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Abstract

Background: Despite recent decreases in the cost of sequencing, shotgun metagenome sequencing remains more
expensive compared with 16S rRNA amplicon sequencing. Methods have been developed to predict the functional
profiles of microbial communities based on their taxonomic composition. In this study, we evaluated the performance of
three commonly used metagenome prediction tools (PICRUSt, PICRUSt2, and Tax4Fun) by comparing the significance of the
differential abundance of predicted functional gene profiles to those from shotgun metagenome sequencing across
different environments.

Results:We selected 7 datasets of human, non-human animal, and environmental (soil) samples that have publicly available
16S rRNA and shotgun metagenome sequences. As we would expect based on previous literature, strong Spearman
correlations were observed between predicted gene compositions and gene relative abundance measured with shotgun
metagenome sequencing. However, these strong correlations were preserved even when the abundance of genes were
permuted across samples. This suggests that simple correlation coefficient is a highly unreliable measure for the performance
of metagenome prediction tools. As an alternative, we compared the performance of genes predicted with PICRUSt,
PICRUSt2, and Tax4Fun to sequenced metagenome genes in inference models associated with metadata within each
dataset. With this approach, we found reasonable performance for human datasets, with the metagenome prediction tools
performing better for inference on genes related to “housekeeping” functions. However, their performance degraded sharply
outside of human datasets when used for inference.

Conclusion:We conclude that the utility of PICRUSt, PICRUSt2, and Tax4Fun for inference with the default database is likely
limited outside of human samples and that development of tools for gene prediction specific to different non-human and
environmental samples is warranted.
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Introduction
Recent advances in next generation sequencing are revo-
lutionizing our understanding of complex microbial
communities. Amplicon sequencing of marker genes
provides information regarding the phylogenetic diver-
sity and taxonomic composition of microorganisms

present in the environment, while shotgun metagenome
sequencing provides additional information on the rela-
tive abundance of functional genes. Although knowledge
of taxonomy and functional genes of microorganisms
are both important, functional genes are more directly
related to pathways and therefore are essential for un-
derstanding the roles microorganisms play with regard
to different physiological or ecological outcomes. How-
ever, the higher cost of metagenome sequencing hinders
its application in studies consisting of a large number of
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samples, which are usually necessary in order to ensure
adequate statistical power for detecting true differences
[1]. Additionally, metagenome sequencing can also be
very challenging for low biomass samples or samples
that are dominated by non-microbial DNA [2, 3].
To address this problem, tools have been developed to

predict microbial functional genes from their taxonomic
compositions inferred from more cost-effective amplicon
sequencing, including PICRUSt, PICRUSt2, Tax4Fun, and
FaproTax [4–7], and these tools have been applied in hun-
dreds of projects on various environments, including hu-
man gut [8, 9], murine [10, 11], fish [12], coral [13], water
[14], plant [15], bioreactor [16], and soil [17]. The algo-
rithms generally predict the genes of organisms without
sequenced genomes based on mapping their 16S rRNA
genes to homologous taxa with fully sequenced genomes.
Thus, the predictions are limited by currently available ge-
nomes, which are highly biased towards microorganisms
associated with human health and biotechnology use [18].
To gauge the reliability of the predictions of these tools

in different environments and for different functional cat-
egories, we utilized human, non-human animal (gorilla,
mouse, and chicken), and environmental (soil) datasets
that were sequenced for both 16S rRNA marker genes
and shotgun metagenomes. We compared the predicted
functional profiles to the functional profiles measured
with shotgun metagenome sequencing. We demonstrated
that simple correlations such as Spearman correlation
overstate the accuracy of the metagenome prediction tools
by not taking into account the low variance of functional
profiles generated from shotgun metagenome sequencing.
As an alternative metric, we used the predicted results for
inference with simple statistical models and found reason-
able performance for human datasets, which presumably
reflected the better reference information we currently
have for human genomes, but a sharp decrease in per-
formance for inference in non-human samples. The evalu-
ation of metagenome prediction tools’ performance also
indicated that the accuracy of prediction varies by func-
tional categories with typically better performance for
genes related to “housekeeping” functions, possibly due to
the difficulty predicting genes with higher phylogenetic
variability, higher horizontal gene transfer rates, or genes
related to the unculturable state of the microorganism.
The variable performance across environments and func-
tional categories should be considered when interpreting
the results of metagenome prediction tools.

Results
Spearman correlation is not a reliable measurement for
the prediction accuracy of gene contents
We compared the predictions of PICRUSt, PICRUSt2,
and Tax4Fun to the results of shotgun metagenome se-
quencing on publicly available datasets for which both

metagenome and 16S rRNA sequences were available
(Table S1). As we would expect from previous literature
[4], gene content estimations from these tools were ro-
bustly correlated with gene contents from metagenome
sequencing with Spearman correlations in the range of
0.53 to 0.87 (Fig. 1). For example, in one soil sample
(Fig. 1b), there is a clear correlation between the relative
abundance of each gene from PICRUSt and the relative
abundance from metagenome sequencing (Spearman’s
rho = 0.85). However, if we independently permute each
gene’s abundances across samples (Fig. 1a) and then
compare the gene composition from metagenome se-
quencing to PICRUSt predictions of this sample, the
correlation that was observed is not substantially im-
pacted (Spearman’s rho = 0.84) (Fig. 1c).
The likely explanation for this observation is that across

environments, there is less variation between metagenome
functional profiles of samples than their taxonomic pro-
files (Fig. 2), an observation that has been previously made
for human samples in the Human Microbiome Project
[19]. In the datasets examined, the relative abundance of
genes from prediction tool estimates were highly corre-
lated with that from metagenome sequencing, with correl-
ation coefficients always higher than 0.5, and this was true
for both permuted and unpermuted samples for PICRUSt
(Fig. 1d), PICRUSt2 (Fig. 1e), and Tax4Fun (Fig. 1f). The
correlations were often only marginally higher on the
unpermuted data than those permuted, with perhaps the
gorilla dataset as an exception (Fig. 1d, e, and f). However,
even in the gorilla samples, the largest difference between
Spearman coefficients for permuted and unpermuted data
was only 0.12. For the 2 soil datasets, the Spearman coeffi-
cients for the unpermuted data were not significantly dif-
ferent from those for the permuted ones with all three
prediction tools (Fig. 1d, e, and f).

Inference from metagenome prediction tools showed
higher consistency with metagenome sequencing in
human samples than non-human samples
As an alternative evaluation to Spearman’s correlation of
gene composition, we examined how the inference of
predicted gene compositions compared to that of shot-
gun metagenome sequencing in each of our datasets.
For this purpose, we formed a null hypothesis for each
gene in each dataset that there is no difference in the
mean of that gene’s distribution of relative abundance
between the two groups in the dataset. For example, for
each of the 5574 genes detected by both PICRUSt and
metagenome sequencing in the Human_KW dataset, we
used a Wilcoxon test to generate P values for the differ-
ence in gene composition between rural and urban sam-
ples. Across all the genes, there was a reasonable
correlation (rho = 0.46) of P values from Wilcoxon tests
run on real metagenome sequencing data and those
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Fig. 1 Spearman correlations between metagenome predictions and shotgun metagenome sequencing in unpermuted and permuted datasets.
a Each gene’s abundance was permuted across samples independently. b and c An example showing the correlations between genes relative
abundances estimated by PICRUSt and metagenome sequencing in a soil sample (sample BulkAG3 in soil_AAN dataset) for unpermuted (b) and
permuted (c) data. d–f The Spearman correlations of gene composition estimated from metagenome sequencing and predicted with PICRUSt
(d), PICRUSt2 (e), and Tax4Fun (f) in unpermuted (red) and permuted data (blue) in all datasets. In each of the 100 permutations, every gene’s
abundance was permuted across samples independently

Fig. 2 Taxonomic (a) and functional profiles (b) of the 7 datasets in our study. The taxonomic profiles were plotted at the class level, and the
functional profiles were plotted at the broadest functional category of the KEGG database for visualization
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predicted with PICRUSt data. Unlike our results for Spear-
man correlation of gene composition, this inference correl-
ation is sensitive to data permutation, as when we repeated
this procedure on permuted data (Fig. 3a), the correlation be-
tween P values generated from metagenome sequencing and
those from prediction tools approached zero (Fig. 4). We cal-
culated the inference correlation coefficients for the estimates
from PICRUSt, PICRUSt2, and Tax4Fun on all 7 datasets.
We saw a similarly robust correlation for the other human
dataset (Human_TY) evaluating a null hypothesis comparing
the US and non-US samples. However, when we extended
this analysis to non-human datasets (using the null hypoth-
eses for each study listed in Table S1), the inference pro-
duced by metagenome prediction tools showed a much
lower similarity to inference produced by metagenome se-
quencing (Fig. 3c).
To determine whether sample sizes contributed to the

differences in performance across datasets, we randomly
subsampled each larger dataset (without replacement) to
10 samples (5 per group) and re-calculated the compari-
son of P values between metagenome prediction tools
and metagenome sequencing (Fig. S1). Even at a smaller
size, data from the human studies showed greater

concordance than those from other environments. We
conclude that the difference in sample sizes between
datasets does not explain the variability of metagenome
prediction tools’ accuracy between different sample types
in our study. Likewise, the effect sizes of the associations
with metadata, measured as R2 in a PERMANOVA test,
were not substantially higher in human samples (Table
S1). It therefore also seems unlikely that effect size alone
can explain the better concordance we observed between
inference results from metagenome prediction tools and
metagenome sequencing for human samples.
We further investigated the consistency of metagenome

prediction tools and metagenome sequencing by examin-
ing how many genes were missed or incorrectly detected
by metagenome prediction tools. For some datasets, such
as the Human_KW dataset, metagenome prediction tools
failed to predict many genes that were detected by meta-
genome sequencing (Table S2). For other datasets, such as
the soil datasets, many genes predicted were not detected
in metagenome sequencing, and there were also many
genes seen in metagenome sequencing but not in meta-
genome prediction tools (Table S2). For the chicken data-
set with an average metagenome sequencing depth of 31

Fig. 3 Comparison of inferences based on gene composition estimated with metagenome prediction tools and metagenome sequencing in each of the 7
datasets. a In this approach, P values of the Wilcoxon test evaluating the null hypothesis for each dataset (see the “Methods” section and Table S1) were
calculated for metagenome sequencing and metagenome prediction tools. The P values for genes in common between the two methods were compared
using Spearman’s correlation, and the resulting rho was considered as an estimate for the correlation of inference. b Examples showing the correlations
between the P values from metagenome prediction tools and metagenome sequencing in Human_KW, chicken, and Soil_LWM datasets. For example, in the
Human_KW dataset, genes higher in urban subjects are in the upper-right hand quadrant, and genes lower in urban are in the lower-left hand quadrant. c The
correlation of inference between metagenome sequencing and PICRUSt, PICRUSt2, and Tax4Fun for all seven datasets
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million reads/sample and the gorilla dataset of 27 million
reads/sample, 39.5% and 36.9% of predicted genes could
not be detected by metagenome sequencing. In addition,
the metagenome sequencing of the Human_KW dataset
with an average sequencing depth of 10 million reads/
sample detected 13,880 genes and metagenome prediction
tools missed 59.1% of them.

Metagenome prediction tools performs differently for
different functional categories
We next investigated the discrepancy between metagen-
ome prediction tools and metagenome sequencing for in-
ference in different functional categories (Fig. 5, Fig. S2-4).

When comparing the inference from metagenome predic-
tion tools to inference from metagenome sequencing,
some functional categories performed better than others
in the human gut samples, including those related with
genetic information processing such as replication and re-
pair, translation, folding, sorting and degradation, and
metabolism-related functions including glycan biosyn-
thesis and metabolism, nucleotide metabolism, and amino
acid metabolism. Some functional categories performed
less well, including biosynthesis of other secondary metab-
olites, xenobiotics biodegradation and metabolism, and
functions related with environmental information process-
ing and signaling and cellular processes, such as signal

Fig. 4 The results of inference methods in unpermuted and permuted datasets. The red points are the inference correlations between metagenome
prediction tools and unpermuted metagenome sequencing data for each dataset. The boxplots of blue points show the inference correlations
between metagenome prediction tools and permuted metagenome sequencing data for 100 permutations. In each of the 100 permutations, every
gene’s abundance was permuted across samples independently
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transduction, membrane transport, and cell growth and
death. For the genes only detected by one method, most
of the genes missed by metagenome prediction tools be-
long to signal transduction, signaling molecules and inter-
action, and functions related with genetic information
processing, while metabolism-related functions were more
likely to be predicted (Fig. S3 and Table S3c). Among the
genes predicted by metagenome prediction tools but not
detected by metagenome sequencing, most of them be-
long to signaling molecules and interaction, metabolism of
terpenoids and polyketides, and xenobiotics biodegrad-
ation and metabolism (Fig. S4 and Table S3d).

Discussion
Microbial community functional profiles are typically of
much lower variance compared to their taxonomic pro-
files [19–21], likely because of the large proportions of
“core” or “housekeeping” functions. Likewise, specific
niche adaption pathways may contribute to overall mi-
crobial functional stability in specific environments [22].
In this study, we showed that this lack of variance in
functional profiles between samples leads to a strong
correlation between functional profiles from metagen-
ome sequencing and those estimated from references
with metagenome prediction tools, even when the gene
compositions are permuted across samples (Fig. 1d–f).
Because of the relative functional stability of the micro-
biota in certain environments, metagenome prediction
tools could likely better predict average gene profiles

rather than within-niche variations. We argue that this
result shows that metrics commonly used to measure
gene prediction performance, such as Spearman correl-
ation between gene composition estimated with predic-
tion tools and metagenome sequencing, do not give a
satisfactory measure of overall accuracy. As an alterna-
tive, we evaluated the performance of three commonly
used metagenome prediction tools at a community level
based on inference from simple statistical models testing
the association between genes and metadata. Unlike sim-
ple Spearman correlations of gene compositions, evalu-
ation with inference methods is highly sensitive to data
permutation (Fig. 4), which indicated that inference
methods are much less affected by the relatively low
variance of functional profiles. The inference-based ap-
proach also has the advantage of reflecting the common
use of metagenome prediction tools to reveal predicted
functional profiles associated with different metadata
categories [12, 13, 23–25]. Incorrect estimation of differ-
ential abundance could lead to false discovery of signa-
ture genes, and this concern motivated our approach to
determine the reliability of inference produced with
metagenome prediction tools in different ecosystems.
In this study, we selected 7 datasets from different en-

vironments which include human, non-human animal,
and environmental (soil) samples. With inference
methods, we found that metagenome prediction tools
and metagenome sequencing had more consistent as-
sessment from human datasets than non-human animals

Fig. 5 Inference correlations between PICRUSt and metagenome sequencing in 32 KEGG functional categories at the second hierarchy level with
the bar colors indicating the functional categories at the first hierarchy level. The results of PICRUSt2 and Tax4Fun are shown in Fig. S2. Negative
and insignificant correlations are not shown

Sun et al. Microbiome            (2020) 8:46 Page 6 of 9



or environmental datasets. It is likely that these differ-
ences reflect the bias of genome databases towards
human-related microorganisms. However, metagenome
prediction tools still missed a large percentage of genes
that were detected with metagenome sequencing in hu-
man samples, and an increase in metagenome sequen-
cing depth could presumably increase the number of
genes that are potentially not detected by metagenome
prediction tools (Table S2). Likewise, metagenome pre-
diction tools sometimes predicted many genes not found
in metagenome sequencing even in samples with pre-
sumably adequate sequencing depth of millions of reads
per sample, which suggested that these additional genes
are likely incorrect predictions (Table S2). Discordance
between databases used for gene prediction tools and
KEGG pathways, which are frequently updated, or other
issues in ontology or annotation systems that differ be-
tween methods could also contribute to the lack of com-
mon gene nomenclature between shotgun metagenome
sequencing data and prediction tools.
As a meta-analysis across multiple studies, there are

systemic factors that may influence the results of this
study, including different sample sizes, sequencing de-
signs, and effect sizes of associations with the metadata.
We repeated our analysis on subsampled datasets that
were rarified to the number of samples in the smallest
dataset that we examined and observed a similar pattern
of results with inference more consistent between meta-
genome prediction tools and metagenome sequencing
for human studies (Fig. S1). This result suggests that dif-
ference in sample size does not explain the better infer-
ence performance for the human studies. While
differences in effect size and experimental design are
harder to control, the human studies did not have an ob-
viously higher effect size than the non-human studies as
measured with a PERMANOVA test (Table S1). It there-
fore also seems unlikely that differences in effect sizes of
associations with the metadata can explain our results.
Our study also examined the performance of metagen-

ome prediction tools for different functional categories.
This approach was motivated by the presumed bias in
current genome databases toward culturable microor-
ganisms [26]. We reasoned that the unculturable state of
microorganisms could be caused by specific require-
ments for nutrients, temperature, pH, beneficial interac-
tions with other microbes, or extremely slow growth
rates [27], which in turn could lead to bias in gene fam-
ilies in different microorganisms. Likewise, different mi-
croorganisms and genes also have different rates of
horizontal gene transfer, and the accuracy of gene con-
tent estimation may therefore vary depending on the
type of the genes and microbial groups [28]. We found
that metagenome prediction tools generally performed
best for “housekeeping” functions such as those related

with genetic information processing while the accuracy
of functions related to environmental information pro-
cessing, secondary metabolites, and xenobiotics metabol-
ism was generally much lower (Fig. 5), possibly because
the low phylogenetic variability of genes involved in core
functions leads to more accurate prediction. Future algo-
rithms for gene prediction could explicitly incorporate
this performance variance into a confidence score that
could give users estimated error rates for prediction of a
given gene family.
In comparing the three methods, we evaluated

(PICRUSt, PICRUSt2, and Tax4Fun); no method was ob-
viously superior to another. The prediction of some
methods had a higher correlation to the metagenome se-
quencing data on particular samples, such as PICRUSt2
on the chicken dataset, but PICRUSt2 performed less well
in capturing the inference pattern from real metagenome
sequences in some other datasets such as mouse. Overall,
our results do not support a baseline recommendation of
one of these methods over the others.
Our analysis suggests that in order to better predict

microbial functional profiles in certain environments, it
will be of utility to develop tools specific to that environ-
ment. There have been encouraging examples in the lit-
erature of efforts to make environmental specific
databases such as CowPI, a functional inference tool
specific to the rumen microbiome, which had better esti-
mates than PICRUSt when used for predicting functional
profiles in the bovine environment [29]. We can look
forward to similar future refinements in the next gener-
ation of these algorithms that will use appropriate refer-
ence databases for an environment and analyze
individual functional categories to yield confidence
scores for each prediction.

Conclusions
Our analysis argues that the low variance of microbial
functional profiles makes Spearman correlation of gene
composition an unreliable metric for evaluating the ac-
curacy of predicted functional gene profiles from taxo-
nomic profiles. As an alternative to simple correlations,
we utilized an inference-based method and found poor
agreement between metagenome prediction tools and
metagenome sequencing outside of human samples and
housekeeping genes. This suggests the necessity of fu-
ture tool development specific to non-human environ-
ments that explicitly considers gene functional category
as part of the model building process.

Methods
The datasets used in this study include 2 human datasets
(named as Human_KW [30] and Human_TY [31] in our
study after the initials of their first authors), 1 gorilla
[32], 1 mouse [33], 1 chicken [34], and 2 soil datasets
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Soil_LWM [35] and Soil_AAN [36]. Each dataset has
publicly available 16S rRNA and metagenome sequences
and is associated with a two-level categorical metadata.
The Human_KW study compared urban and rural sub-
jects in China, while the US and non-US subjects were
compared for the Human_TY study. In the gorilla study,
the dry and wet seasons were compared while the mouse
study compared community composition of two entero-
types. Lean and fat broiler chicken lines were compared
for the chicken study. For the Soil_LWM study, Amazon
dark earth and agricultural soil were compared, while
forested and deforested soils were compared for the
Soil_AAN study. Information regarding data locations,
sequencing depth, sample sizes, and effect sizes (mea-
sured as R2 in the PERMANOVA test with the function
“adonis” in the R package “vegan”) for each study are
listed in Table S1.
The PICRUSt, PICRUSt2, and Tax4Fun predictions of

the 16S rRNA sequences in the datasets followed the de-
veloper’s instructions [4, 5, 7]. The authors’ metagenome
analysis results were used when available [31, 33, 35, 36];
otherwise, the raw sequences were analyzed with
HUMAnN2 following the developer’s instructions [37].
In each dataset, all predicted gene families and pathways
were compared to those from metagenome sequencing
in terms of their KEGG annotations that were down-
loaded from the KEGG website. For genes detected by
both metagenome prediction tools and metagenome se-
quencing, we used two sets of methods to evaluate their
consistency. In a first set of methods, we analyzed the
Spearman correlation between predicted gene compos-
ition and those from metagenome sequencing. As a con-
trol, we permuted gene composition across samples 100
times and re-calculated Spearman correlation of gene
composition between predictions and metagenome se-
quencing estimates.
In a second set of methods, we analyzed the consistency

of metagenome prediction tools and metagenome sequen-
cing in the P values they generated for null hypotheses of
no association with metadata. For this purpose, P values
were produced with a Wilcoxon test of the 2 distinguish-
able groups in each dataset (Table S1). P values from the
Wilcoxon test were log10 transformed and multiplied by
either 1 or − 1 to include the direction of change as indi-
cated below:

P t ¼ log10 Pð Þ � sign mean group1−mean group2ð Þ

P_t is the transformed P value, P is the P value from
Wilcoxon test, and the difference between means of the
two distinguishable groups was used to add direction.
We then estimated the consistency of the P values from
metagenome prediction tools and metagenome sequen-
cing with Spearman’s correlation. To determine whether

this method is affected by the low variance of functional
profiles, we permuted the metagenome sequencing pro-
duced gene compositions 100 times and re-calculated
the P values and their correlation with the predictions.
To correct for differences in sample size, each dataset
was also subsampled to 5 samples per group to ensure
that the different sample sizes of datasets were not un-
duly influencing our results. The predictions and meta-
genome sequencing were also compared in each of the
32 level 2 KEGG functional categories.
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