
Zhu et al. Microbiome           (2021) 9:133 
https://doi.org/10.1186/s40168-021-01034-9

METHODOLOGY Open Access

Constraining PERMANOVA and LDM to
within-set comparisons by projection
improves the efficiency of analyses of
matched sets of microbiome data
Zhengyi Zhu1, Glen A. Satten2, Caroline Mitchell3 and Yi-Juan Hu1*

Abstract

Background: Matched-set data arise frequently in microbiome studies. For example, we may collect pre- and
post-treatment samples from a set of individuals, or use important confounding variables to match data from case
participants to one or more control participants. Thus, there is a need for statistical methods for data comprised of
matched sets, to test hypotheses against traits of interest (e.g., clinical outcomes or environmental factors) at the
community level and/or the operational taxonomic unit (OTU) level. Optimally, these methods should accommodate
complex data such as those with unequal sample sizes across sets, confounders varying within sets, and continuous
traits of interest.

Methods: PERMANOVA is a commonly used distance-based method for testing hypotheses at the community level.
We have also developed the linear decomposition model (LDM) that unifies the community-level and OTU-level tests
into one framework. Here we present a new strategy that can be used with both PERMANOVA and the LDM for
analyzing matched-set data. We propose to include an indicator variable for each set as covariates, so as to constrain
comparisons between samples within a set, and also permute traits within each set, which can account for
exchangeable sample correlations. The flexible nature of PERMANOVA and the LDM allows discrete or continuous
traits or interactions to be tested, within-set confounders to be adjusted, and unbalanced data to be fully exploited.

Results: Our simulations indicate that our proposed strategy outperformed alternative strategies, including the
commonly used one that utilizes restricted permutation only, in a wide range of scenarios. Using simulation, we also
explored optimal designs for matched-set studies. The flexibility of PERMANOVA and the LDM for a variety of
matched-set microbiome data is illustrated by the analysis of data from two real studies.

Conclusions: Including set indicator variables and permuting within sets when analyzing matched-set data with
PERMANOVA or the LDM is a strategy that performs well and is capable of handling the complex data structures that
frequently occur in microbiome studies.
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Background
Many studies of the microbiome have matched-pair or
matched-set designs, in which data naturally cluster into
sets but the samples within each set vary in the traits
of interest (e.g., clinical outcomes, environmental fac-
tors). Matching allows us to study the association between
the microbiome and the traits of interest by comparing
samples within sets, ignoring the variability in micro-
biomes between sets. For example, we may collect paired
samples pre- and post-treatment from a set of subjects
to assess the treatment effects on the microbiome. We
may also collect matched case-control subjects who were
matched on important confounding factors to facilitate
case-control comparison. Matching is advantageous when
the signal-to-noise ratio is larger within than between
sets. In matched studies, complexities may occur when
the data are unbalanced (e.g., having unequal ratio of
case-to-control samples per set), there exist additional
confounders that vary within each set, or some traits of
interest are continuous.
Only two methods have been developed specifically for

analyzing matched-set microbiome data; both are limited
to paired data without any within-pair covariates. Shi and
Li [1] proposed a paired-multinomial distribution that is
only applicable when the sample size is larger than the
number of taxa. Zhao et al. [2] developed a generalized
paired Hotelling’s test that relaxed the restriction of Shi
and Li’s method, but can only provide tests at the com-
munity level. Matched-set data may be also be considered
as a special case of longitudinal data with an exchange-
able correlation; as a result, some methods for analyzing
longitudinal data can be used to analyze matched-set
microbiome data. These methods are applied separately
to each operational taxonomic unit (OTU; here we use
“OTU” generically to refer to any feature such as ampli-
con sequence variants or taxonomic/functional group-
ing of microbial sequences). An appealing choice is the
linear mixed-effects model (LMM), which has typically
been applied to arcsin-root-transformed relative abun-
dance data to improve normality [3–5]. A zero-inflated
beta regression model with random effects (ZIBR) has
also been developed specifically for modeling (untrans-
formed) relative abundance data [6]. Both methods are
based on fully parametric models and so may not fit every
OTU well. Further, some strategies have been proposed
to extend existing tests of the microbiome to analyzing
matched-set data. DESeq2 [7], originally a method for
RNA-Seq data, has frequently been used for one-OTU-at-
a-time analyses of microbiome data. The manual for the
DESeq2 software package recommends that indicators of
set membership should be included as terms in the design
formula, but DESeq2 does not account for within-set cor-
relations. PERMANOVA [8] is a commonly used distance-
based method for testing hypotheses at the community

level. The documentation for the two implementations
of PERMANOVA, adonis2 (R package vegan) and
permanovaFL (R package ldm [9]) that differ in their
permutation schemes, suggests that restricted permuta-
tion within each set should be performed when analyzing
matched-set data. However, the performance of any of
these strategies has not yet been evaluated, especially in
studies with unbalanced data or within-set confounders.
We previously introduced the linear decomposition

model (LDM) [9] primarily for analyzing independent
data. The LDM provides tests at both the community
level and the individual OTU level. These tests are con-
ducted in a unified manner such that the findings of a
community-level test can be resolved with the findings
at the individual OTU level. Both PERMANOVA and
the LDM are regression- and permutation-based, mak-
ing them readily extendable to analyzingmatched-set data
while accounting for the aforementioned data complexi-
ties. Although we considered within-cluster permutation
in the LDM paper [9], that was in a context in which vari-
ables of interest could be below the cluster level. We did
not explicitly consider the matched-set data we describe
here from either a theoretical or numerical point of view.
In this article, we develop a new strategy for using

PERMANOVA and the LDM to analyze a wide range
of matched-set microbiome data, for testing both
community-level hypotheses and individual OTUs when-
ever applicable. In the “Methods” section, we describe our
strategy and establish a connection with the existing strat-
egy of restricted permutation. In the “Results” section, we
present the simulation studies and the application to two
real microbiome studies with matched-set designs. We
conclude with a “Discussion” section.

Methods
Wewill refer to each observation as a “sample” and refer to
the experimental unit that contributes one or more obser-
vations as a “set.” We allow each set to be comprised of an
arbitrary number of samples. We also allow multiple dis-
crete and/or continuous traits to be tested and additional
sample-level (i.e., within-set) confounding covariates to be
adjusted for. In a common scenario with a binary trait
(e.g., a case-control status or a treatment or exposure vari-
able), each set consists of one case sample andm (m ≥ 1)
control samples, usually referred to as 1:m matched data.
We assume that, after all covariates (including the traits
of interest) have been accounted for, the members of each
set are exchangeable.
To present our strategy for analyzing matched-set data,

we introduce a common notation to describe both PER-
MANOVA and the LDM. Both PERMANOVA and the
LDM are linear models for which the effects of covari-
ates (metadata) are summarized in a design matrix X. The
rows of X correspond to samples while the columns of X
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correspond to the covariates. We may partition X by
columns into K groups (which we call “submodels”) such
that X = (X1,X2, . . . ,XK ), where each Xk denotes a
variable or set of variables we wish to test (jointly). For
example, Xk may consist of indicator variables for levels of
a single categorical variable, or a group of potential con-
founders that we wish to adjust for simultaneously. Both
PERMANOVA and the LDM make the columns of Xk
orthonormal to the columns of Xk′ for k′ < k using pro-
jection (i.e., the Gram-Schmidt process). Thus, we require
an ordering of the submodels, which leads to unambigu-
ous interpretations of p-values, that is, the test of each
submodel is adjusted for the proceeding submodels.
For both PERMANOVA and the LDM, test statistics

for the kth submodel can be expressed in terms of the
quantity XT

k Y . For PERMANOVA, Y is related to the
(squared and Gower-centered) distance matrix � by � =
YSYT, where S is a diagonal matrix with diagonal ele-
ments equal to 1 or −1 corresponding to positive and
negative eigenvalues of �, respectively. For the LDM, Y
is the (column-centered) OTU table that has rows for
samples and columns for OTUs; the OTU table typi-
cally contains the frequency (i.e., relative abundance) data
or arcsin-root-transformed frequency data. Since Y in
either PERMANOVA or the LDM is column-centered and
treated as the response of a linear model, we also assume
the design matrix X is column-centered.
With no loss of generality, we can write the element of Y

in the ith row and jth column as

Yi,j = Ys(i),j + (Yi,j − Ys(i),j) = Ys(i),j + δi,j,

where s(i) is the set that the ith sample belongs to. Thus,
Ys(i),j is the set-level average of Yi,j and δi,j is the devi-
ation of the ith sample from the set-level average. The
rationale of a matched-set design is that we wish to treat
Ys(i),j characterizing a set as a nuisance parameter and
focus the testing efforts on δi,js.With this in mind, we note
that XT

k Y is a function of only the δi,js (i.e., not a function
of the Ys(i),js) whenever the column values of Xk sum to
zero for each set of samples belonging to the same set. It
is clear that this occurs whenever the columns of Xk are
orthogonal to the set of indicator variables corresponding
to the set IDs. Therefore, our proposed strategy for fitting
matched-set data is to introduce an indicator variable for
each set to be included in submodel X1 along with any
sample-level confounding covariates that are not matched
on. Note that any set-level confounders are automatically
controlled for in this strategy, as they can be written as lin-
ear combinations of the indicator variables generated by
the set IDs. Indeed, it is typical of matched-set analyses
that the effect of variables that have been matched on (i.e.,
that are constant in each set) cannot be determined (see,
e.g., [10]).

To see how this works in practice, consider a simple
example with two sets, the first having two samples and
the second having three samples. For clarity, we work with
Xks before orthonormalization and show X1 (which has
the indicator variables for the two sets) and X2 (which has
a case-control status) before column centering:

X1 =

⎛
⎜⎜⎜⎜⎝

1 0
1 0
0 1
0 1
0 1

⎞
⎟⎟⎟⎟⎠
, X2 =

⎛
⎜⎜⎜⎜⎝

1
0
1
0
0

⎞
⎟⎟⎟⎟⎠
.

After column centering (i.e., subtracting column means),
X2 = (3/5,−2/5, 3/5,−2/5,−2/5)T. Note that the values
inX2 do not sum to zero within each set. If we constructed
a test using this contrast, the set-specific means Y 1,j and
Y 2,j would not be eliminated. However, if we make X2
(before column centering) orthogonal to the columns of
X1 (which automatically achieves column centering), we
find X2 = (1/2,−1/2, 2/3,−1/3,−1/3)T, where we see
that the values in X2 sum to zero within each set.
We identify a condition under which the nuisance

parameters disappear even without projecting off the set
ID. We say that a variable in matched-set data is balanced
if the sum of the variable within each set is proportional
to the number of its samples (with the same constant of
proportionality). For example, a case-control status is bal-
anced if all sets have as many case as control samples, or
if some sets have two case and four control samples and
the remaining sets have one case and two control samples.
For a balanced variable, column centering alone is suffi-
cient to make the values of that variable sum to zero within
each set, even without projecting off the set ID. Note that
adjusting for sample-level covariates can result in imbal-
ance in a variable, even if it was initially balanced; in this
case, projection on the set ID is required to restore bal-
ance. A simple example with two sets, each contributing
two samples along with a sample-level covariate, shows
this. Before column centering (and orthonormalization),
suppose the covariate is X1 = (9, 8, 6, 9)T and the case-
control status isX2 = (1, 0, 1, 0)T. After column centering,
we have

X1 =

⎛
⎜⎜⎝

1
0

−2
1

⎞
⎟⎟⎠ , X2 =

⎛
⎜⎜⎝

1/2
−1/2
1/2

−1/2

⎞
⎟⎟⎠ .

In the absence of the covariate, X2 after column centering
do sum to zero within each set; however, after adjusting
for the covariate, we have X2 = (2/3,−1/2, 1/6,−1/3)T,
which does not eliminate the set-specific means. If we also
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adjust for the set ID by augmenting X1 with the column-
centered indicator

X1 =

⎛
⎜⎜⎝

1/2 1
1/2 0

−1/2 −2
−1/2 1

⎞
⎟⎟⎠ ,

we obtain X2 = (3/5,−3/5, 1/5,−1/5)T, in which val-
ues do sum to zero within sets. Finally, note that in this
example we have considered a binary case-control trait;
it should be clear that, for a continuous trait, the within-
set sum is unlikely to be the same for each set, and hence,
the projection on the set ID is required to eliminate the
nuisance parameters.
As we have assumed the samples in each set are

exchangeable, we propose to perform restricted permu-
tation among samples from the same set. As permuting
residuals of Y in the Freedman and Lane scheme [11] is
typically equivalent to permuting Xks [9], the restricted
permutation refers to permuting the (orthonormalized)
traits of interest within samples from the same set. The
same permutation scheme can be used for testing the
interactions between traits of interest or between traits
and set-level covariates; the latter allows us to detect
whether the associations between themicrobiome and the
traits of interest are homogeneous across study groups
(which can be defined by the set-level covariates). As
noted previously, when all variables are balanced, the
columns of X (excluding the set ID indicator vectors)
will automatically be orthogonal to the set ID indica-
tor vectors. Since both permanovaFL and the LDM
permute the rows of X, it is also clear that this orthogonal-
ity holds for every permutation as long as permutations
are conducted within sets. As a result, the p-values for
permanovaFL or the LDM will be identical with and
without adjustment of the set ID in this situation, as long
as the restricted permutation is performed.

Results
Simulation studies
To generate our simulation data, we used the same moti-
vating dataset as Hu and Satten [9], i.e., data on 856 OTUs
of the upper-respiratory-tract microbiome first described
by Charlson et al. [12]. In most simulations, we considered
a binary trait such as case-control status, but we also con-
sidered matched sets with a continuous trait. We defined
a “causal” OTU to have frequency that depended on the
trait of interest. We considered on two complementary
causal mechanisms: the first mechanism (S1) assumed
that half (428) of the OTUs (after excluding the three
most abundant OTUs) were causal; the second mecha-
nism (S2) assumed the ten most abundant OTUs were
causal. In each scenario, we randomly partitioned the
causal OTUs into two equal-size subsets, Strait− and Strait+ ,

to contain OTUs with decreased and increased frequen-
cies, respectively, in cases relative to controls. We further
partitioned Strait+ into Strait+a and Strait+m comprised of OTUs
whose frequencies are increased in additive and multi-
plicative manners, respectively. For the simple situation,
with no covariates but the trait of interest, we simulated
data for the ith set using the following steps.

1. We assigned trait values Xtrait
ij to the j th sample of

the i th set. For matched pair samples, Xtrait
ij = 0 was

assigned to control samples and Xtrait
ij = 1 to case

samples; for continuous traits, Xtrait
ij was sampled

from the U[ 0, 1] distribution.
2. We generated the mean OTU frequencies π i for set i

from the Dirichlet distribution Dir(π , θ1), where the
mean parameter π and overdispersion parameter θ1
took the values of the estimated mean and
overdispersion (0.02) in the Dirichlet-Multinomial
(DM) model fitted to the upper-respiratory-tract
data. Note that π and θ1 characterize the population
mean of OTU frequencies and between-set
heterogeneity.

3. Given π i, we generated the baseline OTU
frequencies π

(0)
ij for sample j of set i from the

Dirichlet distribution Dir(π i, θ2), where θ2 was set to
0.007, which was the median of the estimated
overdispersion in the DMmodel that was fitted to
data for each set with three samples in the MsFLASH
study (see the “Analysis of the MsFLASH data”
section). Note that θ2 characterizes heterogeneity
among samples from the same set, and π

(0)
ij

represents the (true) OTU frequencies we would see
when trait Xtrait

ij = 0.
4. We then generated the (true) OTU frequencies that

account for a non-zero effect of trait Xtrait
ij , denoted

π trait
ij , by reducing the frequency of each OTU in

Strait− by a factor of β , then distributing half of the
total reduced frequency evenly to OTUs in Strait+a and
the other half to OTUs in Strait+m in proportion to their
baseline frequencies in π

(0)
ij . We then formed the

(true) OTU frequency for the j th sample from the i th
set using πij = (1 − Xtrait

ij )π
(0)
ij + Xtrait

ij π trait
ij . Note

that β characterizes the effect size of the trait, i.e.,
the amount by which OTU frequencies vary at the
causal OTUs when the trait Xtrait

ij = 1.
5. We generated read count data for each sample using

the multinomial distributionMN(πij,Nij), where the
total read count Nij was generated from the Poisson
distribution with mean 10,000 (and set to 500 if the
Poisson sampling resulted in a value less than 500).

To induce the effects of additional covariates, we made
further modifications to π i and/or πij that were similar
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to the modifications made to π
(0)
ij to construct π trait

ij . For
simulations where we wished to include a main effect of
a set-level covariate Xset

i , we first sampled values of Xset
i

from a Bernoulli distribution with parameter 0.5. We then
uniformly sampled 428 OTUs to be associated with the
covariate and randomly partitioned them into two equal-
size subsets Sset− and Sset+ . We then constructed π set

i by
modifying π i, reducing the frequency of each OTU in Sset−
by a factor of βset = 0.2 and distributing the total reduced
frequency to OTUs in Sset+ in proportion to their original
frequencies in π i. We then replaced π i by

(
1 − Xset

i
)
π i +

Xset
i π set

i , to be used in Step 3.
To account for a sample-level confounder Xsam

ij , we first
sampled Xsam

ij from a Bernoulli distribution with param-

eter
(
0.2 − 0.1Xtrait

ij

)
. We then uniformly sampled 428

OTUs to be associated with the covariate and randomly
partitioned them into two equal-size subsets Ssam− and
Ssam+ . We then constructed π sam

ij by modifying πij in the
same way that π set

i was modified from π i, but with a
factor of βsam = 0.5. We then replaced πij by (1 −
Xsam
ij )πij + Xsam

ij π sam
ij . The resulting values were used in

Step 5.
Finally, to account for an interaction between a set-level

covariate and the trait, we sampled a third set of OTUs (a
random sample of 428 OTUs under S1 and the top 1–5
and 11–15 most abundant OTUs under S2) to be associ-
ated with the interaction, and randomly partitioned them
into two equal-size subsets Sint− and Sint+ . Then, when both
Xset
i = 1 and Xtrait

ij = 1, we further modified πij by
reducing the frequency of OTUs in Sint− by a factor β int

and then distributing this extra mass to Sint+ in propor-
tion to the OTU frequencies in πij. The resulting values
of πij were then used in Step 5. Note that whenever we
included an interaction term like this, the main effect of
Xset
i (βset = 0.2) and Xtrait

ij (β = 0.5) was also included as
described previously.
We evaluated the performance of different strategies

and methods in seven scenarios of matched-set data: (1)
matched-pair data, (2) unbalanced data, (3) matched-pair
data with a sample-level confounder, (4) matched-pair
data with a set-level covariate, (5) unbalanced data with
a set-level covariate, (6) matched-pair data with a contin-
uous trait, and (7) matched-pair data with an interaction
effect. To facilitate comparison across scenarios, the same
sets of causal OTUs (Strait− , Strait+ ), and covariate-associated
OTUs (Sset− , Sset+ ), (Ssam− , Ssam+ ) and (Sint− , Sint+ ) (if called for)
were used for all scenarios. For each scenario except (2),
(5), and (6), we generated data for 50 1:1 matched pairs
(with a binary trait); for scenarios (2) and (5) with unbal-
anced data, we generated data for 25 1:1 matched pairs
and 25 1:2 matched sets (with a binary trait); for sce-
nario (6), we generated data for 50 matched pairs with a
continuous trait.

We also explored various 1:m matched study designs to
assess the performance under varying conditions. First,
we compared the design that collected 50 1:1 matched
pairs with the design that collected 50:50 independent
case-control samples (first simulating pairs and then
selecting only one sample from each pair), over varying
values for the within-set heterogeneity θ2. Second, we
compared different 1:m matched-set designs with a fixed
total of 90 samples. Specifically, we considered m = 1, 2,
4, and 5 and collected 45 1:1 pairs, 30 1:2 sets, 18 1:4 sets,
and 15 1:5 sets, respectively, to form each dataset. We also
considered m = 3 and collected 22 of 1:3 sets and 1 pair
(to meet the total sample size 90) for the 1:3 design. Lastly,
we compared different 1:m (m = 1, 2, 3, 4, 5) designs when
fixing the total number of sets to 50.
We applied PERMANOVA (implemented in both

permanovaFL and adonis2) and the LDM with the
proposed strategy (adjusting for the set ID and sample-
level covariates if present, not adjusting for set-level covari-
ates, and performing restricted permutation within sets).
PERMANOVA tests were calculated using the Bray-
Curtis distance unless otherwise noted. We report LDM
results for the omnibus test that combines the test results
from raw frequency (relative abundance) data and arcsin-
root-transformed frequency data [9]. For testing individ-
ual OTUs, we compared the LDM with the proposed
strategy to the following alternative methods: LDM with-
out adjusting for the set ID, LDM without performing
restricted permutation, DESeq2 (adjusting for set ID),
LMM (applied to arcsin-root-transformed relative abun-
dance data), ZIBR when it is applicable (i.e., for data with
equal number of samples in each set), and the Wilcoxon
signed-rank test when it is applicable (i.e., for matched-
pair data). We evaluated the type I error and power for the
community-level (global) test of any microbiome effect at
nominal significance level 0.05, and we assessed empiri-
cal sensitivity (proportion of truly associated OTUs that
were detected) and empirical FDR for the OTU tests at a
nominal FDR of 10%. Results for type I error were based
on 10,000 replicates; all other results were based on 1000
replicates. OTUs having fewer than 5 non-zero entries
were removed before analysis.

Simulation results
Results on type I error for the seven scenarios we consid-
ered are summarized in Table 1. The results of power, sen-
sitivity, and FDR for the seven scenarios were displayed in
Figs. 1, 2, 3, 4, 5, 6, and 7, respectively. In all scenarios, our
proposed strategy, when applied to either permanovaFL
or the LDM, yielded correct type I error and the high-
est power compared to alternative strategies; adonis2
with the proposed strategy produced slightly conserva-
tive type I error and slightly lower power compared to
permanovaFL. The LDM using the proposed strategy
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Table 1 Type I error for testing the community-level hypothesis at level 0.05

Scenario and analysis strategy permanovaFL adonis2 LDM

(1) Matched-pair data

Proposed 0.0491 0.0450 0.0479

Not adjusting for ID 0.0491 0.0441 0.0479

Unrestricted permutation 0.0024 0.0855 0.0169

(2) Unbalanced data

Proposed 0.0471 0.0434 0.0505

Not adjusting for ID 0.0501 0.0456 0.0500

Unrestricted permutation 0.0039 0.0732 0.0280

(3) Matched-pair data with a sample-level confounder Xsam

Proposed 0.0452 0.0429 0.0476

Not adjusting for Xsam 0.0688 0.0631 0.0800

Not adjusting for ID 0.0713 0.0328 0.0872

Unrestricted permutation 0.0016 0.0810 0.0163

(4) Matched-pair data with a set-level covariate Xset

Proposed 0.0510 0.0433 0.0481

Not adjusting for ID 0.0510 0.0451 0.0481

Not adjusting for ID, adjusting for Xset 0.0510 0.0450 0.0481

Unrestricted permutation 0.0021 0.0874 0.0162

(5) Unbalanced data with a set-level covariate Xset

Proposed 0.0479 0.0444 0.0480

Not adjusting for ID 0.0496 0.0446 0.0483

Not adjusting for ID, adjusting for Xset 0.0489 0.0445 0.0489

Unrestricted permutation 0.0048 0.0736 0.0257

(6) Matched-pair data with a continuous trait

Proposed 0.0505 0.044 0.0461

Not adjusting for ID 0.0677 0.0612 0.0881

Unrestricted permutation 0.190 0.906 0.994

(7) Matched-pair data with an interaction effect

Proposed 0.0524 0.0295 0.0536

Unrestricted permutation 0 0.0977 0

For each of the seven scenarios, results for three or four analysis strategies are presented. First in each scenario is the “Proposed” strategy that adjusts for the set ID indicators
and sample-level covariates (if present), does not adjust for set-level covariates (if present), and performs restricted permutation within sets. Each alternative strategy is
described by its difference from the proposed strategy; for example, “Unrestricted permutation” maintains all the elements of the proposed strategy except for replacing the
recommended within-set permutation with an unrestricted permutation

always controlled the FDR and achieved the highest sen-
sitivity compared to the LDM using alternative strategies
or DESeq2 when it controlled the FDR or Wilcoxon if
it is applicable. The ZIBR method always yielded highly
inflated FDRs. With a binary trait, the LMM always
resulted in conservative FDR and diminished sensitivity
compared to the LDM with the proposed strategy; with a
continuous trait, conversely, it led to inflated FDRs.
For (1) the matched-pair data, permanovaFL and the

LDM not adjusting for the set ID produced identical
results to their counterparts using the proposed strat-
egy as expected. Note that p-values from adonis2 were
not identical with and without adjustment for set ID, but
the type I error and power (Fig. 1) of the two strategies

were very similar. Here and for all datasets with a binary
case-control trait, the strategy of performing unrestricted
permutation led to conservative type I error and FDR and
diminished power and sensitivity (Figs. 1, 2, 3, 4, 5, and
7) when applied to permanovaFL and the LDM, but
inflated type I error when applied to adonis2.
For (2) the unbalanced data, the LDM not adjusting for

the set ID yielded correct type I error but diminished
power and sensitivity relative to its counterpart using the
proposed strategy (Fig. 2). The same pattern can be seen
in the results of permanovaFL and adonis2.
For (3) the matched-pair data with a sample-level con-

founder, permanovaFL, adonis2, and the LDM not
adjusting for the confounder had inflated type I error
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Fig. 1 Simulation results for the matched-pair data of scenario (1). “Free” means unrestricted permutation; “no ID” means not adjusting for the set ID.
Because the LDM and permanovaFL gave identical results with and without adjustment for set ID indicators, only results using the proposed
strategy for these two methods are shown here. adonis2 with unrestricted permutation had inflated type I error in all scenarios we examined and
is therefore not shown in subsequent figures that display power or sensitivity

(0.063 ∼ 0.080), indicating that we have indeed induced
some confounding effect in the data. In the presence of
such a confounding effect, permanovaFL and the LDM

not adjusting for the set ID (even after adjusting for the
confounder) had inflated type I error (0.071 ∼ 0.087). In
this case, not adjusting for the set ID did not just affect
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Fig. 2 Simulation results for the unbalanced data of scenario (2)

the power, but also affected the validity. These methods
with inflated type I error were not included in Fig. 3. In
contrast, adonis2 not adjusting for the set ID had more
conservative type I error than that adjusting for the set
ID (both adjusting for the confounder), so the former had
reduced power compared to the latter.

Our proposed strategy was robust to the presence of
set-level covariates. For (4) the matched-pair data with a
set-level covariate, whether or not adjusting for the covari-
ate or the set ID (i.e., the first three strategies in scenario
(4) of Table 1) all yielded identical results when applied
to permanovaFL or the LDM, as we have analytically
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Fig. 3 Simulation results for the matched-pair data with a sample-level confounding covariate of scenario (3). “no ID” means not adjusting for the set
ID but adjusting for the confounder in this scenario. The LDM and permanovaFL with the “no ID” strategy had inflated type I error and thus are
not shown

shown. Thus, Fig. 4 only displays their results for the
proposed strategy. When applied to adonis2, the three
strategies led to slightly different type I error and power.
For (5) the unbalanced data with a set-level covariate,

the LDM not adjusting for the set ID generated correct
type I error but diminished power and sensitivity com-
pared to its counterpart that adjusted for the set ID (both
not adjusting for the covariate) (Fig. 5). Adjusting for the
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Fig. 4 Simulation results for the matched-pair data with a set-level confounding covariate of scenario (4). “no ID” means not adjusting for the set ID
(second strategy in scenario (4) of Table 1); “no ID, cov” means not adjusting for the set ID but adjusting for the covariate Xset (third strategy). The LDM
and permanovaFL with “no ID” or “no ID, cov” had identical results as their counterparts with the proposed strategy and are thus not shown here

covariate but not the set ID failed to recover any power or
sensitivity, which underscored the importance of adjust-
ing for the set ID. The same pattern can be seen in the
results of permanovaFL and adonis2.

In the presence of a continuous trait, even in (6)
the simplest matched-pair data without any covari-
ates, permanovaFL, adonis2, and the LDM not
adjusting for the set ID all yielded inflated type
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Fig. 5 Simulation results for the unbalanced data with a set-level covariate of scenario (5). “no ID” means not adjusting for the set ID (second
strategy in scenario (5) of Table 1). The power and sensitivity of methods using the strategy not adjusting for ID but adjusting for Xset (third strategy)
are very similar to the power and sensitivity of their counterparts using the “no ID” strategy; thus, only the latter is shown

I error. The strategy of performing unrestricted per-
mutation led to highly inflated type I error, which is
the opposite of its performance in testing a binary
trait.

For testing (7) the interaction in matched-pair data, the
strategy of performing unrestricted permutation yielded
extremely conservative type I error. Figure 7 confirms the
lack of power with unrestricted permutation.
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Fig. 6 Simulation results for the matched-pair data with a continuous trait of scenario (6). The other strategies all led to inflated type I error and are
thus not shown here

The power and sensitivity of various 1:mmatched study
designs were contrasted in Figs. 8, 9, and 10. Figure 8
shows that the matched-pair design always gained sub-
stantial efficiency over an analysis of data from an equiv-
alent number of independent cases and controls over

a wide range of θ2 values. Figure 9 shows that, with
a fixed number of total samples, maximizing the num-
ber of distinct sets (i.e., using 1:1 pairs) rather than
increasing the number of controls per set optimized effi-
ciency. In Fig. 10, we show that adding more control
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Fig. 7 Simulation results for scenario (7) testing an interaction between a (set-level) group variable and a (sample-level) trait variable in
matched-pair data

samples to each set, while keeping the number of sets
fixed, has a relatively small effect on power and sen-
sitivity; the addition of each successive control sample
yielded diminishing returns. Taken together, Figs. 8, 9,
and 10 suggest that when data have a matched structure,

a matched analysis outperforms an unmatched analy-
sis and, in general, increasing the number of controls
in a 1:m matched study beyond 1:2 may only result
in fairly small improvements in power and sensitiv-
ity.
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Fig. 8 Comparing the matched-pair design (solid lines) with the independent case-control design (dashed lines) over varying sample-level
heterogeneity θ2. The effect size β was set to 0.1 (S1, power), 0.25 (S2, power), 0.8 (S1, sensitivity), and 0.6 (S2, sensitivity). All simulations shown here
use between-set heterogeneity parameter θ1 = 0.02

Analysis of the MsFLASH data
The data for our first example were extracted from the
study “Menopause Strategies: Finding Lasting Answers
for Symptoms and Health” (MsFLASH) [13, 14]. This
double-blinded, randomized trial enrolled women into
one of three arms: oral estradiol (arm 1), oral ven-
lafaxine (arm 2) (two commonly used drugs to alleviate
menopausal hot flashes), or placebo (arm 3). To examine
the effect of these drugs on the vaginal microbiome, 113
vaginal swab samples were collected at baseline (before
treatment) and at weeks 4 and 8 post-treatment. 16S
rRNA gene sequencing was performed, and the results
were summarized into 171 OTUs. Specifically, 9 sets
(women) in the estradiol arm, 10 in the venlafaxine arm,
and 18 in the placebo arm have data from swab sam-
ples at all three visits; one woman in the estradiol arm
only provided samples at baseline and week 4. Due to
the small sample size, we also considered an enlarged
“treatment” group that combined the estradiol and ven-
lafaxine arms. The ordination plot (Fig. 11) showed that

the samples from the same woman tended to cluster
together.
In each arm, we tested whether the composition of the

vaginal microbiome changed between baseline and week
4, baseline and week 8, and weeks 4 and 8; each of these
tests was based on 1:1 paired data. We also tested the
microbiome differences pre- and post-treatment by com-
paring baseline and post-treatment (both week 4 andweek
8) samples without differentiating between time since
treatment using a 1:2 matched-set design; the estradiol
arm was an exception, as one set had only two sam-
ples, resulting in unbalanced data. We applied the LDM
(using the omnibus test) and permanovaFL (using the
Bray-Curtis distance) with the proposed strategy. As a
comparison, we also applied DESeq2 (adjusting for the
set ID) and the Wilcoxon signed-rank test to 1:1 matched
data.
We limited our analysis for each arm to OTUs that

were present at least 5 times in each of the four sub-
sets of samples, which resulted in, for example, 31 OTUs
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Fig. 9 Comparing various 1:mmatched-set designs with a fixed number (90) of total samples. The effect size β was set to 0.12 (S1, power), 0.22 (S2,
power), 0.5 (S1, sensitivity), and 0.46 (S2, sensitivity). All simulations shown here use between-set heterogeneity parameter θ1 = 0.02 and within-set
heterogeneity parameter θ2 = 0.007

in the venlafaxine arm. All results were summarized in
Table 2. Only the comparisons within the venlafaxine arm
yielded some significant p-values (<0.05). In particular,
the LDM generated p-value 0.033 for comparing the base-
line and week 4 samples, followed by a smaller p-value
0.0042 for the baseline and week 8 samples, and then the
smallest p-value 0.0003 for the baseline and the combined
week 4 and week 8 samples. These p-values suggested an
effect of venlafaxine on the vaginal microbiome, which
was strengthened at week 8 relative to week 4. How-
ever, the differences between week 4 and week 8 were not
found to be significant (the LDM p-value = 0.76). The
results of permanovaFL corroborated these conclusions.
In the comparison of the baseline vs. weeks 4 and 8, the
LDM detected four OTUs (Campylobacter, Gardnerella
vaginalis, Porphyromonas, and Aerococcus christensenii)
to be differentially abundant at the nominal FDR 20% (we
chose a relatively high nominal FDR because of the small
number of sets), whereas DESeq2 detected none and the
Wilcoxon test was not applicable.

Motivated by the likely trend of strengthened effect of
venlafaxine over time, we reanalyzed the data at weeks
0, 4, and 8 in the venlafaxine arm, treating “week” as a
quantitative variable. However, this analysis yielded less
significant global p-values (0.043 by the LDM and 0.096 by
permanovaFL), suggesting that the change in OTU fre-
quencies as a function of time since treatment initiation is
probably non-linear. We also tested whether the effect of
venlafaxine is the same for the five white and four black
women (excluding one women in the “other” race cate-
gory), i.e., we tested the interaction between week (coded
as 0 vs. 4 & 8) and race. The global p-values are 0.44
by the LDM and 0.39 by permanovaFL, suggesting no
racial difference in the effect of vanlafaxine. These non-
significant p-values may also be due to the generally low
power for testing interactions.

Analysis of the Alzheimer’s disease data
The data for our second example were generated from
a pair-matched study comparing the gut microbiome of
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Fig. 10 Comparing various 1:mmatched-set designs with a fixed number (50) of total sets. The effect size β was set to 0.08 (S1, power), 0.16 (S2,
power), 0.35 (S1, sensitivity), and 0.34 (S2, sensitivity). All simulations shown here use between-set heterogeneity parameter θ1 = 0.02 and within-set
heterogeneity parameter θ2 = 0.007

25 patients with Alzheimer’s disease (AD) and their age-
and sex-matched controls [15]. A covariate of particu-
lar interest was the APOE ε4 genotype, which was coded
as carriers (one or two ε4 alleles) vs. non-carriers (zero
ε4 alleles). APOE ε4 genotype is a potential confounder
of the association between the gut microbiome and AD,
as it is distributed differently in the AD patients than
in the controls (AD, 72% carriers; control, 20% carri-
ers; p-value<0.001) in the study sample, and has been
found to influence the gut microbiome [16]. Since match-
ing on APOE ε4 genotype was not used in the study
design, it should be adjusted for in the association test.
The microbiome data were summarized into 972 OTUs,
of which 723 were present at least 5 times in the study
sample and included in our analysis. We applied the
same methods as those for the MsFLASH data, except we
do not report results for the Wilcoxon signed-rank test,
which is not applicable in the presence of a within-pair
covariate.

The results are summarized in Table 3. Without adjust-
ment of the APOE ε4 genotype, the LDM yielded p-
value 0.0001 for testing the community-level association
and detected 66 OTUs (at nominal FDR 10%) that were
differentially abundant between AD patients and con-
trols. After adjustment for APOE ε4 genotype, the LDM
yielded p-value 0.0159 and detected no OTUs. The results
of permanovaFL corroborated this conclusion. These
results suggest that much of the association seen without
adjusting for APOE ε4 genotype is due to confounding.

Discussion
We have developed a novel strategy that extends
PERMANOVA (implemented in both adonis2 and
permanovaFL) and the LDM for analyzing matched-set
microbiome data that can account for complex design fea-
tures such as unbalanced data, sample-level confounding
covariates, and continuous traits of interest. This strategy
corresponds to a specific application of PERMANOVA
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Fig. 11 Ordination plots for the MsFLASH data. The texts above the symbols are the set IDs. The plot entitled “All sets” show the original ordination.
The three plots entitled “Estradiol,” “Venlafaxine,” and “Placebo” show the stratified ordination by the three arms for the sake of clarity (using the
same coordinates as in the plot entitled “All sets”)

and the LDM, without modifying any of their method-
ologies. Our simulations show that the proposed strategy
was the most efficient among all strategies we consid-
ered, when applied to either PERMANOVA or the LDM.
The LDM was also superior to existing methods, such as
DESeq2 and the Wilcoxon signed-rank test, for testing
individual OTUs with matched-set data. In addition, our
simulation studies suggested that the 1:1 matched-pair
study is the most efficient design as it maintains a good
balance between sequencing cost and statistical power.
Our results in analysis of the MsFLASH data did not

agree with those reported by Zhao et al. [2], who found
significant effects in the “treated” group only (rather
than the venlafaxine arm). Their method was based on
log-ratio-transformed frequency data and used a pseudo
count value of 0.01 for zero count data, which essentially
resulted in a different hypothesis being tested than that
used in our methods. Similarly, we found that much of

the association reported by [15] between AD disease sta-
tus and the microbiome may be due to confounding by
APOE ε4 genotype. This finding emphasizes the need
to develop and use microbiome methods, such as those
we have reported here, that can account for complex
design features, like matching with within-set confound-
ing covariates, that are often found in epidemiological
studies involving the microbiome.
Hu and Satten [9] have shown that for independent

case-control samples, the power of the LDM was sen-
sitive to the OTU data scale, i.e., if untransformed fre-
quency scale or arcsin-root-transformed data were used.
We found (Figure S1) that these patterns persisted in the
analysis of matched-set data. As a result, we reiterate the
recommendation in [9] and use the omnibus test for the
LDM, which corresponds to the minimum of the p-values
obtained on the frequency and arcsin-root-transformed
scales.
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Table 2 Results in analysis of the MsFLASH data

p-values for testing the Number of OTUs
community-level hypothesis detected at FDR 20%

Arm T1 T2 n-set n-sam permanovaFL LDM Wilcoxon DESeq2 LDM

Estradiol 0 4 10 20 0.26 0.25 0 0 0

0 8 10 19 0.32 0.52 0 0 0

0 4 & 8 10 29 0.26 0.32 NA 2 0

4 8 10 19 0.23 0.27 0 0 0

Venlafaxine 0 4 10 20 0.1 0.033 0 0 0

0 8 10 20 0.01 0.0042 0 0 0

0 4 & 8 10 30 0.0022 0.0003 NA 0 4

4 8 10 20 0.72 0.76 0 0 0

Placebo 0 4 18 36 0.99 0.97 0 0 0

0 8 18 36 0.77 0.74 0 0 0

0 4 & 8 18 54 0.96 0.86 NA 1 0

4 8 18 36 0.6 0.59 0 0 0

Treated 0 4 20 40 0.6 0.61 0 0 0

(estradiol+ 0 8 20 39 0.16 0.35 0 0 0

venlafaxine) 0 4 & 8 20 59 0.26 0.31 NA 0 0

4 8 20 39 0.18 0.18 0 0 0

T1 and T2, the time points between which the samples were compared; 0, the baseline; 4 & 8, week 4 and week 8 after treatment; n-set and n-sam, number of sets (women)
and number of samples involved in each analysis; NA, the Wilcoxon test was not applicable

The strategy we have proposed here is applicable to
any matched-set microbiome data as long as model resid-
uals can be assumed to have an exchangeable correla-
tion structure. In some settings, longitudinal microbiome
data that have time-varying traits (i.e., time, antibiotic
intake, or infection) can be reasonably assumed to have
an exchangeable correlation structure. The simple within-
cluster permutation approach used here is not valid for
other correlation structures such as the autoregressive
model. We are currently developing methods for analy-
sis of clustered or longitudinal microbiome data having an
arbitrary residual correlation structure.
Our simulation studies showed that matched-set sam-

pling, when available, can result in a substantial increase
in power to detect global associations and sensitivity
to detect individual OTUs when our approach is used.
This is presumably because the overdispersion parame-
ter for the matched data is smaller than it is for inde-
pendent data sampled from the same population. In the
independent data sample, the overdispersion parameter

describing each observation is effectively the sum of the
between- and within-set heterogeneity parameters (θ1 and
θ2 in our simulations). In the matched data, the between-
set heterogeneity (represented by θ1 in our simulations)
is effectively conditioned out. Thus, we expect the advan-
tage of a matched analysis over an unmatched analysis
to increase as the between-set heterogeneity increases.
Presumably when the within-set heterogeneity is large
compared to the between-set heterogeneity, a matched
analysis would have a smaller advantage.

Conclusions
We proposed a new strategy, i.e., including set indica-
tor variables as covariates and permuting within sets, that
can be used with both PERMANOVA and the LDM for
analyzing matched-set microbiome data. These methods
not only have superior performance than existing meth-
ods but can also handle many complex design features
in matched-set studies such as unequal set sizes, within-
set confounding covariates, and continuous traits of

Table 3 Results in analysis of the Alzheimer’s disease (AD) data

p-value for testing the Number of OTUs
community-level hypothesis detected at FDR 10%

permanovaFL LDM DESeq2 LDM

Without adjustment of APOE 0.0001 0.0001 168 66

With adjustment of APOE 0.0069 0.0159 66 0
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interest. Given the availability of proper analytical tools,
future microbiome studies should preferably adopt the
matched-set design to enjoy its good power as the large
microbiome heterogeneity as well as most confounding
factors between sets (e.g., individuals) are conditioned
out.
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Additional file 1: Simulation results for the matched-pair data of scenario
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