-based
protein and dietary fiber (Spearman’s correlation, ad-
justed P < 0.05, Additional file 7: Figure S6a). However,
by stratifying according to enterotypes, we observed
different correlation patterns among children within

the different enterotypes. For instance, only children
within E1 and E2 exhibited negative associations be-
tween insulin levels and intake of plant-based protein
and dietary fiber (adjusted P < 0.05, Additional file 7:
Figure S6b, c). In addition, the negative correlations be-
tween increased pre-school dietary fiber intake and re-
duced total serum triglyceride (TG) levels at school-age
were solely present in E2 (Additional file 7: Figure S6c).
Despite no such relationships were seen for E3 children, we
found plasma free fatty acid (FFA) levels positively corre-
lated with animal-based protein (Additional file 7: Figure
S6d), and additionally, a few Streptococcus spp. to be posi-
tively correlated with the plasma FFAs levels only in this
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Fig. 3 Multiple early events and pre-school lifestyle associated with the school-age gut microbiota. a PCA showing the multivariate variation of
children and the major contributions of different factors to PC1 and PC2. A total of 18 factors including early events and pre-school lifestyle
(Additional file 1: Table S1) were subjected to PCA, and those factors with component scores for PC1 or PC2≥ 0.2 were shown as major
contributors. Box plots showing the overall distribution of PC1 and PC2 scores within each enterotype (#P<0.05; Wilcoxon rank-sum test). b
Significant major contributors in PCA between enterotypes (#P < 0.05, Wilcoxon rank-sum test; *P < 0.05, Dunn’s post-hoc test). The details of
statistical results for all factors are shown in Additional file 1: Table S11. c PERMANOVA of the influence of single-factor early events and
pre-school lifestyle on the gut microbial gene profile in the entire cohort and within each enterotype (#P < 0.05; * adjusted P < 0.05)
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group (Additional file 8: Figure S7). Most of these
enterotype-dependent associations persisted after adjusting
for multiple covariates including sex, age, and BMI z-score
at stool collection and early events by linear regression
models (Additional file 1: Table S12).
Further, the children in E3 who did not exhibit a nega-

tive correlation between pre-school dietary lifestyle of
plant-based protein and dietary fiber intake and blood
insulin levels at school-age exhibited a lower potential
for complex carbohydrate metabolism (Additional file 5:
Figure S4, Additional file 7: Figure S6). We assumed that
the different responses of insulin levels to dietary fiber
intake might be due to variations in metabolites reported
to influence systemic insulin levels such as butyrate [13]
generated by the gut microbiota in response to intake
and fermentation of complex carbohydrates. Hence, we
compared the abundances of genes involved in the con-
version of crotonyl-CoA to butyrate, which is one of the
final steps for butyrate production. Interestingly, the
abundance of the bcd gene encoding butyryl-CoA de-
hydrogenase (K00248) was significantly enriched in both
E1 and E2 as compared to E3. Moreover, the abundances
of ptb (phosphate butyryltransferase, K00634), buk (bu-
tyrate kinase, K00929), and but (butyryl CoA: acetate
CoA transferase, K01034) were all significantly enriched
in E1 as compared to E2 and E3, suggesting a higher po-
tential for butyrate production in E1 (Fig. 4a, b). A taxa
distribution analysis revealed that Faecalibacterium
prausnitzii, Eubacterium halii, Roseburia inulinivorans,
and Odoribacter splanchnicus largely accounted for the
prevalence of the bcd genes when focusing on differ-
ences of butyrate production potentials between entero-
types (Fig. 4d, Additional file 1: Table S13). We further
compared the relative abundance of genes required for
succinate production between the three enterotypes,
since succinate has been reported as a microbial product
produced in response to dietary fiber intake that may con-
tribute to improved plasma glucose and body weight regu-
lation [43]. As shown, E2 exhibited significantly higher
abundances of genes encoding the succinate dehydrogen-
ase complex (K00239, K00240, and K00241) than E1, and
the dominant contributor in E2 was Prevotella copri
(Fig. 4c, e). Despite the fact that propionate is commonly
converted from the succinate pathway in the intestine [44],
no differences were observed between the three enterotypes
with respect to the relative abundance of pct genes
(K01026) encoding the propionate CoA-transferase,
which is responsible for the last step in propionate pro-
duction (Additional file 1: Table S14, Kruskal-Wallis
test, P > 0.5).
Collectively, our results illustrate that early events and

pre-school dietary lifestyle impact on the development
of the gut microbiota, which in turn seems to affect host
metabolic responses.

Discussion
Comprehensive information on the structural and func-
tional configuration of the gut microbiota of early
school-age children is limited. Previous studies have sur-
veyed this age-specific population using 16S rRNA gene
amplicon sequencing or metagenomic shotgun sequen-
cing with relatively small sample sizes [17, 18]. In this
study, we provide a comprehensive overview of the gut
microbial characteristics of 281 early school-age Dutch
children, displaying an enrichment of bacteria from the
Bacteroidetes and Actinobacteria phyla, and a similar
functional composition as compared to Dutch healthy
adults. Furthermore, we identified three enterotypes in
healthy children, with children dominated by Bifidobac-
terium showing the lowest gene number and the lowest
diversity compared to children enriched by Bacteroides
or Prevotella, suggesting stratified developmental trends
of the childhood gut microbiota toward an adult-like
configuration.
Further supporting the concept of the importance of

environmental factors in shaping the development of the
gut microbiota, we found several factors, especially
breastfeeding duration in early life and plant-based food
intake (dietary fiber and plant-based protein) in
pre-school children (adjusted P < 0.05), to significantly
correlate with the gut microbiota composition in
school-age children. Moreover, we identified a shorter
breast-feeding duration in the Bifidobacterium-domi-
nated enterotype (E3) in school-age children than in
other groups. This was reflected in significant negative
correlations between a few Bifidobacterium species and
breastfeeding duration including the most abundant
adult-type B. adolescentis. In pre-school children, less
than average dietary fiber intake was also observed in
E3, in accordance with previous studies that reported
significantly lower abundance of Bifidobacterium in
healthy subjects on fiber-blend formula than subjects on
fiber-free formula [45], and lower Bifidobacterium in
vegans than in vegetarians [46]. Functional analyses
demonstrated that children with a gut microbiota
enriched in Bifidobacterium strains favored utilization
of simple sugars but lacked the potential for complex
carbohydrate utilization. In addition, a recent Dutch
adult cohort study reported that the relative abun-
dance of Bifidobacterium in the gut could be affected
by an interaction between genotype and intake of
dairy products, with adults of the GG genotype on
rs4988235 in the MCM6 gene showing a positive rela-
tionship between Bifidobacterium abundance and milk
product consumption [16]. Combined, the present and
previous findings suggest that intestinal Bifidobacterium
levels might not only be influenced by early events
and dietary patterns but also by host genetics. However,
the detailed mechanisms underlying colonization and
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establishment of Bifidobacterium species in the human
gastrointestinal tract remain to be determined.
Dietary patterns have been shown to substantially im-

pact on the gut microbiota and host metabolism. A key
finding of this study is the enterotype-stratified associ-
ation pattern between school-age metabolic phenotypes
and pre-school dietary patterns. Although the benefits of
a high-fiber diet have been well documented in epi-
demiological studies, we only observed significant nega-
tive correlations between plant-based diet intake (dietary
fiber and plant-based protein) and insulin levels in chil-
dren with high abundances of Bacteroides or Prevotella,
but not in children with high Bifidobacterium abun-
dance. Similarly, the dietary fiber-induced improvement
in postprandial glucose response has also been shown to

be associated with increased abundance of Prevotella in
a recent human intervention study [48]. In our search
for possible functional explanations for the identified
enterotype-dependent correlations, we discovered very
distinct gut microbial functional capacities between
enterotypes, particularly in relation to the potential for
transformation of metabolites derived from microbial
fermentation. Thus, the functional potential for fermen-
tation of complex carbohydrate was less in children with
high Bifidobacterium abundance compared to others.
Focusing on the two groups with higher fermentation
potential, we observed that children with a Bacteroides-
driven enterotype exhibited a higher abundance of a set
of genes (buk and but) related to butyrate biosynthesis,
while children with a Prevotella-driven enterotype

a

d e

b c

Fig. 4 Enterotype-associated differences in potential for butyrate, succinate, and propionate production. a Pathway showing the genes involved
in final biosynthetic steps from crotonyl-CoA to butyrate, including bcd (butyryl-CoA dehydrogenase, K00248), ptb genes (phosphate butyryltransferase,
K00634), buk genes (butyrate kinase, K00929), and but (butyryl CoA:acetate CoA transferase, K01034). b The relative abundance of genes involved in
butyrate production within each enterotype. c The relative abundance of genes involved in succinate production (succinate dehydrogenase complex
(K00239, K00240 and K00241) within each enterotype. d Mean relative abundance of bcd genes (K00248) listed according to annotated bacterial
species within each enterotypes. e Mean relative abundance of sdhA genes (K00239) listed according to annotated bacterial species within each
enterotypes. Dunn’s post-hoc test; **P < 0.01, ***P < 0.001
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possessed higher potential for succinate production.
Both butyrate and succinate have been demonstrated to
exert beneficial effects in relation to glucose and insulin
homeostasis [13, 43]. Together, our findings support the
notion that host metabolic benefits of plant-based diets
might be conferred by specific bacteria and specific me-
tabolites derived from carbohydrate fermentation. In
addition, several Streptococcus spp. exhibited negative cor-
relations with dietary fiber and plant-based protein intake
in E2, but not in E1 and E3. Streptococcus spp. being high
in E3 might also play a role in the enterotype-based meta-
bolic responses to dietary patterns in this group due to the
reported positive correlation with total fat consumption
and elevated plasma free fatty acid levels. Further
well-controlled dietary intervention studies are warranted
to confirm the metabolic responses to dietary factors and
establish the causal roles for these bacterial taxa and func-
tional pathways in determining the host metabolic benefits
observed in this study.
In conclusion, this study reveals important characteris-

tics of the gut microbial structure and function in
healthy early school-age Dutch children, which are af-
fected by certain early life factors, such as breastfeeding
duration and pre-school dietary habits, while the influ-
ence from physical activity is negligible. Of specific note,
our findings suggest that distinct metabolic responses to
dietary lifestyle are strongly governed by the compos-
ition and functional potentials of the gut microbiota, im-
plying that stratification of children according to gut
microbiota enterotypes may well be included in future
investigations on the relationship between dietary intake
and metabolic health in children.

Method
KOALA study population
The 281 Dutch children were part of the KOALA Birth
Cohort Study. The design of the study has been described
in detail elsewhere [47]. Inclusion criteria for the present
study were the availability of fecal and blood samples col-
lected in children 6 to 9 years of age (72–108 months).
Children born prematurely, twins, children with abnor-
malities linked to growth (such as Down’s syndrome,
Turner syndrome, Fallot’s tetralogy, multiple disabilities,
and cystic fibrosis), and children treated with antibiotics
within 4 weeks prior to fecal sample collection were ex-
cluded. Fecal samples were collected as previously de-
scribed [48]. Blood samples and anthropometric measures
were collected during home visits within the week of fecal
collection. Height and weight were measured by trained
research assistants. BMI measurements were converted
into age- and gender-specific z-scores using data from
children enrolled in the Dutch National Growth Study as
the reference population and converted into dichotomous
outcomes: lean vs. overweight (BMI z-score > 1.04,

corresponding to the 85th percentile according to stand-
ard guidelines [23]).
Blood samples were collected approximately 3.5 h after

the last meal intake. Data on early events were collected
through repeated parent-reported questionnaires during
pregnancy and early life. Lifestyle characteristic including
dietary intake (Food Frequency Questionnaire) and phys-
ical activity were collected through questionnaires at 4–
5 years as described previously [49]. Blood biochemical in-
dices were measured by radioimmunoassay (insulin, adi-
ponectin, leptin) or with enzymatic/colorimetric methods
on an automated spectrophotometric analyzer (free fatty
acids, glucose, total and HDL cholesterol, triglycerides,
high-sensitivity C-reactive protein). Plasma amino acids
were measured by ultra-performance liquid chromatog-
raphy–tandem mass spectrometry (UPLC-MS/MS) [50].
The summary of sample information is presented in
Additional file 1: Table S1.

Generation of children fecal metagenomic data
Libraries with an insert size of 350 base pair (bp) were
constructed from metagenomic DNA for each sample fol-
lowing the manufacturer’s instructions (Illumina, San
Diego, California, USA). Illumina sequencing with 100 bp
paired-end reads was applied to all 281 samples.

Availability of public Dutch adult metagenomic data
Illumina-based paired-end metagenomic sequencing
data were collected from 62 healthy Dutch adult con-
trols from the Maastricht IBS cohort (MIBS-CO) [16].
The sample information is presented in Additional file 1:
Table S3.

Profiling of metagenomic samples
The raw sequencing data from the KOALA cohort were
processed for quality control using the FASTX toolkit in
the MOCAT pipeline [51]. We trimmed reads with con-
tinuous bases from the 3′-end of a read with average
Phred score ≤ 20 and kept the remaining high-quality
reads with length larger than 30 bp. The high-quality
reads were then aligned to hg19 using SOAP2.2 (identity
≥ 0.9) to remove human reads. The high-quality
non-human reads were defined as clean reads and
aligned against the human gut microbial integrated gene
catalog (IGC) to generate count profiles using SOAP2.2
(identity ≥0.95) [15].
To eliminate the influence of sequencing depth in

comparative analyses, unique IGC mapped reads of each
sample were downsized to 20 million for each child. After
this, we identified 268,363 to 1,069,059 microbial genes in
the 281 samples, with an average of 694,404 genes per
sample. The relative abundance profiles of genes, genera,
species, and KOs were determined by summing the rela-
tive abundance of genes from each taxon or KO using the
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downsized mapped reads per sample [15]. Due to the rela-
tively limited amount of data (average 13.5 million
uniquely mapped reads per adult), the metagenomic data-
sets from Dutch adults were processed to calculate Shan-
non index and generate gene, genus, KO, and eggNOG
profiles using the same pipeline as described above with-
out reads downsizing. Data statistics for each sample
are provided in Additional file 1: Table S2.

Richness, diversity, and enterotype analysis
Alpha diversity (within-sample diversity) was quantified
by the Shannon index using gene relative abundance
profiles [15]. Beta diversity (between-sample diversity)
was calculated using Bray-Curtis distance (R 3.2.5, vegan
package 2.4-4). For Dutch children, the gene and KO
counts which represented gene or functional richness
were calculated in each downsized sample in accordance
with the previous study [22].
Genus-level enterotypes analysis was performed ac-

cording to the Dirichlet multinomial mixtures (DMM)
and partitioning around medoid (PAM)-based clustering
protocols using Jensen-Shannon divergence (PAM-JSD)
and Bray-Curtis (PAM-BC) (Additional file 9: Figure S8)
[29, 27]. The optimal cluster number of the protocols
was calculated using Laplace approximation and
Calinski–Harabasz index [29, 27], with all protocols in-
dicating an optimal cluster number of three among the
281 Dutch children (Additional file 9: Figure S8a–c). We
next randomly selected 200, 220, 240, 260, and 280 sam-
ples for enterotype clustering to evaluate clustering stabil-
ity of the three protocols, by repeating the above sampling
and clustering process 10 times for each sample size and
generating enterotyping results of 50 times for each
method. The DMM-based protocol, which showed a
higher consistency than the two PAM-based protocols,
was chose for this study (Additional file 9: Figure S8d–f ).

KEGG enrichment analysis
Differentially enriched KEGG modules were identified
according to reporter Z-scores. One-tail Wilcoxon
rank-sum test was performed on all the KOs that oc-
curred in more than six samples and adjusted for mul-
tiple testing using the Benjamini-Hochberg method [52].
The Z-score for each KO was calculated based on the
adjusted P value for a particular KO and the aggregated
Z-score for each module was calculated from the
Z-scores of all KOs involved in the module [6]. An abso-
lute value of reporter score of 1.96 (95% confidence ac-
cording to normal distribution) or higher was used as
the detection threshold for significance.

Statistical analyses
Before comparison, the taxa with low coverage of anno-
tated gene number (less than 100) in the entire cohort

were filtered for further analyses and this confined our
analysis to 82 genera and 226 species. Principal compo-
nent analysis (PCA) was implemented using the function
prcomp in R 3.2.5.
Wilcoxon rank-sum tests were conducted to detect dif-

ferences in the gut microbial characteristics, including gene
count, Shannon index, and the relative abundances of gen-
era, species, and KOs between the Dutch children and
adults, and between overweight and lean children.
Kruskal-Wallis tests were performed to assess the differ-
ences in gut microbial characteristics and continuous
phenotypic variables between enterotypes. Dunn’s post-hoc
tests followed by pairwise comparisons were performed to
explore the differences between two groups. To detect the
differences in categorical phenotypic variables, Chi-square
tests were conducted. The Benjamini-Hochberg method
was used for multiple testing correction [52], with cutoff
for adjusted P value at 0.05.
Permutational multivariate analysis of variance (PER-

MANOVA) was performed to assess the correlation be-
tween gene-level microbial profiles and phenotypic
factors including early events and lifestyle (Bray-Curtis
distance). The pseudo F statistics and P values were cal-
culated using the function adonis from vegan package in
R 3.2.5 based on 9999 permutations. The cutoff was set
as adjusted P < 0.05.
SparCC was run with default parameters and 1000

bootstraps to test for correlations between the relative
abundances of species [53]. Pseudo P values were calcu-
lated as the proportion of simulated bootstrapped data
sets with a correlation at least as extreme as the one com-
puted for the original data set. The significant cutoff for
SparCC was set at pseudo P < 0.01. The co-occurrence
network of species was visualized in Cytoscape 3.5.1.
Spearman’s rank coefficient correlation (SCC) analysis

was used for correlations between continuous pheno-
typic factors and between continuous phenotypic factors
and microbial species or KOs. The significant cutoff for
SCC was set at an adjusted P < 0.05.
General linear model (GLM) regression analyses were

conducted to validate the enterotype-dependent associa-
tions between pre-school lifestyle and school-age blood
metabolic parameters determined by Spearman correl-
ation analysis. Two confounder adjustment models were
applied, with model 1 adjusting for gender, age, and BMI
z-score and model 2 adjusting for gender, age, BMI
z-score, and all early events. Shapiro-Wilk test was con-
ducted to test for normality of residuals of the regression
models. Box-Cox transformation was conducted on
dependent variables of non-normally distributed residuals.
Residuals were considered as normally distributed with
P > 0.05 (Shapiro-Wilk test). The regression coefficient (β)
and two-tailed P values for the coefficient were calculated
(glm in R 3.2.5). The P < 0.05 was regarded as significant.
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Additional file 2: Figure S1. Compositional and functional comparison
between Dutch children and adults. Relative abundance of major phyla
in Dutch children (a) and adults (b). (c) Relative abundance of COG
(clusters of orthologous groups) categories across each sample in Dutch
children and adults. (PDF 298 kb)

Additional file 3: Figure S2. Gene count distribution in Dutch
children. Black indicates all individuals, n = 281; red indicates lean
children (BMI z-score < 1.04, n = 258) and blue indicates overweight
children (BMI z-score ≥ 1.04,n = 23). A bimodal distribution of bacterial
gene counts observed in the overweight group with the children
having gene numbers lower than 600,000 (n = 8) showing significant
higher BMI z-score (Wilcoxon rank-sum test, P = 0.016). (PDF 123 kb)

Additional file 4: Figure S3. Comparison of gut microbial
compositional and functional structure between enterotypes. (a-c)
Comparison of gene count, gene-based Shannon diversity and reads
mapping ratio to the taxonomic annotated genes between enterotypes.
(d-f) Comparison of gene count, KO-based Shannon diversity and reads
mapping ratio to the KO annotated genes between enterotypes. Dunn’s
post hoc test, *, P<0.05; **, P < 0.01; ***, P < 0.001. The fraction of reads
mapped to genes with taxonomic or KO annotation was calculated by
dividing the number of reads mapped to annotated genes by the total
number of reads mapped to IGC. (g) Comparison of beta diversity
between enterotype-based children and adults. (PDF 204 kb)

Additional file 5: Figure S4. Comparison of gut microbial functional
potentials between enterotypes. (a) Differentially enrichment of KEGG
modules between enterotypes. Dashed lines indicate a reporter score
of 1.96, corresponding to 95% confidence in a normal distribution.
(b) Heatmap showing that the relative abundance profiles of 8
selected KOs involved in key functions of metabolic pathways for
carbohydrate metabolism (K00845, K01051 and K00873) and amino
acid biosynthesis (K01738, K00928, K00058, K00651and K00765)
distinguishes E3 from E1 and E2. (PDF 358 kb)

Additional file 6: Figure S5. Correlations between continuous
phenotypic parameters and species profile in the entire cohort. (a)
Spearman’s rank correlations between early events, pre-school lifestyle
and species profile (n = 281). (b) Spearman’s rank correlations
between blood parameters and species profiles (n = 281). P values
were adjusted for each parameter. The “*” indicates significant correl-
ation with adjusted P < 0.05. Species significantly correlated with at
least one factor are presented. (PDF 301 kb)

Additional file 7: Figure S6. Correlations between continuous
phenotypic parameters. (a) Spearman’s rank correlations between
continuous phenotypic parameters in the entire cohort (n = 281). (b)
Spearman’s correlations between continuous phenotypic parameters
in E1 (n = 143). (c) Spearman’s rank correlations between continuous
phenotypic parameters in E2 (n = 74). (d) Spearman’s rank correlations

between continuous phenotypic parameters in E3 (n = 64). The “*”
indicates significant correlation with adjusted P < 0.05 (PDF 296 kb)

Additional file 8: Figure S7. Correlations between Streptococcus species
profile and selected phenotypic parameters in enterotypes. Heatmap
showing the Spearman’s rank correlations between Streptococcus species
and selected phenotypic parameters including free fatty acids levels and
the intake of total carbohydrate, total fat, dietary fiber, and plant-based
protein. P values were adjusted for each parameter. The “*” indicates
significant correlation with adjusted P < 0.05. The “#” indicates correlation
with P < 0.05 and adjusted P > 0.05. FFA, free fatty acids. (PDF 197 kb)

Additional file 9: Figure S8. Evaluation of enterotying protocols for
Dutch children. (a-c) Evaluation of optimal cluster number by using the
DMM protocol (a), the PAM-JSD protocol (b) and the PAM-BC protocol
(c). The optimal number of clusters was calculated using Laplace
approximation for the DMM protocol (a) and the Calinski–Harabasz
index for the PAM-based protocols (b-c). Cluster stability using the
DMM (d), the PAM-JSD (e) and the PAM-BC protocols (f). The X axis
indicates resampling number and the Y axis indicates the consistency
of resampling relative to the original result based on 281 samples.
(PDF 221 kb)
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