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Abstract

Background: The esophageal microbiome has been proposed to be involved in a range of diseases including the
esophageal adenocarcinoma cascade; however, little is currently known about its function and relationship to the
host. Here, the esophageal microbiomes of 106 prospectively recruited patients were assessed using 16S rRNA and
18S rRNA amplicon sequencing as well as shotgun sequencing, and associations with age, gender, proton pump
inhibitor use, host genetics, and disease were tested.

Results: The esophageal microbiome was found to cluster into functionally distinct community types
(esotypes) defined by the relative abundances of Streptococcus and Prevotella. While age was found to be a
significant factor driving microbiome composition, bacterial signatures and functions such as enrichment with
Gram-negative oral-associated bacteria and microbial lactic acid production were associated with the early
stages of the esophageal adenocarcinoma cascade. Non-bacterial microbes such as archaea, Candida spp., and
bacteriophages were also identified in low abundance in the esophageal microbiome. Specific host SNPs in
NOTCH2, STEAP2-AS1, and NREP were associated with the composition of the esophageal microbiome in our
cohort.

Conclusions: This study provides the most comprehensive assessment of the esophageal microbiome to date
and identifies novel signatures and host markers that can be investigated further in the context of
esophageal adenocarcinoma development.
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Background
Esophageal adenocarcinoma (EAC) is one of the two main
histological types of esophageal cancer. The incidence of
EAC has substantially increased since the 1970s [1], and
this rise represents a real increase in disease burden unre-
lated to over-diagnosis or reclassification [2].
EAC is the final stage of a cascade of events that

begin with gastroesophageal reflux disease (GERD), a
condition where the esophagus is chronically exposed
to acid, bile, and other stomach contents [3]. This re-
sults in inflammation and injury of the squamous

esophageal epithelium and an increased risk for devel-
oping Barrett’s esophagus (BE). BE is a premalignant
condition that dramatically increases the risk of devel-
oping EAC [4]. While initially believed to involve a
protective mechanism of trans-differentiation of squa-
mous cells to columnar cells, more recently, it has
been shown that BE arises from transitional basal
cells at the squamous–columnar junction that in-
crease in number due to GERD [5].
The EAC cascade is multifactorial, developing from a

complex interplay of host anthropomorphic factors, host
genetic and epigenetic factors, host immune response, as
well as environmental factors [6, 7]. More recently, the
esophageal microbiome has been proposed as an etio-
logical agent that influences esophageal sphincter
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activity [8] and drives inflammation in the early stages of
the cascade [3]. Early studies on the esophageal micro-
biome showed that the dominant taxon within the
healthy esophagus was Streptococcus [9] and that the
EAC cascade is characterized by a shift towards a dom-
inance of Gram-negative bacterial species [10]. While
later studies have not been able to replicate these find-
ings [11], others have shown enrichment of specific
Gram-negative bacterial species such as Campylobacter
and Fusobacterium in the EAC cascade [12, 13].
Despite this, our relative understanding of the esopha-

geal microbiome and its function in the host remains
limited when compared to the gut microbiome. Here,
we comprehensively assessed the esophageal micro-
biome of 106 prospectively recruited patients using shot-
gun as well as amplicon sequencing and associated
specific microbial signatures with host genetics and
disease.

Results
The esophageal microbiome clusters into community
types
The esophageal microbiota was first profiled in brushing
samples by 16S rRNA amplicon sequencing. Hierarchical
clustering analysis based on the top 50 OTUs clustered
samples into at least three community types (Fig. 1a, Add-
itional file 1.1). A fourth cluster was also seen (Fig. 1a) but
was not examined further due to the low number of sub-
jects within it (n = 2). The three main community types
were detected when OTU relative abundances were ana-
lyzed with a Bray–Curtis dissimilarity matrix (Fig. 1b),
with adonis showing a significant difference between clus-
ters (R2 = 0.16, P = 0.00033). The difference was further
confirmed with ANOSIM (sample statistic = 0.42 and P =
0.001). Pairwise comparisons at the OTU level using PER-
MANOVA showed that each cluster differed in compos-
ition to the other (Fig. 1c), and this was confirmed up to
the phylum level (Additional file 1.2).
To account for the effect of disease, the microbial

composition of clusters was tested in the subset of sub-
jects with a normal esophagus. Significant differences
were still observed across the three clusters (t = 2.3, 2.0,
3.1; P = 0.001, permutations = 998, df = 41, 43, 28). Fur-
ther, replicate samples from the same individuals (sam-
ples labeled A and B) clustered in the same community
type despite being sampled from different locations in
the lower esophagus (one from inflamed region and an-
other from a region adjacent) (Additional file 1.3).

Esophageal community types can be detected using
shotgun sequencing
To examine the presence of community types more com-
prehensively, shotgun sequencing was then performed on
99 samples. Despite collecting brushing samples which

limit the levels of host DNA relative to microbial DNA, a
high level of contamination with human reads was still ob-
served in our test run (Additional file 2: Figure S1A). An
enrichment of microbial DNA was then performed and a
4.2 ± 1.9 (mean fold change ± SD) increase in microbial
reads was established (Additional file 2: Figure S1A). No
significant shifts in microbial composition were observed
between the original and enriched samples (Add-
itional file 2: Figure S1B–D); however, it is worth noting
that the sequencing of original samples had a low number
of microbial reads (118,202–331,573 microbial reads), po-
tentially resulting in a less accurate profiling of the
microbiome.
Taxonomic analysis was performed using MetaPhlan2

following removal of human reads with Deconseq and
hierarchical clustering on the relative abundances identi-
fied three large community types (Fig. 1d). Two add-
itional small clusters (4 and 5) were also seen (Fig. 1d)
but included a very low number of subjects and were
not examined further. The presence of the three main
community types was also found using nMDS on a
Bray–Curtis dissimilarity matrix from the MetaPhlan2
output (Fig. 1e) with ANOSIM at the species level show-
ing a sample statistic of 0.54 and P = 0.001. Pairwise dif-
ferences in composition among clusters were shown at
species level using PERMANOVA (Fig. 1f) and confirmed
up to the phylum level (Additional file 1.2). The three main
clusters (1, 2, and 3) were found to be highly concordant
with the amplicon sequencing (Additional file 1.3).
To ensure clustering was not due to the data analysis

method, hierarchical clustering analysis was performed
on taxonomic output from MEGAN6 (Additional file 1.4).
This showed similar clustering to that seen from the
MetaPhlan2 output. The shotgun clusters were also
overlayed onto a weighted UniFrac distance matrix gen-
erated from the amplicon data (Additional file 1.5),
which indicated the clustering did not result from the
type of resemblance matrix used.

Relative abundances of Streptococcus and Prevotella
define the community types
To identify taxonomic signatures unique to each commu-
nity type, analyses were performed on the 16S rRNA ampli-
con (Fig. 2a, Additional file 1.6) and shotgun datasets
(Fig. 2b; Additional file 1.7). There were clear distinctions
among the community types, with cluster 2 being domi-
nated by Streptococcus (Streptococcus mitis/oralis/pneumo-
niae), cluster 3 by Prevotella (Prevotella melaninogenica
and Prevotella pallens), and to a lesser extent Veillonella
(Fig. 2a, b; Additional file 1.6 and 7). Cluster 1 was an inter-
mediate type with respect to abundances of Streptococcus
and Prevotella but had increased levels of Haemophilus
(Haemophilus parainfluenzae) and Rothia (Rothia mucila-
ginosa) (Fig. 2b; Additional file 1.7).
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Dirichlet multinomial mixture modeling was per-
formed to confirm the distribution of relative abun-
dances using unsupervised methods. At three partitions,
the models were concordant with the three main clus-
ters (89% accuracy). The relative abundance of OTUs
across the three Dirichlet multinomial mixture partitions
was similar to the above taxonomic classification of the
clusters (Additional file 1.8). Discordant assignments
arose from the misclassification of samples from the
intermediate cluster (cluster 1) into either cluster 2 or 3.

SparCC analysis was then conducted on relative abun-
dances from shotgun data to examine the relationships
across individual species in each of the three community
types. While the density and direction of interactions differed
in each cluster, the interaction between Streptococcus mitis/
oralis/pneumoniae and Prevotella spp. was consistently
found to be a co-exclusion interaction (Fig. 2c;
Additional file 1.9). The above findings would suggest that
the ratio of Streptococcus to Prevotella is an important defin-
ing characteristic across esophageal community types.

Fig. 1 The esophageal microbiome clusters into different community types (esotypes). a Heatmap of relative abundances of the top 50
OTUs generated through 16S rRNA amplicon sequencing were used for a hierarchical cluster analysis (HCA) within MetaPhlan2. Dark blue
to yellow correspond to 0.1–100% abundance. All available samples (n = 122) were utilized in this analysis. Taxonomy of OTUs is provided
in Additional file 1.1. b Non-metric multidimensional scaling (nMDS) plot of Bray–Curtis resemblance generated from square root-
transformed OTU relative abundances (all OTUs). OTU relative abundances were generated from 16S rRNA amplicon sequencing. Clusters
from the HCA (panel a) were overlayed onto the nMDS plot. c PERMANOVA across HCA clusters of Bray–Curtis resemblance generated
from square root-transformed OTU relative abundances. Test of the homogeneity of multivariate dispersions within groups at OTU level
using PERMDISP showed no differences across clusters. ANOSIM generated a sample statistic of 0.42 and P = 0.001. d Relative abundances
of the top 50 species generated through shotgun sequencing and MetaPhlan2 analysis were used for HCA. HCA was performed in
MetaPhlan2. e nMDS plot of Bray–Curtis resemblance generated from square root-transformed species relative abundances (shotgun). All
available shotgun samples were utilized in this analysis. Clusters from HCA of shotgun data (MetaPhlan2) were overlayed onto the nMDS
plot. f PERMANOVA across shotgun HCA clusters of Bray–Curtis resemblance generated from square root-transformed species relative
abundances. ANOSIM at the species level generated a sample statistic of 0.54 and P = 0.001
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Additional characteristics differentiating the community
types were alpha diversity measures. In particular, cluster
2 could be differentiated from the other two clusters, hav-
ing significantly lower levels of species richness, evenness,
and Shannon’s diversity (Fig. 2d; Additional file 1.10). The
dominance of Streptococcus in cluster 2 was found to be
associated with the lower alpha diversity measures as
compared to the other community types.

Esophageal community types show distinct functional
signatures
Shotgun sequencing data were then analyzed using the
HUMANn2 pipeline and, changes across the KEGG
pathway and MetaCyc pathway reference databases were
examined to determine the functional changes within
the esophageal microbiome. The taxonomic community
types were functionally different across both KEGG and
MetaCyc (Fig. 3a; Additional file 1.11), with ANOSIM
showing test statistics > 0.4 and P = 0.001. Pairwise
differences between clusters were confirmed with
PERMANOVA (Fig. 3b; Additional file 1.11C). This was

also the case for the metagenomics predicted by PICRUSt
from the 16S amplicon sequencing (Additional file 1.12).
To determine the pathways that were enriched within each
community type, LEfSe analyses were performed. A range
of pathways were found to be significantly increased in each
of the three community types (Fig. 3c, d; Additional file 1.13
and 14). Cluster 1 was found to be enriched for glycolysis
as well as pathways involved in the metabolism of short
chain fatty acids, while cluster 2 was enriched for the pen-
tose phosphate pathway as well as fructose and mannose
metabolism (Fig. 3c; Additional file 1.13). Of particular
interest, cluster 3 was enriched for lipopolysaccharide
biosynthesis.

Bacterial signatures and functions are associated with
age, disease, and proton pump inhibitor (PPI) usage
The contribution of the subject and clinical metadata
(Table 1) to the clustering of the esophageal microbiome,
as well as the overall influence of these factors, were then
examined.

Fig. 2 Esophageal microbiome community types are defined by diversity and composition. a Principal component analysis of square root-
transformed OTU relative abundances. The relative abundances of Haemophilus, Streptococcus, and Prevotella per subject were overlayed
onto the PCA to define each cluster. Size of circle corresponds to relative abundance (%) of taxon. All available samples were utilized in
this analysis. b Comparison analysis of phylum and genus relative abundances (%) generated from MEGAN6 according to the community
types. Cluster 1, yellow; cluster 2, blue; cluster 3, red. Cluster 1 showed an enrichment of Prevotella and Haemophilus, cluster 2 showed an
enrichment of Streptococcus, and cluster 3 showed an enrichment of Prevotella and Veillonella. c Correlations across species (shotgun
MetaPhlan2) for each community type were calculated using SparCC and correlations greater than 0.2 or lower than − 0.2 were visualized
using Cytoscape. Thickness of line reflects the strength of correlation and color reflects direction (green: positive; red: negative). A
complete list of SparCC correlations within each cluster is provided in Additional file 1.9. d Alpha diversity measures for each community
type. ANOVA with Tukey’s multiple comparison tests were used to calculate P values. Results related to species evenness is provided
in Additional file 1.10
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Age
A strong effect of age on the global composition of the
esophageal microbiota was found in the amplicon
sequencing data (pseudo-F = 2.5; P = 0.005, df = 120)
and replicated in the shotgun data (pseudo-F= 2.5; P= 0.007,
df = 97). Microbial taxa associated with age were ex-
amined using DistLM (Additional file 3.1). Notably,
age was positively correlated with the relative abun-
dance of Streptococcus spp. such as Streptococcus
parasanguinis but not Streptococcus mitis/oralis/

pneumoniae. In contrast, it was inversely correlated
with P. melaninogenica but not P. pallens, suggesting
that age may contribute to but not fully explain the
different esophageal microbial community types. Simi-
lar to the taxonomic composition, a significant effect
of age (KEGG: pseudo-F = 3.7; P = 0.004, df = 97;
MetaCyc: pseudo-F = 3.6; P = 0.007, df = 97) on micro-
biome function was found. Specifically, age had a sig-
nificant influence on levels of bacterial nucleotide
biosynthesis pathways (Additional file 3.2).

Fig. 3 Esophageal community types are functionally distinct. a nMDS plot of Bray–Curtis resemblance generated from square root-transformed
KEGG pathway (level 3) relative abundances (generated using HUMAnN2). Clusters from HCA of shotgun data (MetaPhlan2) were overlayed onto
the nMDS plot. All available samples were utilized in this analysis. b PERMANOVA across shotgun HCA clusters of Bray–Curtis resemblance
generated from square root-transformed KEGG pathway relative abundances. ANOSIM at KEGG pathway level 3 generated a sample statistic of
0.46 and P = 0.001. c KEGG pathways identified using LEfSe analysis to be differentially abundant across each community type. All available
samples within each cluster were utilized in this analysis. Blue, cluster 1; green, cluster 2; red, cluster 3. d MetaCyc pathways identified using LEfSe
analysis to be differentially abundant across each community type. A full list of pathway names can be found in Additional file 1.14. All available
samples within each cluster were utilized in this analysis. ANOSIM for MetaCyc pathways generated a sample statistic of 0.41 and P = 0.001. Blue,
cluster 1; green, cluster 2; red, cluster 3
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Disease
Disease did not have a significant impact on alpha diver-
sity measures (Shannon’s diversity: H: 2.65 ± 0.06; GERD:
2.73 ± 0.08; GM: 2.66 ± 0.16; BE: 2.55 ± 0.21) or on global
taxonomic composition (Additional file 3.3). However, an
increase in a range of Gram-negative bacterial taxa was
observed across the early stages of the EAC cascade. Taxa
enriched in disease and never found to be enriched in nor-
mal subjects in any comparison included Leptotrichia
(e.g., L. wadei), Fusobacterium (e.g., F. necrophorum),
Rothia (e.g., Rothia mucilaginosa), Campylobacter, and
Capnocytophaga (Fig. 4a–c; Additional file 3.4–7). Of
interest, when stratified, each esophageal community type
was found to gain different bacterial taxa in GERD (Fig. 4a;
Additional file 3.6 and 7), suggesting that they may behave
differently in disease. Further, samples collected from GM
and BE patients within the area of inflammation showed
no significant differences to samples collected from the re-
gion adjacent to it (PERMANOVA; P = 0.96 and LEfSe; no
taxa identified).
SparCC analysis was repeated with subjects stratified

according to disease (normal, GERD, GM, and BE) to
examine the relationships across individual species in each
stage of disease (Fig. 4d; Additional file 3.8). The
co-exclusion relationship between Streptococcus mitis/ora-
lis/pneumoniae and Prevotella spp. was maintained across
all disease stages. Markedly denser microbial networks
(i.e., a substantial increase in relationships that passed the
cutoff of r > 0.2 or less than − 0.2 and P < 0.05) were ob-
served with progression of disease stage (normal: n = 49
correlations, GERD: n = 65, BE: n = 122; Fig. 4d).
No effects of disease on global microbial function were

observed (Additional file 3.9); however, changes in rela-
tive abundance of individual pathways were identified
(Fig. 4e, Additional file 3.10). An enrichment of the bac-
terial superpathway of hexitol degradation was found in
GERD and GM, even when accounting for community
types and PPI usage. Importantly, microbial lactic acid
production was increased in GERD and BE relative to
subjects with a normal esophagus, with pathways such
as homolactic fermentation enriched in GERD and

heterolactic fermentation increased in BE. Further, an in-
crease in heme biosynthesis from glycine or uroporphyr-
inogen was found in GERD as compared to subjects
with a normal esophagus.

PPI usage and gender
Despite a small drop in species richness in subjects with a
normal esophagus on PPIs as compared to subjects with a
normal esophagus without PPIs (number of OTUs: 208 ±
7 vs 221 ± 6, P = 0.15), gender and PPI usage did not have
a significant impact on alpha diversity measures or on the
global taxonomic composition of the esophageal micro-
biota (Additional file 2: Figure S2A–F). When patients
were stratified by disease, a minor effect of PPI on micro-
bial composition was observed in the GERD patients for
amplicon sequencing (Additional file 2: Figure S2E); how-
ever, the strength of this effect was not replicated in the
shotgun data (Additional file 2: Figure S2F). In line with the
small effect of PPI on microbial composition of GERD
subjects but not subjects with a normal esophagus, a higher
number of individual bacterial taxa were found to be
associated with PPI usage in GERD patients as compared
to subjects with a normal esophagus (Additional file 2:
Figure S3A, B).
No effects of gender or PPI usage on global microbial

function were observed (Additional file 2: Figure S4A–F).
Changes in relative abundance of individual pathways
were identified for PPI usage but not gender
(Additional file 2: Figure S5A, B). Increases in path-
ways TCA cycle VII (acetate producers) as well as
biosynthesis of antibiotics such as vancomycin and
streptomycin were found to be increased in subjects
who had taken PPIs.

Microbial eukaryotes and viruses are present in the
esophageal microbiome
Shotgun sequencing identified a range of taxa within the
esophagus belonging to microbial lineages other than
bacteria (Fig. 5). These organisms had relatively low
abundance as compared to the bacteriome and were not

Table 1 Clinical diagnosis and symptoms of subjects recruited into the study

Disease Number (%) Age (years) Gender (M) Reflux symptoms (Y) PPI (Y)

Normal 59 (55.7) 53.1 ± 6.9 21 1 32

GERD 29 (27.4) 52.0 ± 2.5 8 28 9

GM 7 (6.6) 59.3 ± 5.8 6 6 4

BE 5 (4.7) 59.2 ± 3.9 4 3 5

EAC 1 (0.94) 68 1 1 0

EoE 1 (0.94) 49 1 0 0

Clinical status of four subjects could not be identified due to the disintegration of the histology biopsy
GERD:gastroesophageal reflux disease, GM glandular mucosa, BE Barrett’s esophagus, EAC esophageal adenocarcinoma, EoE eosinophilic esophagitis, M male, Y yes,
PPI proton pump inhibitor
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detected in all patients. Archaea classified to Halobac-
teria (3 patients; 0.0094, 0.0096, and 0.013%) and Metha-
nosarcina (1 patient; 0.030%) were detected in 4/92
(4.3%) subjects whereas microbial eukaryotes classified
to Candida albicans, Candida glabrata, Saccharomyces
cerevisiae, and others were found (0.0097–1.08%) in 19/
92 (20.6%) subjects (Fig. 5a, b). Amplicon sequencing of
the 18S rRNA gene confirmed the presence of C. albi-
cans, C. glabrata, and Saccharomyces in four patients
that were found to have relatively higher levels (0.08–
1.08%) of these organisms in the shotgun analysis. De-
tection of parasitic worms such as Trichuris, Trichinella,
and Loa loa could not be confirmed using 18S rRNA
gene amplification and should be taken with caution as
they most probably arose from misclassifications within
the metagenomic annotation process.
Viruses, in particular, phages, were more common and

were identified in 90/92 (97.8%) subjects at a relative

abundance that ranged from 0.0094–0.64%. The classifi-
cation of the viral population identified a range of
phages including Streptococcus, Campylobacter, Lacto-
coccus, and γ-Proteobacteria phages (Fig. 5a, c). Human
viruses such as betaherpesvirus 7, gammaherpesvirus 4,
and gammapapillomavirus 13 were also identified in 1, 5,
and 1 subjects, respectively.

Host genetics is associated with the composition of the
esophageal microbiome
Despite enrichment for microbial DNA, shotgun sequen-
cing still resulted in a substantial number of reads that
mapped to the human genome (~ 70–90% reads/sample;
Additional file 2: Figure S1A). The GATK toolkit was used
to detect single nucleotide polymorphisms (SNPs) within
our samples. MicrobiomeGWAS (tool to analyze
microbiome-genome-wide association study data and iden-
tify SNPs associated with overall microbial composition)

Fig. 4 Esophageal microbial signatures associated with the early stages of the esophageal adenocarcinoma cascade. a Microbial taxa identified
using LEfSe analysis to be differentially abundant between GERD and subjects with a normal esophagus. The analysis was performed after
stratifying the subjects according to community types. Green, normal; red: GERD. b Microbial taxa identified using LEfSe analysis to be
differentially abundant between BE and subjects with a normal esophagus. Only samples designated as BE-Y (not BE-N or BE-GERD) were
employed for this analysis. Red, BE. c Microbial taxa identified using LEfSe analysis to be differentially abundant between GM and subjects with a
normal esophagus. Samples designated as GM-Y (not GM-N or GM-GERD) were employed for this analysis. Red, GM. d Correlations across species
(shotgun MetaPhlan2) for each disease type were calculated using SparCC and correlations greater than 0.2 or lower than − 0.2 were visualized
using Cytoscape. The thickness of line reflects the strength of the correlation, while color reflects direction (green, positive; red, negative).
Samples designated as BE-Y were employed for this analysis. A complete list of SparCC correlations within each disease subgroup is provided in
Additional file 3.8. e MetaCyc pathways identified using LEfSe analysis to be differentially abundant between disease type (GERD or BE) and
subjects with a normal esophagus. Only samples designated as BE-Y were employed for this analysis. Green: normal; red: disease (GERD or BE)
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was then employed to identify SNPs associated with the
Bray–Curtis resemblance matrix generated at the species
level (shotgun taxonomy from MetaPhlan2). Three thresh-
olds were used for this analysis: (1) a threshold of depth of
coverage (dp) = 2, minimum number of samples = 50
(Fig. 6a, Additional file 4.1); (2) dp = 2, minimum number
of samples = 75 (Additional file 4.2); (3) dp = 3, minimum
number of samples = 75 (Additional file 4.3). The analysis
identified SNPs associated with microbiome composition
across most human chromosomes (Fig. 6a) suggesting it
was not biased by our low depth of human genome
coverage.
Nineteen SNPs were selected for validation using cus-

tom Fluidigm SNP Type assays. These included 14 SNPs

within BAGE2, FRG1BP, MUC19, SLC4A10, LINC00333,
ANKRD36, NOTCH2, LINC01822, GABRB1, GYPB,
STEAP2-AS1, NREP, NCOR1P1, PRIM2, OR4C45,
GUSBP1, and LOC102723769 (Additional file 4.4). A
further 5 previously defined SNPs within MUC19 (Add-
itional file 4.4) were included due to the relevance of this
gene within the gastrointestinal tract. Three host SNPs
[NOTCH2 rs327202, STEAP2-AS1 rs56968594, and
NREP (P311) rs57227445] were validated in the allele
and genotype analyses using PERMANOVA (Fig. 6b;
Additional file 4.5). SNPs in LINC01822 (rs4611672;
P = 0.078) and MUC19 (rs2933353; P = 0.16) did not
reach significance in the validation studies (Fig. 6b;
Additional file 4.5).

Fig. 5 Presence of non-bacterial microbial taxa within the esophageal microbiome. a Relative abundance of viruses and fungi within the
esophageal microbiome of each subject. Relative abundances were calculated using taxonomy arising from MEGAN6. This was used due to its
capacity to detect microbial eukaryotes. b Relative abundances of specific eukaryotic and c viral taxa within each subject arising from the
MEGAN6 analysis. Size of circle signifies the relative abundance levels of the organism. Size of circles ranges from 0.0094 (smallest) to 0.64%
(largest) for viruses and 0.0097–1.08% for eukaryotes. Subjects are ordered by time of recruitment (left to right). The presence of Candida spp. and
Saccharomyces were confirmed using 18S amplicon sequencing. We could not confirm the detection of Trichuris, Trichinella, and Loa loa; thus,
these identifications should be taken with caution as they most probably arose from misclassifications within the metagenomic annotation
process. No association with any of the clinical metadata was found
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Discussion
Little is known about the esophageal microbiome relative
to our understanding of the composition and function of
the gut microbiome. Here, the esophageal microbiome
was comprehensively assessed using 16S and 18S rRNA
amplicon sequencing as well as shotgun metagenomics in
esophageal brushings of a cohort of prospectively re-
cruited subjects. The esophageal microbiome was found
to cluster into community types termed “esotypes.” The
defining characteristic of the esotypes was the dominant
organisms, with one type being dominated by S. mitis/ora-
lis/pneumoniae, the other P. melaninogenica, P. pallens,
and Veillonella, and the third Prevotella, H. parainfluen-
zae, and R. mucilaginosa. However, another differentiating
factor was microbial richness and evenness, with the eso-
type enriched for Streptococcus having lower levels than
the other two esotypes. A co-exclusion relationship be-
tween the two dominant taxa Streptococcus and Prevotella
was consistently observed in the esophageal microbiome,
which appears to drive the formation of the community
types. There is precedent in the literature for the cluster-
ing of the microbiome into community types with the
lower gut microbiome now accepted to cluster into enter-
otypes [14, 15] and the vaginal microbiome clustering into
several vaginotypes [16]. There is also a similar antagonis-
tic relationship reported between two of the dominant
taxa within the gut microbiome Bacteroides and Prevotella
[17]. Further evidence to support our conclusions comes

from the finding that samples from different locations in
the lower esophagus of the same individual consistently
clustered into the same esotype regardless of inflamma-
tion or disease.
The identified esotypes were found to be function-

ally distinct. One cluster was found to be enriched
for glycolysis as well as pathways involved in the me-
tabolism of short chain fatty acids, while another was
enriched for the pentose phosphate pathway as well
as fructose and mannose metabolism. Notably, one
community type was enriched for lipopolysaccharide
biosynthesis pathways. Given that lung microbiome
types enriched for Prevotella and Veillonella have
been found to regulate the basal inflammatory status
in the mucosa [18], it would be of interest to deter-
mine if higher levels of LPS impacts basal inflamma-
tory levels in the esophagus.
Subject age significantly influenced microbial compos-

ition in the esophagus. While effects of age on the abun-
dances of Streptococcus spp. and Prevotella spp. were
identified, age did not appear to influence S. mitis/ora-
lis/pneumoniae abundance, one of the more abundant
Streptococcus taxa. This suggested that age may contrib-
ute to the development of esotypes but not fully explain
their presence in the cohort. The influence of age on the
esophageal microbiome is to be expected given that it
influences the composition of the oral and gut micro-
biota [19–21]. PPI usage was found to have a mild effect

Fig. 6 Host genetic factors associated with the esophageal microbiome. a Host SNPs identified using MicrobiomeGWAS to be correlated with the
Bray–Curtis resemblance matrix generated from square root-transformed species relative abundances (taxonomy arising from MetaPhlan2).
Human SNPs were identified using the GATK toolkit onto the shotgun sequencing reads (depth of coverage (dp) = 2; minimum number of
samples = 50). Blue line represents P = 0.1 and red line represents P = 0.05; all SNPs above the red line have significant P values. A complete list of
SNPs across different thresholds is provided in Additional file 4.1–3. SNPs associated with microbiome composition mapped across most human
chromosomes suggesting the analysis was not biased by low depth of coverage of the human genome. b PERMANOVA on Bray–Curtis
resemblance matrix generated from square root-transformed species relative abundances (taxonomy arising from MetaPhlan2). Tests were applied
across allele and genotype frequencies for human SNPs validated using Fluidigm custom SNPtype assays. A table of the genotyping results
generated from the Fluidigm custom assays is provided in Additional file 4.4 and 5
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on the esophageal microbiome. PPIs are known to sig-
nificantly impact the lower gut microbiota [22], likely
due to decreasing acid levels in the stomach. The effect
of PPI on the esophageal microbiota may also be related
to acid levels given that the effect was stronger in GERD
patients as compared to subjects with a normal esopha-
gus. Of interest, PPI usage appeared to increase the
levels of bacterial antibiotic production pathways which
may also contribute to shaping the composition of the
microbiome post-PPI therapy.
Global shifts in the esophageal microbiome were not

observed across the early stages of the EAC cascade.
However, an enrichment of a wide range of
Gram-negative bacterial taxa commonly associated with
the oral cavity was found in GERD, GM, and BE when
compared to subjects with a normal esophagus. These
included Leptotrichia, Fusobacterium, Rothia, Campylo-
bacter, and Capnocytophaga. This would suggest that
disease may be associated with an enrichment of a di-
verse set of organisms with common properties rather
than specific organisms and is supported by the finding
that each esotype responded differently during GERD.
The enrichment of networks of oral bacteria taxa have
been shown in gastric cancer [23] and colorectal cancer
[24] and have been linked to inflammation in the gut
[25]. Further, lactic acid production pathways (homolac-
tic and heterolactic fermentation) were increased in the
EAC cascade. Dysregulated lactate metabolism is one of
the hallmarks of carcinogenesis [26]; thus, the microbial
contribution towards lactate availability and how that
impacts host cells should be explored further, given that
a similar increase in lactate-producing bacteria has been
reported in gastric adenocarcinoma [23].
A two-step process of detecting host SNPs associated

to microbiome composition using the shotgun data
followed by validation using custom SNP type assays
identified three host SNPs (NOTCH2 rs327202, STEA-
P2-AS1 rs56968594, and NREP rs57227445) to be signifi-
cantly associated with microbial composition in the
esophagus. An additional two SNPs, LINC01822
rs4611672 and MUC19 rs2933353, were found to have
borderline relationships. The association with SNPs in
NREP and NOTCH2 would suggest that the transform-
ing growth factor β1 (TGF-β1) [27, 28] and Notch sig-
naling pathways are linked to the esophageal
microbiome, which is of interest given that both are in-
volved in the EAC cascade [3]. It is currently unclear
what role STEAP2-AS1 plays in the host, but STEAP2 is
a metalloreductase involved in iron and copper uptake
and reduction, and has been linked to fatty acid metab-
olism as well as the response to inflammation [29].
While the association with MUC19 rs2933353 was not
significant, given that MUC19 is a salivary mucin that
plays a role in pathogen clearance in the oral cavity [30]

and SNPs in this gene are associated with Crohn’s dis-
ease [31], further validation of this association in a larger
cohort would be required.
Non-bacterial members of the esophageal microbiome

were detected in our cohort. A low prevalence of ar-
chaea was detected in our cohort. Fungi such as C. albi-
cans, C. glabrata, and S. cerevisiae and others were
found in ~ 20% of patients in low abundance, while the
identified virome consisted mainly of bacteriophages
that putatively target the resident bacteriome, with the
exception of human DNA viruses like betaherpesvirus,
gammaherpesvirus, and gammapapillomavirus detected
in some patients. These findings would suggest that a
more specific characterization of the mycobiome with
ITS amplicon sequencing and better methods to extract
the virome would be required in the future to properly
assess the contribution of these microbial lineages to the
esophageal microbiome.
Of relevance to the field, a novel strategy was

employed in this study to mucosal microbial communi-
ties using shotgun metagenomics. First, given that mu-
cosal brushings and biopsies have been shown to
provide similar assessments of the microbiome [32],
brushings were collected to limit the levels of host DNA.
Extracts were then effectively enriched for microbial
DNA, which provided a significant improvement in the
ratio of human to microbial reads. This strategy allowed
us to successfully profile the mucosal microbiome in the
esophagus.
This study is not without limitations. While blinded

prospective recruitment can decrease bias during re-
cruitment of subjects and improve patient classification,
it can result in uneven group sizes, specifically smaller
group sizes for rarer conditions. This can influence stat-
istical power for comparisons across these groups. Fur-
ther, the microbial signatures identified are based on
relative abundances. Quantitative data using qPCR will
allow for better validation of the presence of esotypes as
well as signatures associated with the disease.

Conclusions
The esophageal microbiome was found to cluster into
functionally distinct community types (esotypes) defined
by Streptococcus and Prevotella, suggesting that these
community types need to be accounted for similar to
what has been suggested for the gut microbiome [15].
While age was found to be a significant factor driving
microbiome composition, relevant bacterial signatures
and functions associated with the early stages of the
EAC cascade were identified. The presence of
non-bacterial microbes in the esophageal microbiome
was reported and should be profiled in more detail in
the future. Importantly, specific host SNPs in genes
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previously associated with EAC were found to be associ-
ated with the composition of the esophageal
microbiome.

Methods
Patient recruitment and collection of specimens
One hundred six predominantly Caucasian subjects who
underwent upper gastrointestinal endoscopy at the
Prince of Wales Hospital (Sydney) for examination of
their gastrointestinal symptoms were recruited prospect-
ively (Table 1; Additional file 5.1). Subjects who had a
normal esophagus by histological assessment were con-
sidered controls. These subjects may be prescribed PPIs
due to some mild reflux symptoms; however, no reflux
esophagitis is detected through histology. Patients found
with glandular mucosa but without any presence of in-
testinal metaplasia were classified within the GM group.
Subjects who had been prescribed antibiotics or
non-steroidal anti-inflammatory drugs (NSAIDs) in the
2-month period prior to recruitment were excluded. A
set of two samples were collected at endoscopy, an
oesophageal brushing for assessment of the microbiome
and an oesophageal biopsy from the same location as
the brushing for histological analysis to be conducted by
the pathology services at Prince of Wales Hospital. The
brushing to assess the microbiome was collected first,
and extreme care was taken to ensure the non-reusable
brush was not contaminated by saliva. In patients where
possible Barrett’s esophagus was suspected after visual
examination, an additional set of samples were collected
from a region adjacent to the metaplastic region. Infor-
mation pertaining to gender, age, and medication use
was obtained from the medical records of each subject
at the time of endoscopy. Researchers were blinded to
the results of the histological analysis until sequencing
was completed. Ethics approval was obtained from the
South Eastern Sydney Local Health District Human Re-
search Ethics Committee (HREC 13/375 and HREC 16/
020). All subjects recruited to the study signed a written
informed consent, and all experiments were performed
in accordance with relevant guidelines and regulations.

DNA extraction, 16S rRNA and 18S rRNA amplicon
sequencing, and data analysis
DNA was extracted from esophageal brushings using
Gentra Puregene Tissue kit (Qiagen) according to the
manufacturer’s instructions. The 16S rRNA gene was
amplified using the KAPA HiFi HotStart ReadyMix (95 °
C for 3 min, 25 cycles of 95 °C for 30 s, 55 °C for 30 s, 72
°C for 30 s, followed by a final step of 72 °C for 5 min)
and the earth microbiome primers (515F-806R). Indices
and Illumina sequencing adapters were attached using
the Nextera XT Index Kit, and sequencing was per-
formed with Illumina MiSeq 2 × 250 bp chemistry at the

Ramaciotti Centre for Genomics. Raw reads were ana-
lyzed using the MiSeq standard operating procedures
within mothur v1.39.1 [33, 34] with SILVA SEED 16S
rRNA reference alignment and classification using RDP
(read depth 30,081 clean reads/sample). PICRUSt [35]
was employed to predict metagenomics from 16S rRNA
gene relative abundance data following classification
with the GreenGenes database [36]. Extraction controls
in the form of kit buffers and PCR reagents are routinely
sequenced in our lab (Additional file 2: Figure S6A) and
show no overlap with our samples. An empty brushing
sample extracted and sequenced among our 16S
amplicon sequencing samples (sample: H76EX in ENA
submission) showed high levels of Ralstonia and
Bradyrhizobium and a very minimal amount of
carry-over from other samples sequenced on the same
run (Additional file 2: Figure S6B).
The 18S rRNA gene was amplified using the 5PRIME

HotMasterMix (94 °C for 3 min, 35 cycles of 94 °C for
45 s, 57 °C for 60 s, 72 °C for 90 s, followed by a final step
of 72 °C for 10 min) and the primers (1391f-EukBr). In-
dices and Illumina sequencing adapters were attached
using the Nextera XT Index Kit, and sequencing was
performed with Illumina MiSeq 2 × 150 bp chemistry.
Raw reads were analyzed using the MiSeq standard op-
erating procedures within mothur v1.39.1 with SILVA
SEED v123 reference alignment and classification using
Protist Ribosomal Reference database (PR2). The result-
ing data matrices were used for analysis (read depth
22,238 clean reads/sample).
Both 16S and 18S amplicon sequencing were per-

formed on original DNA extracts from the esophageal
brushings.

Enrichment for microbial DNA and preliminary shotgun
sequencing
To optimize sequencing, two separate Illumina MiSeq
2 × 250 bp chemistry runs were performed on three
samples before and after enrichment of microbial DNA.
Indices and Illumina sequencing adapters were attached
using the Nextera XT Index Kit. Microbial DNA was
enriched using NEBNext® Microbiome DNA Enrichment
Kit (New England Biolabs) according to the manufac-
turer’s instructions.

Shotgun sequencing and data analysis
Given the significant increase in the number of micro-
bial reads following enrichment, DNA samples (n = 99,
see Additional file 5.1) were enriched as above. These 99
samples were selected based on two factors: (1) relevant
histology (normal, GERD, GM-Y and BE-Y, and EAC)
and (2) efficient DNA enrichment. Most samples desig-
nated as −N were excluded to avoid duplication and en-
sure adequate sequencing depth. Indices and Illumina
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sequencing adapters were attached using the Nextera
XT Index Kit, and sequencing was performed with Illu-
mina HiSeq 2500 2 × 250 bp chemistry. Shotgun metage-
nomic reads were first analyzed with DeconSeq [37] for
identification and filtering of human DNA sequences.
Sequencing reads were assessed for quality using FastQC
v0.11.2. SolexaQA was then applied to calculate se-
quence quality statistics and perform quality filtering.
Paired-end raw reads were trimmed with the BWA trim-
ming mode at a threshold of Q13 (P = 0.05) using the
read trimmer module DynamicTrim. Filtered reads that
were less than 50 bp in length were then discarded using
LengthSort. MetaPhlAn2 [38] was employed to generate
taxonomic profiles from the shotgun reads, while
HUMAnN2 (HMP Unified Metabolic Analysis Network)
[39] was used to determine the metabolic contributions
within the samples. The HUMAnN2 pipeline involved
mapping of the metagenomic reads against Uniref ortho-
logous gene family, MetCyc UniPathway, and KEGG.
MEGAN6 [40] was also used to generate microbial taxo-
nomic and functional profiles, as well as a core esopha-
geal microbiome. Species-level annotations should be
taken with caution.

Statistical analysis
Alpha diversity, beta diversity, and changes across indi-
vidual taxons were examined for a range of available
predictors. Prior to diversity comparisons, the OTU
counts were rarefied to account for uneven sequencing
depths among samples. α-diversity measures were calcu-
lated in mothur v1.39.1, and differences were examined
using ANOVA with post hoc Tukey’s multiple compari-
sons test (GraphPad Prism 7). To determine differences
in microbial composition, multivariate analyses such as
non-metric multidimensional scaling (nMDS), permuta-
tional MANOVA (PERMANOVA), PERMDISP (tests
the homogeneity of multivariate dispersions within
groups), and DistLM were performed on either a Bray–
Curtis resemblance matrix generated from square
root-transformed relative abundances or a weighted Uni-
Frac distance matrix. Dirichlet multinomial mixtures
[41] were performed in mothur using the get.communi-
tytype command. To identify individual taxa that dif-
fered significantly across conditions, Linear Discriminant
Analysis Effect Size (LEfSe) [42] was performed across a
range of co-variates including microbiome clusters, PPI
usage, gender, and disease. Once identified, clusters were
accounted for in LEfSe analyses for other co-variates.

Microbial association network analysis using SparCC
Networks for disease and community types were
inferred using SparCC [43] following the estimation of
correlation coefficients and adjustment for compositional
effects; 100 shuffles were used for the permutation-based

approach in SparCC. Cytoscape v3.5.1 was employed to
generate plots for significant co-occurrence and co-ex-
cluding interactions (correlation coefficients > 0.2 or less
than − 0.2, Q < 0.05). The size and color of the nodes cor-
respond to weighted node connectivity (WNC) scores.

Host-microbiome correlation analysis using GATK and
MicrobiomeGWAS
Individual sample reads from shotgun sequencing were
mapped to the human reference using bwa v0.7.9a. This
was followed by SNP identification using the GATK 3.5
genome analysis toolkit. To identify host genetic variants
associated with microbiome composition, MicrobiomeG-
WAS [44] was used to combine the variant file (vcf ) and
the Bray–Curtis dissimilarity matrix of the microbial
relative abundances generated from the shotgun sequen-
cing data by MetaPhlAn2.

Fluidigm assays
Custom SNPtype assays allow for genotyping based on
allele-specific PCR SNP detection using Dynamic Array™
Integrated Fluidic Circuits. A tagged, allele-specific PCR
primer and a common reverse primer are employed, as
well as a universal fluorescent probe. To confirm the as-
sociation between a subset of SNPs and microbiome
composition, Fluidigm custom SNP Type 96.96 assays
were designed (Additional file 4.4) and conducted according
to the manufacturer’s instructions on a BioMark HD
(Fluidigm) at the Ramaciotti Centre for Genomics. Briefly, 24
custom SNP assays targeting rs10433076, rs113646232,
rs11564245, rs11896941, rs1900358, rs201169969, rs2933353,
rs327202, rs4572690, rs4611672, rs4695217, rs4768261,
rs5011360, rs56968594, rs57227445, rs62211564, rs62402964,
rs73106618, rs73106620, rs73115384, rs75009827, rs7714828,
rs79153215, and rs80014625 were submitted to Flui-
digm for assay design. Plates containing custom assays
were then used to genotype the samples with a max-
imum loading of volume for DNA. A pre-amplification
step as recommended by the manufacturer was used to
ensure samples with low concentrations were amplified.

Additional files

Additional file 1: The esophageal microbiome clusters into different
community types. (XLSX 632 kb)

Additional file 2: Figure S1. Comparison of the esophageal
microbiome prior to and after enrichment for microbial reads. Figure S2.
Effects of proton pump inhibitors and gender on esophageal
microbiome composition. Figure S3. Esophageal microbial signatures
associated proton pump inhibitor use. Figure S4. Effects of proton pump
inhibitors and gender on functional pathways within esophageal
microbiome. Figure S5. Esophageal microbiome functional signatures
associated proton pump inhibitor use. Figure S6. Negative controls
relevant to this study. (ZIP 3954 kb)

Additional file 3: Esophageal microbial signatures associated with host
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