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Abstract

The gut microbiota has the potential to influence the efficacy of cancer therapy. Here, we investigated the
contribution of the intestinal microbiome on treatment outcomes in a heterogeneous cohort that included
multiple cancer types to identify microbes with a global impact on immune response. Human gut metagenomic
analysis revealed that responder patients had significantly higher microbial diversity and different microbiota
compositions compared to non-responders. A machine-learning model was developed and validated in an
independent cohort to predict treatment outcomes based on gut microbiota composition and functional
repertoires of responders and non-responders. Specific species, Bacteroides ovatus and Bacteroides xylanisolvens,
were positively correlated with treatment outcomes. Oral gavage of these responder bacteria significantly increased
the efficacy of erlotinib and induced the expression of CXCL9 and IFN-γ in a murine lung cancer model. These data
suggest a predictable impact of specific constituents of the microbiota on tumor growth and cancer treatment
outcomes with implications for both prognosis and therapy.
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Background
Cancer is one of the leading causes of mortality world-
wide, with nearly one in six deaths globally attributed to
cancer [1]. Among several treatment options, chemo-
therapy and immunotherapy are applied to treat cancer
by preventing cancer cell division or boosting the
immune system to eliminate cancerous cells [2]. In spite
of recent progress, treatment outcomes are still

unsatisfactory for most cancer types. The gut microbiota
is increasingly considered an important factor associated
with both tumor development and the efficacy of anti-
cancer therapies [3]. Specific gut bacteria have been
shown to affect cancer treatments through direct drug
metabolism and modulation of the host immune re-
sponse [4]. Bacterial beta-glucuronidase can convert iri-
notecan, an anti-cancer chemotherapy drug, to a toxic
metabolite [5], and intratumor bacterial cytidine deami-
nase can degrade gemcitabine with a direct impact on
treatment outcomes [6]. The gut microbiota or defined
synthetic communities can also impact treatment out-
comes through immune modulation mechanisms such
as regulating T cell differentiation [7–9]. Indeed, the gut
microbiota can substantially impact immune checkpoint
inhibitor therapy [10–13] and antibiotic use is associ-
ated with poor treatment outcomes with checkpoint
inhibitors [14].
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Previous studies have focused on elucidating the role
of individual microbes or communities in a specific can-
cer type and therapeutic intervention. In the present
study, we investigated the role of gut microbiota in a
cancer patient cohort that included eight different can-
cer types treated with either cytotoxic or targeted
chemotherapy, immunotherapy, or a combination. Our
objective here was to demonstrate a more global finding
of a microbiota signature that is independent of cancer
type and heterogeneity. Using a combination of human
feces shotgun metagenomic sequencing, in vitro and
in vivo mouse models, we found that cancer treatment
outcomes in this diverse cohort can be substantially
modulated by the abundances of specific gut bacteria,
supporting a recent study in healthy individuals to iden-
tify general activators of the immune system [15].

Results
Limited impact of cancer therapy on individual gut
microbiota
Our cohort was comprised of 26 cancer patients of various
cancer types, treated either with cytotoxic or targeted
chemotherapy (n = 15) or a combination of cytotoxic or
targeted chemotherapy with immunotherapy (n = 11)
(Table S1). We collected 71 fecal samples from the 26 pa-
tients at four different time points (B1: baseline, B2: base-
line at least 24 h after B1, T1: end of cycle 1 of treatment
± 5 days, T2: end of cycle 2 of treatment ± 5 days). All the
samples were further combined into two groups, namely
baseline (n = 31, comprised of B1 and B2) and treatment
(n = 40, comprised of T1 and T2).
We assessed the structure of the gut microbiome in all

available samples (n = 71) via shotgun metagenomic se-
quencing, generating 6.1 Gbp of sequencing data on
average (s.d. 1.3 Gbp per sample) (Table S2). The taxo-
nomic profiling revealed that Bacteroidetes (44.51% on
average) and Firmicutes (44.04%) were the most abun-
dant phyla across all samples, followed by Proteobacteria
(4.09%) and Verrucomicrobia (3.53%). To test whether
the gut microbiota compositions of patients with differ-
ent cancer types share similar profiles, we investigated
the cancer type-specific microbiome signatures. The 26
patients were classified according to their primary site of
tumors: lung (n = 8), breast (n = 7), colon (n = 2), rectal
(n = 2), pancreatic (n = 2), ovarian (n = 2), prostate (n =
2), and blood (n = 1). The dendrogram clustering based
on taxonomic profiles showed that interpatient samples
with the same cancer type did not necessarily cluster to-
gether, while the intrapatient samples tend to cluster
closely with relatively minimal impact from the antican-
cer treatment (Fig. 1a and Fig. S1A) as previously re-
ported [16–18]. Subsequently, we further compared the
gut microbiota communities of baseline versus treatment
to investigate any global patterns of anticancer therapies

on gut microbial compositions. The alpha diversity com-
parison indicated that the baseline and treatment sam-
ples had similar levels of diversity (p = 0.265, Wilcoxon
rank-sum test) (Fig. S2). Likewise, the ordination plot
based on the beta diversity (Bray-Curtis dissimilarity) in-
dicated no difference between baseline and treatment
(p = 0.364, ANOSIM) (Fig. S1B), suggesting that antican-
cer therapy may not introduce drastic changes to the
overall structure of the gut microbial community. More-
over, no differentially abundant taxa, functional path-
ways, or modules could be identified by comparing
baseline versus treatment samples in our data set.
Given the well-reported stability and resilience of indi-

vidual signatures of human gut microbiota [17, 18], as
well as the limited and non-significant effects of cancer
types and anticancer treatments observed in our cohort,
we combined the 71 samples and, similarly to micro-
biome meta-analysis studies [15, 19], performed a com-
parison with publicly available data to evaluate whether
the cancer patients present distinct gut microbial pro-
files. We used, in the comparison, the gut microbiome
samples of 138 healthy individuals from the Human
Microbiome Project (HMP) [16], which, as our cohort,
also consists of US subjects. The beta diversity compari-
son of cancer and HMP microbiome samples revealed
that the two cohorts had significantly different species
compositions of intestinal bacteria (p = 0.0001, ANO-
SIM) (Fig. S3A), while there was no significant difference
on alpha diversity at the species level between the two
cohorts (p = 0.07373, Wilcoxon rank-sum test) (Fig.
S3B). In HMP, the mean abundance of the phylum Bac-
teroidetes across all HMP stool samples was 74.96%,
followed by 22.07% of Firmicutes, indicating that the
cancer cohort had a significantly higher Firmicutes/Bac-
teroidetes (F/B) ratio (p = 2.461e−13, Wilcoxon rank-sum
test) (Fig. S3C). Compared with healthy individuals, a
higher F/B ratio has also been observed in patients with
irritable bowel syndrome (IBS), hypertension, autism,
and chronic fatigue syndrome in case control studies
[20–23]. Taken together, these comparisons above sug-
gest that cancer treatments may not significantly disrupt
the patients’ individual signatures of gut microbiota;
however, the cancer patients have distinct gut micro-
biota features compared to the healthy cohort.

Responders have higher ecological diversity than non-
responders
To evaluate the association between the microbial com-
munity and treatment outcome, we grouped the patients
based on their response to treatment (responders: R, n =
16; non-responders: NR, n = 10). The classification of pa-
tients was based on the Response Evaluation Criteria in
Solid Tumors (RECIST 1.1) [24] or immune-related re-
sponse criteria (iRECIST) [25]. The R group achieved a
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favorable response (complete or partial response or
stable disease status) as their best response, while the
NR group showed disease progression as their best re-
sponse to the administered systemic treatment. The pa-
tients in the two groups were similar in terms of stage of
cancer, sex, age, and therapy type (Table S3). A

comparison of the gut microbiome of these two groups
revealed that R had higher alpha diversity than NR (p =
0.003, Wilcoxon rank-sum test, combined samples from
baseline and treatment) (Fig. 1b). It led to the same con-
clusion when using just treatment samples (p = 0.008,
Wilcoxon rank-sum test), though only showed trends

Fig. 1 Taxonomic analysis of intestinal microbiota of cancer patients. a Sample collection scheme and dendrogram based on Bray-Curtis
dissimilarity. b Alpha diversity (Shannon index) of the gut microbiota in responders (R) and non-responders (NR). c Non-metric multidimensional
scaling (NMDS) plot of R and NR in human cancer samples based on the gut microbial compositions using Bray-Curtis dissimilarities (ANOSIM p =
0.0001). Intrapatient samples are linked to each other. d NMDS plot of R, NR, and HMP samples based on the gut microbial compositions at the
species level using Bray-Curtis dissimilarities (ANOSIM p = 0.0001). e Phylogenetic composition of cancer samples at the phylum level. f Firmicutes/
Bacteroidetes (F/B) ratio of cancer samples. g Heatmap of differentially abundant species detected in the comparison of R and NR (FDR p < 0.05,
Wilcoxon rank-sum test). R-associated and NR-associated bacteria validated in mouse model are shown in red and cyan asterisks, respectively
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when focusing on the baseline samples. Despite the dif-
ference in alpha diversity, R and NR showed similar
levels of species richness (Chao1) (p = 0.674, Wilcoxon
rank-sum test) (Fig. S4). Furthermore, the ordination
plot based on Bray-Curtis dissimilarities revealed distinct
intestinal microbial compositions at the species level be-
tween R and NR (p = 0.0001, ANOSIM) (Fig. 1c). Un-
weighted and weighted UniFrac distances were
consistent with this result (p = 0.0001 and p = 0.0006).
Interestingly, we also observed a clear gradation of NR,
R, and healthy subjects (HMP) (p = 0.0001, ANOSIM)
(Fig. 1d), with the majority of R samples overlapping
with the HMP subjects, whereas NR samples were
clearly distinct from those of the healthy subjects. This
gradation suggests that the patients in R group have
relatively more similar gut microbiota profiles to the
healthy individuals.
No significant differences of alpha diversity between

the baseline and treatment were observed either in R or
NR (p = 0.3254 and p = 0.616 for R and NR, respectively,
Wilcoxon rank-sum test) (Fig. 1b). Furthermore, the
treatment impact on the gut microbiota of the two
groups (R and NR) was also measured based on the
Bray-Curtis dissimilarities between intrapatient baseline
and treatment using the relative abundances of species
or strains. The comparison showed no difference be-
tween R and NR in terms of the therapy impact on their
gut microbial compositions at the community level (p =
0.216 and p = 0.204 for species and strains, respectively,
Wilcoxon rank-sum test) (Fig. S5).

Identification of specific taxa related to cancer treatment
response
We next searched for differentially abundant taxa in the
gut microbiome of R versus NR. The enrichment ana-
lysis revealed that, at the phylum level, Bacteroidetes was
enriched in R in the treatment samples (FDR p = 0.031,
Wilcoxon rank-sum test) but not in the baseline samples
(FDR p = 0.540, Wilcoxon rank-sum test) (Fig. 1e). Add-
itionally, comparing Firmicutes/Bacteroidetes (F/B) ra-
tios, we noticed that NR showed a significantly higher
ratio than R (p = 0.037, Wilcoxon rank-sum test) (Fig. 1f)
and healthy individuals from the HMP (138 subjects,
p = 1.617e−09, Wilcoxon rank-sum test), which is in
agreement with the findings described above regarding
the microbiome profiles of healthy individuals and
cancer patients.
In the comparison between R and NR, 31 differentially

abundant species (FDR p < 0.05, Wilcoxon rank-sum
test) were identified. As shown in Fig. 1g, 22 and 9 spe-
cies were R-enriched and NR-enriched, respectively. Bac-
teroides xylanisolvens, Bacteroides ovatus, Prevotella
copri, and seven Alistipes species, among others, were
found to be significantly enriched in R compared to NR

(FDR p < 0.05, Wilcoxon rank-sum test) (Fig. 1g). We
found that ~ 73% (16/22) of these species are classified
at the phylum level as Bacteroidetes. In contrast, all 9
NR-enriched species, including Clostridium symbiosum
and Ruminococcus gnavus, were classified as Firmicutes
at the phylum level.
Next, we reconstructed the species co-abundance net-

works separately for R and NR using BAnOCC [26]. The
R network showed that B. xylanisolvens was correlated
with other Bacteroidetes species and Proteobacteria,
while this species did not show any significant associa-
tions in the NR network (Fig. 2a). On the other hand,
the NR network shows that C. symbiosum and R. gnavus
have a positive association with each other and both
have a negative association with one of the R-associated
species B. ovatus (Fig. 2b). Furthermore, in the NR net-
work, both C. symbiosum and R. gnavus retained their
positive interactions mostly within Firmicutes with only
one exception (a positive interaction between C. symbio-
sum and Klebsiella pneumoniae), whereas their interac-
tions with Bacteroidetes species were all negative.
Altogether, it is suggested that the high abundances of
C. symbiosum and R. gnavus in NR might promote the
dominance of Firmicutes and impede Bacteroidetes by
their intra-phylum positive associations along with the
negative associations with Bacteroidetes species includ-
ing B. ovatus. This observation is in line with the afore-
mentioned high Firmicutes/Bacteroidetes (F/B) ratio in
NR (Fig. 1f). Lastly, R. gnavus, as well as other Firmicutes
species, were positively correlated with the F/B ratio (r =
0.5665, p = 0.0021, Pearson correlation) (Fig. S6).

Anabolism enriched in responders’ and catabolism in non-
responders’ microbial communities
The Bray-Curtis dissimilarities based on 146 anno-
tated KEGG pathway abundances illustrate the mar-
ginally separate clusters of R and NR (p = 0.0299,
ANOSIM) (Fig. 3a). The KEGG pathway enrichment
analysis of the metagenomic data shows that the ma-
jority of 32 pathways overrepresented in NR were
catabolic pathways including ABC transporter, phos-
photransferase system (PTS), carbohydrate metabolism
pathways, and xenobiotic degradation pathways (FDR
p < 0.1, Wilcoxon rank-sum test) (Fig. 3b), whereas
anabolic pathways were in contrast overrepresented in
R. This tendency is also consistent with the recently
published study of anti-PD-1 immunotherapy in mel-
anoma patients, which also reported that NR patients’
intestinal microbial communities had more enriched
catabolic pathways compared to R [12]. Additionally,
the Carbohydrate-Active enZymes (CAZy) annotation
and the analysis of Clusters of Orthologous Groups
(COG) supported the overrepresentation of catabolic
functions in NR; three CAZy classes, “glycoside
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hydrolases,” “carbohydrate-binding modules,” and
“auxiliary activities” were overrepresented in NR
(FDR p < 0.1, Wilcoxon rank-sum test), whereas no
CAZy classes were significantly enriched in R (FDR
p > 0.1, Wilcoxon rank-sum test) (Fig. 3c); NR had
six enriched COG classes including “carbohydrate
transport and metabolism” and “amino acid transport
and metabolism” (FDR p < 0.1, Wilcoxon rank-sum
test) (Fig. S7). Although anabolic functions such as
“valine, leucine, and isoleucine biosynthesis” and
“unsaturated fatty acids biosynthesis” were excep-
tionally enriched in NR, these BCAA microbial me-
tabolites have been found to be positively associated
with cancers and related to tumor metabolic needs
[27]. Likewise, unsaturated fatty acids have been sug-
gested to be involved in the metastasis and stemness

of certain cancers [28]. Furthermore, previous case-
control gut microbiome studies reported that
enrichment of ABC transporter and PTS in microbial
communities are associated with inflammation,
which has been shown to promote tumor growth in
cancer patients [29].
In contrast, the pathway enrichment analysis re-

vealed that the most significantly enriched pathways
in R were biosynthetic pathways of metabolites in-
cluding flavonoid, zeatin, and secondary bile acids
(FDR p < 0.1, Wilcoxon rank-sum test) (Fig. 3b). The
comparison of KEGG modules revealed that in R, 20
modules including the biosynthesis of lipopolysac-
charide (LPS) were enriched (FDR p < 0.1, Wilcoxon
rank-sum test) (Fig. S8). Bacterial LPS is known to
induce the differentiation of Th17 cells [30].

Fig. 2 Bacterial species co-abundance networks. a Network in responders. b Network in non-responders. Each node represents a species and edges
correspond to significant species-species associations as inferred by BAnOCC [26]. The size of each node is proportional to the mean relative
abundance. The 95% credible interval criteria were used to assess significance, and estimated correlations were then filtered with the correlation
coefficient ≥ 0.4. The shown subnetworks were made by extracting the edges that are connected with B. ovatus, B. xylanisolvens, C. symbiosum,
and R. gnavus, which are further highlighted

Heshiki et al. Microbiome            (2020) 8:28 Page 5 of 14



Initial microbiota composition and functionality predicts
response to treatment
After identifying differences in intestinal microbial
composition between R and NR in our cohort, we ex-
amined whether statistical modeling would enable
prediction of treatment response based on the initial
gut microbial status of the cancer patients. In
addition to the anticancer therapy response, a recent
study showed that the anti-integrin therapy response
of inflammatory bowel disease patients could be pre-
dicted using the information of initial conditions of
their preselected gut microbiota features based on a
deep neural network [31]. However, to the best of
our knowledge, there are no models used to predict
the anticancer treatment response that covers broad
types of cancer and treatments. We built a classifica-
tion model based on decision tree using the features
of baseline samples with a fivefold cross-validation.
We used the relative abundances at the baseline of 31

differentially abundant species between R and NR
(Fig. 1g) and the baseline RPKM of the differentially
abundant KEGG pathways (Fig. 3b). The model per-
formance was evaluated with an area under the curve
(AUC) of receiver operating characteristic (ROC).
Using the initial relative abundance of differentially
abundant species solely, the performance was the low-
est (AUC = 0.652) (Fig. 3d). The prediction perform-
ance was significantly improved by using the RPKM
of differentially abundant KEGG pathways solely
(AUC = 0.707). However, the model incorporating data
on both species and pathways showed the best per-
formance (AUC = 0.895), indicating the power of shot-
gun metagenomics for predicting host phenotypes. To
further test the general applicability of the model, we
recruited additional cancer patients and performed
metagenomics sequencing in seven more patients
(baseline samples from R = 5, NR = 2) to serve as an
independent validation dataset. Using the initial

Fig. 3 Functional profiles of intestinal microbiota of cancer patients. a NMDS plot of cancer samples based on KEGG pathway abundances using
Bray-Curtis dissimilarities (ANOSIM p = 0.0299). b Differentially abundant KEGG pathways (FDR p < 0.1, Wilcoxon rank-sum test) detected in the
comparison of responders (R) and non-responders (NR). c CAZy class comparison between R and NR. *p < 0.1, **p < 0.05. d Performance of the C5.0
decision tree models in classifying R and NR
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relative abundance of differentially abundant species
and the RPKM of differentially abundant KEGG path-
ways, we could achieve an AUC = 0.75.
The high accuracy of our prediction models indicates

that the initial condition of the gut microbiota could be a
potential predictive tool for response to anticancer treat-
ments. Furthermore, the performance comparisons of our
models suggest that combining the features of both taxa
and functions improves the prediction accuracy.

Oral gavage of responder bacteria reduces tumor size
during erlotinib treatment in mice
To test if there is a causal effect of the R and NR
bacteria on treatment outcomes, we tested their im-
pact on tumor growth in a murine lung cancer model
[32]. As examples of the R-enriched bacteria, B. ova-
tus and B. xylanisolvens were chosen due to their
relatively high significance in the species enrichment
analysis described above (Fig. 1g). In addition, we
selected C. symbiosum and R. gnavus due to their
relatively high prevalence (63% and 67% for C. sym-
biosum and R. gnavus, respectively) in NR samples
(Fig. S9). We selected Lewis lung carcinoma cells and
erlotinib to test in the murine model, as the majority
of our patient cohort suffered from forms of lung
cancer, and erlotinib is a commonly used drug for
non-small cell lung cancers [33]. We introduced ei-
ther R (B. ovatus and B. xylanisolvens) or NR bacteria
(C. symbiosum and R. gnavus) by daily oral gavage in
antibiotic-pretreated mice (Fig. 4a and Fig. S10). One
week later, Lewis lung carcinoma cells were subcuta-
neously inoculated into these C57BL/6 N mice to in-
duce tumor formation. When the tumor size reached
approximately 250–500 mm3, erlotinib was adminis-
tered. Erlotinib significantly inhibited the tumor
growth by 56% compared to the control group (PBS +
DMSO) after 1 week (Fig. 4b and Fig. 4c). The R-
enriched species alone reduced (by 20%) the tumor
progression in mice compared to the control, but the
difference was not statistically significant (p = 0.1949,
Wilcoxon rank-sum test). However, the presence of B.
ovatus and B. xylanisolvens led to additional signifi-
cant reductions in tumor size in the erlotinib-treated
mice (Fig. 4b). On day 14, the average tumor volume
in erlotinib-treated mice colonized with the R-
enriched species (R + erlotinib) was significantly
smaller (46%) than that of the erlotinib-treated group
(PBS + erlotinib) (p = 0.032, Wilcoxon rank-sum test),
as well as that of the NR + erlotinib group (Fig. 4b
and Fig. 4c) (p = 0.032, Wilcoxon rank-sum test). This
demonstrates that simultaneous administration of B.
ovatus and B. xylanisolvens increases the efficacy of
erlotinib, suggesting that these R-enriched species
could have a positive impact on therapeutic outcome

in cancer. Interestingly, by comparing the tumor sizes
among groups on day 10, the NR + erlotinib group
had a significantly larger tumor size (87%) compared
to that of R + erlotinib (p = 0.0317, Wilcoxon rank-
sum test), which was commensurate with the control
group without erlotinib (PBS + DMSO and R + DMSO)
(Fig. 4c). This suggests the potential contribution of
C. symbiosum and R. gnavus on treatment resistance.
To assess if there was a direct impact of the R bacteria

on drug efficacy, we grew the R and NR bacteria in
GAM media containing erlotinib. Subsequent addition
of this spent media to the bronchoalveolar carcinoma
cell line NCI-H1650 did not result in significant changes
in the IC50 of erlotinib suggesting a limited direct im-
pact of the R bacteria on erlotinib (Fig. 4d). To further
investigate if metabolites produced by R and NR bacteria
could directly affect the growth of cancer cells, we tested
different dilutions of spent media from the R and NR
bacteria on NCI-H1650 cell line viability. We observed
that increasing amounts of spent media affected cancer
cell line viability. The viability effects were species-specific
and varied within the R and NR groups (Fig. 4e). These
in vitro data suggest that bacterial effects on treatment
outcome might be caused by multiple rather than single
species acting in a consortium or that the beneficial effects
depend on the host response to the specific bacteria.
To explore the mechanisms of how R-enriched bacteria

increase the efficacy of chemotherapy, we examined the
tumor expression of different chemokines involved in
tumor progression using real-time PCR. Chemokines
serve as attractant cytokines for different immune cells to
modulate tumor growth through immunoediting. We
found a significant increase in the expression of the che-
mokine (C-X-C motif) ligand 9 (CXCL9) and interferon
gamma (IFN-γ) in the tumors of erlotinib-treated mice
colonized with R-enriched species (R + erlotinib) com-
pared to that of the control group (PBS +DMSO).
CXCL10 expression in tumors also exhibited an increased
trend in erlotinib-treated mice colonized with R-enriched
species (R + erlotinib) (Fig. 4f). These molecules, which are
involved in the recruitment of T cells, are negatively
associated with tumor progression [34, 35] (Fig. S11).
Importantly, such alterations were observed in neither the
R-enriched-treated group (R +DMSO) nor the erlotinib-
treated group (PBS + erlotinib), suggesting that the pres-
ence of R-enriched bacteria and erlotinib has a synergistic
effect in modulating the immune responses of T cells in
tumors. We did not observe such a synergistic effect in
the expression of granzyme B, which is a serine protease
in the granules of cytotoxic T cells (Fig. 4g). Furthermore,
the levels of two chemokines, monocyte chemoattractant
protein-1 (MCP-1) and stromal derived factor-1 (SDF-1),
which are involved in the recruitment of myeloid cells,
were comparable among these different groups (Fig. 4g).
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Fig. 4 Increased anti-tumor efficacy of chemotherapy in the presence of B. ovatus and B. xylanisolvens. a Experimental design: male 6-week
C57BL6/N mice (n = 5–8) were treated with antibiotic cocktail in drinking water for 1 week before bacterial oral gavage. Control PBS, B. ovatus and
B. xylanisolvens, and C. symbiosum and R. gnavus were orally gavaged into mice 1 week prior to tumor cell inoculation. A total of 107 Lewis lung
cancer cells in 200 μl PBS were subcutaneously injected into the mice to induce tumor formation. Mice were treated with erlotinib (60 mg/kg
body weight) once the tumor size reached approximately 250–500mm3. Time in days is relative to tumor cells injection. b Tumor size
measurement at day 14. c Tumor growth curve after Lewis lung carcinoma cell inoculation. Dark dots indicate the application of erlotinib. d, e
CRL5883 bronchoalveolar carcinoma cell line was cultured for 72 h in the presence of erlotinib (d) or drug-free (e) supernatants from R (B.
xylanisolvens and B. ovatus) or NR (R. gnavus and C. symbiosum) bacteria species. d Non-linear regression curves showing cell viability as
percentage of cell control viability. Bacterial supernatants had n = 4, GAM control had n = 2, and cell control had n = 10. e Cell viability is
presented as percentage of cell control viability. Colored circles show individual data points. Outliers were identified and removed by the ROUT
method (Q = 0.1%). Supernatants had n = 3–4 and cell control had n = 16. All data are mean ± SEM. Significant differences were identified via
unpaired t test (*p < 0.05, **p < 0.005). f, g Tumor expressions of chemokines involved in the recruitment of T cells (f), myeloid cells, and cytotoxic
T cells (g) by real-time PCR (normalized against GAPDH). Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001
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These findings suggest that the enhancement of chemo-
therapy efficacy by R-enriched bacteria may be achieved
by synergistically upregulating the expression of chemo-
kines involved in the recruitment of T cells.

Discussion
We evaluated here for the first time the role of the gut
microbiota in a heterogeneous patient cohort with vari-
ous types of cancer and anticancer treatments to identify
microbes with an impact on immune response. We iden-
tified significant differences in the gut microbiota com-
position and functional repertoire between R and NR,
which were highly associated with treatment efficacy.
Based on shotgun metagenomic data, we constructed
and validated a statistical model that could predict can-
cer treatment outcomes with high accuracy in an inde-
pendent validation cohort.
Despite the successful validation of the role of R-

enriched bacteria in an animal model, our study comes
also with limitations. First, while the response criteria
were uniformly applied across treatment and cancer type
as is typically performed in clinical trials, the likelihood
of responsiveness may vary by line of therapy and clin-
ical context. We focused on the microbiota signature
that differentiated based on clinical outcome, not the
cancer type or therapy. Second, due to a relatively small
number of patients, we have also included a relatively
small independent clinical cohort of patients for valid-
ation of the microbiota signature. A larger cohort will
definitely provide the chance to overcome the issues
with potential confounding factors and facilitate the de-
tailed investigations into the effects of cancer types and
treatments on gut microbiota. However, even with a
small cohort, a solid conclusion and/or a highly accurate
predictive model could be made from the comparison
between groups in recent gut microbiome studies [36–
38]. We also believe that mechanistic and biologic
support for our findings from the clinical cohort was val-
idated in the preclinical studies. Furthermore, future
studies may investigate whether the NR-associated spe-
cies can promote tumor growth and cancer progression
in the absence of drug treatment, given the larger tumor
size of NR + erlotinib group than the PBS + erlotinib
group observed at day 10 (Fig. 4c). In addition, even
though the functional analyses based solely on metage-
nomic data have shed lights on the potential mecha-
nisms of gut microbiota affecting treatment outcomes,
the use of metatranscriptomics and metabolomics to
measure the actively expressed gut microbial functions
and functional end-products, respectively, can lead to
more robust and solid findings. Lastly, the murine ex-
periment used erlotinib, an EGFR tyrosine kinase inhibi-
tor, and not a cytotoxic chemotherapy. Typically, in
current clinical practice, erlotinib is prescribed to

advanced non-small cell lung cancer patients with tu-
mors harboring an EGFR sensitizing mutation, due to its
higher likelihood of response rate and lower overall tox-
icity rate relative to cytotoxic chemotherapy. However,
the original U.S. Food and Drug Administration ap-
proval was based on response rate and non-small cell
lung cancer, regardless of EGFR mutation status. Erloti-
nib was one of the treatments from the patient cohort.
The use of single agent erlotinib in the murine experi-
ment obviated the need to use potentially more
confounding regimens to demonstrate the role of the
microbiota such as doublet platinum-based chemother-
apy or use of a single agent cytotoxic chemotherapy ap-
proved in NSCLC (docetaxel) that was not explored in
the patient cohort and may have required additional op-
timal dose finding for these chemotherapeutics.
A recent study identified a consortium of 11 com-

mensal bacterial species that were able to induce intes-
tinal IFN-γ-producing CD8 T cells [15]. The
investigators demonstrated that this bacterial consor-
tium significantly enhanced efficacy of a checkpoint in-
hibitor treatment in a syngeneic mouse tumor model.
We hypothesized that our identified R consortium could
similarly activate cells of the immune system, which, in
turn, would enhance the susceptibility of cancer cells to
treatment outcome. Consequently, we found that the
two species enriched in the R group, B. xylanisolvens
and B. ovatus, in combination showed a synergistic effect
with erlotinib. This effect on tumor progression could
be partially mediated by activating the intratumoral
mRNA expression of chemokines, which recruits den-
dritic cells and T cells. This observation is consistent
with previous reports that indicate the infiltration of
beneficial T cells into the intratumoral microenviron-
ment mediated by specific gut bacteria, resulting in
tumor size reduction. We previously revealed that a
novel probiotics mixture can suppress hepatocellular
carcinoma growth in mice by reducing the frequency of
Th17 cells, the main producers of the IL-17 cytokine, in
the intestine and their subsequent recruitment to the
tumor bed [9], whereas Akkermansia muciniphila was
recently identified as being associated with increased
intratumoral immune infiltrates into the tumor bed in
response to PD-1 blockade therapy [13]. Taken together,
we believe that the administration of specific probiotic
bacteria could be a potential supplemental treatment in
combination with anticancer therapies for a better treat-
ment outcome.

Conclusions
The global cancer burden has risen dramatically making
it an urgent need to develop novel therapies and predict
which treatment will offer the most benefit to a cancer
patient. Here, we analyzed the gut microbiota in a
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cohort that included eight different cancer types using
metagenomic sequencing and found out that gut micro-
biome signatures at baseline accurately predict cancer
treatment outcome. Furthermore, by evaluating the role
of the gut microbiota for the first time in a heteroge-
neous patient cohort with various types of cancer and
anticancer treatments, we have demonstrated a more
global finding of a microbiota signature that is independ-
ent of cancer type and heterogeneity. Moreover, oral
gavage of specific gut microbes significantly increased
the effect of chemotherapy in mice, reducing the tumor
volume by 46% compared to the control.

Materials and methods
Cancer cohort and treatment outcomes
The 26 cancer patients signed informed consent forms
and were enrolled at the Western Regional Medical Cen-
ter, Goodyear, AZ, after Western Institutional Review
Board approval (WIRB #20140271). The patients were
diagnosed with eight types of cancers and received either
chemotherapy or a combination of chemo- and im-
munotherapy (Table S1). The 26 patients were classified
into responders (n = 16) and non-responders (n = 10)
based on their responses to anticancer treatment as de-
fined by RECIST 1.1 [24] and irRECIST [25]. Further-
more, seven more additional cancer patients were
recruited and metagenomics sequencing were performed
to serve as an independent validation dataset (baseline
samples from R = 5, NR = 2) to test the general applic-
ability of the prediction model. The taxonomic profiles
for a total of 138 stool samples from the Human Micro-
biome Project (HMP), as provided by MetaPhlAn2 [39]
(http://segatalab.cibio.unitn.it/tools/metaphlan2/), were
used as a healthy control in the taxa comparison.

Metagenomic library construction and sequencing
To examine the gut microbiome of our cancer cohort,
71 fecal samples were collected longitudinally from 26
patients before and after treatments. Bacterial DNA was
isolated from the fecal samples for shotgun metage-
nomic sequencing. Library preparation (using KAPA
Hyper Prep Kit KR0961-V1.14) and Illumina sequencing
were done at the University of Hong Kong, Centre for
Genomic Sciences (HKU, CGS), using Illumina HiSeq
1500 with PE100 at an average depth of 6.1 Gbp (s.d.
1.3 Gbp per sample) (deposited in the European Nucleo-
tide Archive with accession number PRJNA494824).

Quality control and taxonomic profiling
The sequenced reads were processed with quality con-
trol to remove the adapter regions, low quality reads/
bases using fqc.pl with default settings (https://github.
com/TingtZHENG/VirMiner/tree/master/scripts/Pipeli-
neForQC) [40], and human DNA contaminations (bwa

(version 0.7.4-r385) mem against human reference gen-
ome ucsc.hg19), following the previously described steps
[9, 41]. Approximately 85% of the reads on average
remained after the quality control and were used in
downstream analyses. The high-quality reads were taxo-
nomically profiled at different taxonomic levels using
MetaPhlAn2 [39] with default settings, generating
taxonomic relative abundances (total sum scaling
normalization). The differentially abundant taxa were
identified by the Wilcoxon rank-sum test, and the statis-
tical significance was adjusted for multiple testing using
FDR correction with the cutoff adjusted p value < 0.05,
unless otherwise stated. ConStrains was utilized for
strain level analysis with default settings [42].

Microbial community diversity analysis
The alpha diversity (Shannon index) of each sample was
calculated with R package VEGAN [43] (v2.5.3) on the
relative abundance of species. Species richness for all
samples were estimated based on rarefied data. Beta di-
versities (Bray-Curtis dissimilarities) among samples
were calculated with VEGAN based on the relative
abundance of species. To test the difference in the mi-
crobial composition between two or more groups, ANO-
SIM (analysis of similarities) was employed based on the
Bray-Curtis dissimilarity.

Species co-abundance network inference
For species co-abundance network reconstruction, the
OTU relative abundance table was split into responder
and non-responder samples, and they were processed in-
dependently with BAnOCC [26] for co-abundance net-
work inference with 5000 iterations. A correlation
estimate is considered significant if the corresponding
95% credible interval excludes zero. The estimated cor-
relations were then filtered with the absolute values of
correlation coefficients ≥ 0.4. The co-abundance network
was visualized by Cytoscape 3.6.1. For visualizing Fig. 2,
the subsets of networks were taken by extracting the
edges that are connected with B. ovatus, B. xylanisolvens,
C. symbiosum, and R. gnavus.

De novo assembly and functional annotation
The high-quality reads after quality control were assem-
bled using IDBA-UD [44] with k-mer size ranging from
20 to 100 bp. The coding DNA sequence (CDS) regions
were predicted using MetaGeneMark [45] with the de-
fault parameters. The predicted peptide sequences were
mapped to the KOBAS database [46] and dbCAN data-
base [47] using DIAMOND [48] with the default param-
eters for KEGG (through KOBAS 2.0 annotate program)
and CAZy annotation, respectively. The protein se-
quences were also assigned to the functional category of
COG [49] using NCBI RPS-BLAST with default
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parameters. The abundance of genes was quantified in
an RPKM (Reads Per Kilobase of transcript per Million
mapped reads)-like manner using custom Perl scripts.
Bray-Curtis dissimilarity calculated with VEGAN (v2.5.3)
based on KEGG Orthologs was used to evaluate func-
tional diversity between samples. KEGG pathway and
module abundances were estimated by summing up the
abundances of all genes present in the corresponding
pathway or module (KEGG database accessed in Decem-
ber 2017).

Classifier model
Fivefold cross-validation was performed on a C5.0 deci-
sion tree model (R 3.3.0, C50 0.1.1 package), using as
predictors the differentially abundant species (FDR p <
0.05) and pathways (FDR p < 0.05) that were identified
by comparing responders and non-responders. As a refer-
ence, we cited a study that used preselected features to
build a classification model to predict the therapy re-
sponse of inflammatory bowel disease [31].

Bacterial strains and culture conditions
Bacteroides ovatus (ATCC 8483), Bacteroides xylanisol-
vens (DSM-18836), Ruminococcus gnavus (ATCC
29149), and Clostridium symbiosum (ATCC 14940) were
grown at 37 °C under anaerobic conditions (Anaerobic
gas mixture, 95% N2 and 5% H2) in pre-reduced GAM
(Gifu anaerobic media; Nissui Pharmaceutical Co. Ltd.)
broth for liquid culture or broth supplemented with agar
(Gifu anaerobic media agar; Nissui Pharmaceutical Co.
Ltd.) for growth on plates.

Cell lines and culture conditions
The bronchoalveolar carcinoma cell line NCI-H1650
(ATCC CRL-5883) was cultured at 37 °C under 5% CO2

in Roswell Park Memorial Institute (RPMI) 1640
medium (ATCC modification; Thermo Fisher Scientific)
supplemented with 10% Fetal Bovine Serum (FBS; Hime-
dialabs) and antibiotics (~ 5000 units penicillin, 5 mg
streptomycin, and 10mg neomycin/mL). The cell line
was maintained from frozen stock and allowed to grow
for a minimum of 3 days before being used in the super-
natant assays. Passage number was kept below 10. Lewis
lung cancer cells (LLC) were cultured at 37 °C under 5%
CO2 in Dulbecco’s modified Eagle medium (DMEM; Life
technologies) supplemented with 10% FBS and antibi-
otics (100 U penicillin, 0.1 mg streptomycin, and 0.25 μg/
ml amphotericin B).

Supernatant exposure assay
Bacterial strains growing overnight in GAM broth were
sub-cultured 1:50 in fresh GAM broth and grown for 24
h. Bacterial cultures were spun down at 11,000×g for 2
min and the supernatant carefully removed without

disturbing the pellet. The supernatants were filtered
through a 0.2-μM syringe filter to remove any remaining
bacteria in suspension. For the erlotinib supernatant
assay, 15 ml conical Greiner tubes (Sigma-Aldrich) were
filled with GAM broth supplemented with an erlotinib
(erlotinib hydrochloride dissolved in DMSO; Sigma-
Aldrich) gradient ranging from 0 to 100 μM. The tubes
were inoculated 1:50 with sub-cultured bacteria growing
for 24 h. The bacterial culture was exposed to erlotinib
for 24 h, before following the same procedure for super-
natant preparation as described above. Supernatants
were stored at − 20 °C until being un-thawed and ho-
mogenized by vortexing for the subsequent assays. Wells
of a black, clear bottom 96-well plate were seeded with
NCI-H1650 cells at a density of 5 × 103 in either 90 μl or
50 μl of complete growth medium with antibiotics for
the erlotinib or drug-free supernatant assays, respect-
ively. Cells were allowed to attach for 1 day.
The following day, respective bacterial supernatants

were added to the attached cells at a ratio of 1:10 or 1:1
for the erlotinib or drug-free supernatant assays, respect-
ively. Dilution of supernatants resulted in final erlotinib
concentrations of 0–10 μM and final supernatant dilu-
tions of 0–40% in the respective wells. Cell control wells
received either DMSO or PBS for the erlotinib or super-
natant assay, respectively. GAM control wells were bac-
teria free and otherwise handled the same as bacterial
supernatants. In both assays, plates were incubated for
72 h at 37 °C under 5% CO2. Viability was assessed by
addition of 5% of a resazurin-based cell viability reagent
(alamarBlue; Thermo Fisher Scientific) and further incu-
bation for approximately 18 h. The reducing capability
of viable cells was assessed by measuring fluorescence at
530EX nm/590EM nm in a Synergy H1 microplate
reader (BioTek). Higher fluorescence signal indicated
higher cell viability.

Animal studies
Six-week old C57BL6/N mice were fed on a normal
chow diet ad libitum. Mice were treated with a cocktail
of antibiotics (ampicillin 0.3 g/L, neomycin 0.3 g/L,
metronidazole 0.3 g/L, and vancomycin 0.15 g/L) in
drinking water for 1 week before oral gavage of bacterial
species. Control PBS, responder-enriched species (B. ova-
tus and B. xylanisolvens) and non-responder-enriched
species (C. symbiosum and R. gnavus) were orally
gavaged into mice respectively 1 week prior to the inocu-
lation of the tumor cell line and daily throughout the en-
tire experiments. To induce tumor formation, 107 Lewis
lung cancer cells in 200 μl PBS were subcutaneously
injected into the mice. Mice were treated with or with-
out erlotinib (60 mg/kg body weight) once the tumor
size reached approximately 250–500 mm3. Tumor
growth was assessed using a caliper, and tumor size was
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estimated by using the following formula: tumor size =
length × width × width/2. All animal experiments were ap-
proved by the Committee on the Use of Live Animals for
Teaching and Research of the University of Hong Kong.

Gut colonization with responder-enriched species and
non-responder-enriched species
B. ovatus, B. xylanisolvens, C. symbiosum, and R. gnavus
were cultured anaerobically in GAM (Gifu anaerobic
medium) broth. Colonization of antibiotic-pretreated
C57BL/6 N mice was performed by oral gavage with
200 μl of suspension containing 5 × 109 bacteria. The ef-
ficacy of colonization was confirmed by detecting the
fecal content of bacterial species on day 14 (at the end
of the experimental stage), based on pre-built standard
curves and normalization by the gram of feces. Fecal
DNA was extracted with the QIAamp DNA stool mini
kit (Qiagen) and subjected to PCR amplification target-
ing different bacterial species. Primers for B. ovatus and
B. xylanisolvens were as follows: forward: GGTGTC
GGCTTAAGTGCCAT; reverse: CGGACGTAAGGGCC
GTGC. Primers for C. symbiosum and R. gnavus were as
follows: forward: CGGTACCTGACTAAGAAGC; re-
verse: AGTTTCATTCTTGCGAACG.

Quantitative real-time PCR
Tumors were frozen in liquid nitrogen immediately after
harvest, and total RNA was extracted with RNAiso Plus
(Takara) and reverse transcribed into complementary DNA
with a primeScript RT reagent kit (Takara). Quantitative
real-time PCR was performed by using SYBR Premix Ex
Taq (Takara) with specific primers on a StepOnePlus Real-
time PCR system (Applied Biosystems). Primers for CXCL9
were as follows: forward: GGAGTTCGAGGAAC
CCTAGTG; reverse: GGGATTTGTAGTGGATCGTGC.
Primers for CXCL10 were as follows: forward: CCAAGT
GCTGCCGTCATTTTC; reverse: TCCCTATGGCCCTC
ATTCTCA. Primers for IFN-γ were as follows: forward:
ATGAACGCTACACACTGCATC; reverse: CCATCC
TTTTGCCAGTTCCTC. Primers for CCL20 were as
follows: forward: ACTGTTGCCTCTCGTACATACA; re-
verse: GAGGAGGTTCACAGCCCTTTT. Primers for gran-
zyme B were as follows: forward: TCTCGACCCTACAT
GGCCTTA; reverse: TCCTGTTCTTTGATGTTGTGGG.
Primers for MCP-1 were as follows: forward: CCACTC
ACCTGCTGCTACTCA; reverse: TGGTGATCCTCTTG
TAGCTCTCC. Primers for SDF-1 were as follows: forward:
TGCATCAGTGACGGTAAACCA; reverse: CACAGT
TTGGAGTGTTGAGGAT.

Statistical analysis
'The significance of the differences between groups
was analyzed using the Wilcoxon rank-sum test and
ANOSIM with R. A p value < 0.05 (5% level of

probability) was considered to be significant and de-
noted as follows: *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001. In in vitro assays, cell viability percent-
age was calculated as percentage of average viability
from cell control wells. Outliers were identified with
the ROUT method using a strict threshold of Q =
0.1%. Identified outliers were removed for subsequent
statistical analysis. For non-linear regression curves, differ-
ences in IC50 values were determined with the extra sum-
of-squares F-test. Significant differences between bacterial
and GAM control wells were determined via an unpaired
t test and a false discovery rate approach using the two-
stage linear step-up procedure of Benjamini, Krieger, and
Yekutieli, with a false discovery rate (Q) of 1%. Testing
conditions were analyzed individually, without assuming a
consistent SD. Statistical analysis in vitro was performed
with GraphPad Prism (version 8.0.0 for Mac, GraphPad
Software, San Diego, CA, USA, www.graphpad.com).
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