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Abstract

Background: Although localized aggressive periodontitis (LAP), generalized aggressive periodontitis (GAP), and
chronic periodontitis (CP) are microbially driven diseases, our inability to separate disease-specific associations from
those common to all three forms of periodontitis has hampered biomarker discovery. Therefore, we aimed to map
the genomic content of, and the biological pathways encoded by, the microbiomes associated with these clinical
phenotypes. We also estimated the extent to which these biomes are governed by the Anna Karenina principle
(AKP), which states that eubiotic communities are similar between individuals while disease-associated communities
are highly individualized.

Methods: We collected subgingival plague from 25 periodontally healthy individuals and diseased sites of 59
subjects with stage 3 periodontitis and used shotgun metagenomics to characterize the aggregate of bacterial
genes.

Results: Beta-dispersion metrics demonstrated that AKP was most evident in CP, followed by GAP and LAP. We
discovered broad dysbiotic signatures spanning the three phenotypes, with over-representation of pathways that
facilitate life in an oxygen-poor, protein- and heme-rich, pro-oxidant environment and enhance capacity for
attachment and biofilm formation. Phenotype-specific indicators were more readily evident in LAP microbiome
than GAP or CP. Genes that enable acetate-scavenging lifestyle, utilization of alternative nutritional sources,
oxidative and nitrosative stress responses, and siderophore production were unique to LAP. An attenuation of
virulence-related functionalities and stress response from LAP to GAP to CP was apparent. We also discovered that
clinical phenotypes of disease resolved variance in the microbiome with greater clarity than the newly established
grading system. Importantly, we observed that one third of the metagenome of LAP is unique to this phenotype
while GAP shares significant functional and taxonomic features with both LAP and CP, suggesting either
attenuation of an aggressive disease or an early-onset chronic disease.
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Localized aggressive periodontitis

Conclusion: Within the limitations of a small sample size and a cross-sectional study design, the distinctive features
of the microbiomes associated with LAP and CP strongly persuade us that these are discrete disease entities, while
calling into question whether GAP is a separate disease, or an artifact induced by cross-sectional study designs.
Further studies on phenotype-specific microbial genes are warranted to explicate their role in disease etiology.
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Introduction

Periodontitis, an infection-mediated disease that destroys
tooth-supporting structures, is the sixth most prevalent
disease in the world, affecting over 700 million adults
worldwide [1]. The consequences of untreated disease
are tooth loss, poor nutritional status, loss of speech,
and masticatory function. With the annual cost of peri-
odontal treatment exceeding 15 billion dollars in the
USA alone, this disease poses a significant health burden
that is comparable to outpatient treatment of cardiac
and metabolic diseases [2—4]. Additionally, emerging evi-
dence implicates periodontitis in the pathogenetic path-
ways of several potentially life-threatening diseases
including coronary heart disease, pre-term births, dia-
betes, and cerebrovascular accidents [5], and therefore,
the consequences of untreated periodontitis extend be-
yond the oral cavity.

Three clinical phenotypes have been most commonly
described based on the rate of progression and the pat-
tern of disease within the dentition: chronic periodontitis
(CP), localized aggressive periodontitis (LAP), and gener-
alized aggressive periodontitis (GAP) [6]. Although it is
established that all three phenotypes have a microbially
driven etiology, our current understanding of the micro-
biota associated with these phenotypes is not sufficient
to explain the clinical differences. For example, the pre-
vailing paradigm that similar bacteria are found in CP
and GAP [7] does not explain the rapid disease progres-
sion seen in GAP, nor does the presence of specific bac-
teria in GAP and LAP [8-10] explain the involvement of
specific teeth in LAP.

Our knowledge of the microbiome associated with
chronic and aggressive periodontitis is largely based on
phylogenetic characterizations of subgingival communi-
ties or investigations of specific bacteria (notably, Por-
phyromonas  gingivalis, Treponema denticola, and
Tannerella forsythia, (popularly known as the “red com-
plex” bacteria) and Aggregatibacter actinomycetemcomi-
tans) within these ecosystems [10—12]. However, these
individual species are part of complex communities and
their role in disease causation or perpetuation can be
fully understood only when studied in an ecological con-
text. While phylogenetic approaches such as 16S sequen-
cing place these organisms in an ecological framework

[13-15], their functional roles can only be inferred.
Moreover, most studies are comparisons of only one dis-
ease phenotype to healthy controls [7, 16], limiting our
ability to separate phenotype-specific associations from
those that are common to all clinical presentations of
periodontitis. It is not surprising that we have not been
able to use microbiomics to develop a robust under-
standing of how the microbiome contributes to a specific
disease phenotype.

High-throughput whole genome sequencing has pro-
vided us with an unprecedented view of the genetic
composition and functional behaviors of complex bi-
omes that can never be fully characterized by cultivation
alone [17]. For example, metagenomic studies of the gut
microbiome have revealed that eubiotic communities are
similar between individuals but respond in a stochastic
or random manner to stresses, resulting in dysbiotic
communities that vary from person to person. This is
called the Anna Karenina principle (AKP) after the
opening line from Tolstoy’s book: “All happy families
look alike; each unhappy family is unhappy in its own
way” [18]. In the present study, we aimed to investigate
what the microbiome is capable of doing and how this
functional capacity relates to periodontal health status,
in order to develop testable hypotheses about the role of
the subgingival microbiome in maintaining health and
causing disease. Here, we present the first functional
catalog of the subgingival microbiome in the three most
common phenotypes of periodontitis. Using a metage-
nomic approach to characterize the aggregate of bacter-
ial genes in the subgingival microenvironment, we also
highlight how each differs from periodontal health. As a
tertiary aim, we examined the 1999 (based on disease
phenotype) and the 2017 (based on disease extent, sever-
ity, and risk) classifications of periodontitis [6, 19] in the
context of the subgingival microbiome.

Methods

Study population

This study was approved by the institutional review
boards of The Ohio State University and Louisiana State
University (OSU IRB 2014H0020, LSUHS-NO 8796).
Thirty-four nonsmoking, normoglycemic individuals
with stage 3 periodontitis as defined by the 2017
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classification [19] were recruited and informed consent
or assent with parental approval was obtained as appro-
priate. Additionally, sequences from 25 stage 3 peri-
odontitis and 25 periodontally healthy controls from a
previous study [20] were reanalyzed. Periodontal health
was defined as clinical attachment loss (CAL) < 1 mm,
probing pocket depths (PD) < 3 mm, and mean gingival
index < 1. Periodontitis was classified based on both
phenotype [6] and disease stage and grade [19] for com-
parison. Stage 3 grade A (S3gA) was defined as bone loss
to age ratio (BL/age) < 0.25, mean plaque index (PI) >
1.5, and mean gingival index (GI) > 1.5; stage 3 grade B
(S3gB) as 0.25 < BL/age < 1, PI > 1.5, and GI > 1.5; and
stage 3 grade C (S3gC) BL/age > 1, PI < 1, and GI < 1.
Chronic periodontitis (CP) was defined as interproximal
attachment loss affecting at least 30% of the sites in indi-
viduals between 40 and 80 years of age. CP was diag-
nosed based on at least two periodontal assessments
over at least 2 years. Localized aggressive periodontitis
(LAP) was defined as interproximal attachment loss af-
fecting first molars and incisors (and no more than 2
other teeth) in systemically healthy individuals below 40
years of age. An additional requirement was a contribu-
tory family history (of early tooth loss). Generalized ag-
gressive periodontitis (GAP) was defined as rapid
progressing interproximal attachment loss in systemic-
ally healthy individuals below 40 years of age that did
not follow the patterns of distribution in the dentition
described for LAP. Exclusion criteria included age below
8 years, current pregnancy, requirement for antibiotic
prophylaxis prior to dental therapy, HIV infection, long-
term (greater than 3 months) use of medications known
to cause gingival changes (e.g., immunosuppressants,
phenytoin, calcium channel blockers, aspirin, NSAIDS,
bisphosphonates, or steroids), antibiotic therapy within 3
months of sample collection, and history of previous
subgingival periodontal therapy.

Sample size was estimated based on the probability of
least an 80% chance of detecting individual genes that
differed in abundance by at least 0.01% between any two
groups.

Clinical procedure

Patients were recruited after an initial screening and
diagnosis visit when periodontal health related metrics
(clinical attachment loss (CAL), probe depths (PD),
bleeding on probing (BOP), gingival index (GI), and
plaque index (PI)) were recorded. Since a common clin-
ical presentation in all three disease phenotypes is that
only some sites are affected by disease, 3 non-
contiguous sites with clinical attachment loss (CAL) > 5
mm and probing depth (PD) > 6 mm on 3 different
teeth were selected in subjects with periodontitis. Sam-
ples were collected 1 week following the initial screening
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visit. This strategy was adopted to minimize the effects
of bacterial translocation due to periodontal probing.
Samples collected by inserting sterile endodontic paper
points (Caulk-Dentsply, Milford, DE, USA) to the depth
of the periodontal pocket for 30 s. From periodontally
healthy subjects, samples were similarly collected and
pooled from 15 non-contiguous interproximal sites.
Paper points were immediately placed in 100 pL of
RNALater, temporarily stored in ice, and were trans-
ferred to — 20 °C until analysis.

DNA isolation and sequencing

Bacterial DNA was isolated from paper points, using
Qiagen DNA MiniAmp kit (Qiagen, Valencia, CA, USA)
and quantified using Qubit fluorometer. Fifty nanograms
of DNA was used to generate libraries with an Illumina
TruSeq kit according to the manufacturer’s instructions.
Quantified and pooled libraries were clustered on the
Mlumina HiSeq 4000 system (Illumina, Inc., San Diego,
CA, USA) and 150 bp paired-end sequencing performed.
Sequences for all 59 samples are deposited in the Se-
quence Read Archives wunder the project ID
PRJNA552294 and PRJINA508385.

Statistical analysis

Trimmed and filtered sequences were uploaded to the
MG-RAST metagenomics analysis pipeline (version
3.3.6) [21, 22] (Argonne National Laboratory) for quality
processing and basic functional analysis. The MG-RAST
API [23] and the custom Python library we developed to
access it and analyze/visualize results were used
throughout the analysis process to download relevant
data and pipeline results (available for download at
http://github.com/smdabdoub/PyMGRAST).

The phylogenetic profile of each group was deter-
mined using Kraken v1.1 [24] with a database con-
structed from a list of complete genomes from the
Human Oral Microbiome Database [HOMD)], as of Sep-
tember 19, 2017 (GenBank IDs available in Supplement).
Although Kraken provides data at all levels of taxonomy,
analysis was performed at the genus and species levels,
showing high levels of specificity, accuracy, and cover-
age. Only taxa present in at least 20% of subjects in each
group and constituting > 0.000005% of the relative abun-
dance were retained. Annotations with Kraken were
done using the Ohio Supercomputer facilities (www.osc.
edu). Knowledge-based assignments were made for gram
staining and oxygen tolerance characteristics of the
OTUs (Python script available on https://github.com/
akshayparopkari/kadambari). As-yet-uncultivated phylo-
types were annotated based on the characteristics of
their cultivated phylogenetic neighbors. The taxonomic
attribution of each function was resolved by matching
the unique ID of each annotated sequence using the
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SQLite3 database (Version 3.28.0). Briefly, functionally
annotated sequences were matched with the primary
output of Kraken using SQLite3. The full SEED func-
tional ontology of these sequences was obtained by
matching their accession IDs to a reference database of
the SEED subsystem.

Species diversity and richness were interrogated using
the Chao 1 diversity index and abundance coverage esti-
mator (ACE), and group-wise significance interrogated
with rank-based nonparametric tests (Wilcoxon rank-
sum test and Kruskall-Wallis test (using PhyloToAST
diversity.py [25])). Dissimilarity between samples was
calculated using Bray-Curtis metrics to estimate beta di-
versity. Nonmetric multidimensional scaling (NMDS) of
Bray-Curtis distances was performed using the R pack-
age Vegan [24], and the R package Plotly used for
visualization [26]. Significance of clustering was interro-
gated using adonis function, (QIIME implementation of
vegan package in R) with 999 permutations. Similarity
percentage analysis (SIMPER) of Bray-Curtis distances
was used to determine the drivers of separation [27].

k-means clustering was used to estimate the variance
in the disease-associated microbiome. Bray-Curtis dis-
similarity (computed from the relative abundances of
genes and species in subjects with disease) was used as
input and silhouette width used to estimate the number
of clusters [27]. A silhouette was created for each cluster
based on the closeness of the members and separation
from others. The silhouettes were then combined onto a
single plot, providing an evaluation of the validity of the
number of clusters. Factors that contributed to variance
in the microbiome were identified using a between-class
analysis method. Briefly, relative abundances of genes
and species in subjects with disease were input into a
principal coordinate analysis, and the eigenvectors that
explained 75% of the variance in the microbiome were
inducted into a linear discriminant analysis. Linear dis-
criminant analysis (LDA) for dimensionality reduction of
CSS-normalized s-OTU counts was performed using
scikit-learn v0.18.0 [28] and plots were visualized using
PhyloToAST. MANOVA/Wilks lambda was used to test
for significance of LDA clustering.

Between-group differences in abundances and preva-
lence were estimated for both phylogenetic and func-
tional data. Statistical testing for differences in relative
abundances was performed using the DESeq2 package
with Bayesian shrinkage of estimators (R package
apeglm) [29, 30]. p-values were adjusted for multiple
testing (FDR < 0.1, FDR-adjusted Wald test). Barycentric
plots based on the functions that passed DESeq2 adjust-
ments were graphed using the ggtern package in R [31].
Comparisons of functional potential between groups
were made in the context of the KEGG (Kyoto
Encyclopedia of Genes and Genomes) [32] and the SEED
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[33] ontological hierarchies. Presence/absence of the fea-
tures was interrogated using Fisher’s exact test and odds
ratios calculated with the R packages Questionr and
DescTools.

Core features were calculated based on presence of the
feature in at least 80% of patients with the particular
condition. The SparCC package in python was used to
construct network dependencies between features [34].
To decrease the occurrence of spurious associations due
to rare taxa, co-occurrence networks were computed
only on the core taxa [35]. Correlation was estimated on
log-transformed abundances of the core features, and p-
values computed following 99 bootstraps. Significant co-
occurrences (rho > 0.6 and p < 0.05) were used to create
the graph structures. Gephi v0.9.1 [36] was used to
visualize the resultant networks. The Zi-Pi plot calcula-
tions were done using the formula of Guimera and
Nunes Amaral and graphed using the simplified method
of Olesen [37, 38].

The ability of genes to discriminate between groups
was examined using a machine-learning algorithm (Ran-
domForest package in R). Two thirds of the dataset was
used to train the classifier, which was tested on the
remaining data (1000 trees/10-fold cross validation). For
all iterations of the test a “confusion table” was created
for each of the exposures based on the number of cor-
rectly classified and misclassified samples, and this data
was used to compute sensitivity and specificity. The ro-
bustness of the classifier was evaluated using ROC
curves (ROCR package in R).

Results

Our primary aim was to characterize the functional and
phylogenetic profiles of the subgingival microbiome in indi-
viduals with periodontitis. To do this, we obtained 72 mil-
lion classifiable sequences from deep periodontal pockets of
59 systemically healthy subjects with periodontitis, and 31
million sequences from 25 periodontally healthy individ-
uals. All subjects with periodontitis were classified as stage
3 based on disease severity and complexity (Table 1), with
17 patients demonstrating the molar-incisor phenotype
(equivalent to LAP phenotype). Four subjects were classi-
fied as stage 3 grade A (S3gA), 22 as S3gB, and 33 as S3gC.
Twenty-five subjects were classified as chronic periodontitis
(CP; age range, 56—61 years), 17 as generalized aggressive
periodontitis (GAP; age range, 24—32 years), and 17 as lo-
calized aggressive periodontitis (LAP; age range, 15-19
years). Their sequences represented 8336 functionally an-
notated microbial genes and 454 taxa.

Subgingival microbiomes follow the Anna Karenina
principle

We began our analysis by creating a catalog of disease-
and health-associated genes. In all three disease
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Table 1 Clinical and demographic characteristics of the study population

Demographic and clinical criteria CP (N = GAP (N = LAP (N =
25) 17) 17)
Age (range, median) 56-61,59  24-32,26 15-19,17
Gender (% male) 72 52 54
Ethnicity (number of Caucasian to African American to Hispanic to Asian) 17:5:2:1 8:5:3:2 0:17:0.0
% bone loss/age at most affected site (range) 0.73-3.1 0.86-3.57 09-28
Probe depth at deepest site (range, median) 6-9, 6 5-8,6 7-10,7
Number of teeth with furcation involvement (range, median) 0-6, 2 1-3,2 1-2,2
Clinical attachment loss at deepest site (range, median) 7-10,7 6-9,7 7-10, 8
Bleeding on probing (% sites) (range, median) 20-100, 80  20-80, 65 10-40,
Molar-Incisor pattern (number of subjects) 0 0 17
Mean plaque index (Loe and Silness) (range) 1.2-23 1.1-2.1 05-0.7
Mean gingival index (Loe and Silness) (range) 13-25 09-22 0.6-0.9
Number of individuals with tooth loss 6 3 3
Number of individuals with known history of tooth loss due to periodontitis 5 2 3
Number of teeth lost/individual (excluding third molars, orthodontic reasons and congenitally missing) 0-5 0-3 0-1
(range)
Number of teeth known to be lost to periodontitis/individual (range) 0-2 0-3 1

phenotypes, 73.8% of 454 taxa and 60% of 8336 genes
were identified in 2 or more individuals within each
group. Disease-associated microbiomes demonstrated
greater beta-dispersion [39], with only 47% of disease-
associated metagenome being shared by 80% or more
of individuals with periodontitis (common core meta-
genome). On the other hand, over 73% of genes were
identified in the common core of periodontal health,
indicating that periodontitis-associated microbiomes
follow the Anna Karenina principle (AKP). However,
AKP was most evident in chronic periodontitis (34%
of transcripts contributing to common core metagen-
ome), followed by generalized aggressive periodontitis
(51%) and localized aggressive periodontitis (62%).

We then queried whether AKP would preclude ro-
bust differentiation between health and disease. To
do this, we computed a “consensus disease profile”
based on genes and taxa found in all 59 patients and
compared this to health using nonmetric multidi-
mensional scaling of Bray-Curtis pairwise dissimilar-
ities. The difference between health and disease was
significantly greater than differences between any
two individuals with disease (Fig. la, b, p < 0.001,
PERMANOVA). A Random Forest Classifier (Ran-
domForest package in R) classifier was able to pre-
dict disease with 87% sensitivity and 91% specificity
based on functional profiles and with 72% sensitivity
and 78% specificity when using phylogenetic metrics
(Fig. 1c, d). Overall, 28% of genes were uniquely ob-
served in disease, and 12% were unique to health,
while 26% exhibited significant differential abun-
dances in health and disease.

Disease phenotype explains microbiome variance better
than disease grade

Having established that periodontitis differed signifi-
cantly from health both taxonomically and functionally,
we next investigated if differences could be discerned
within the periodontitis-associated microbiome using
unsupervised cluster analysis (k-means clustering). Bray-
Curtis dissimilarity distances (computed from the rela-
tive abundances of genes and species in subjects with
disease) were used as input and silhouette width used to
estimate number of clusters. We identified three distinct
clusters taxonomically and functionally (p = 0.0008 and
0.001 respectively, ADONIS test of Bray-Curtis Dissimi-
larity Index, Fig. 2a, b). We then investigated the factors
that drove these differences using a between-class ana-
lysis method that combines principal coordinates ana-
lysis with linear discriminant analysis (Fig. 2c—j).
Relative abundances of genes and species in subjects
with disease were used as input. Disease phenotype, eth-
nicity, and age emerged as the strongest drivers of clus-
tering. Disease phenotype yielded the lowest degree of
misclassification both taxonomically and functionally
while significant misclassification was evident when
using disease grade as a discriminant. Furthermore, dis-
ease phenotype explained the strong ethnicity and age-
based clustering, since most of the younger individuals
and those of African American ethnicity belonged to the
LAP group (Fig. 2i).

Same players, different teams
Since targeted microbial investigations have previously
suggested that localized aggressive periodontitis has a
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distinct microbial profile while the microbiota of chronic
and generalized aggressive periodontitis are similar [40],
we tested the hypothesis that GAP and CP are micro-
bially similar while LAP is a taxonomically distinct en-
tity. NMDS revealed significant class separation between
the 3 diseases (p < 0.001, PERMANOVA of Bray-Curtis
Dissimilarity Index, Fig. 2b). We then investigated
whether GAP and CP are microbially more similar than
GAP and LAP by computing pairwise dissimilarities
(Bray-Curtis) between each GAP and CP subject, as well
as each GAP and LAP subject. Taxonomically, GAP was
more similar to LAP than to CP (p < 0.001, Dunn’s test
for multiple comparisons).

Since the NMDS indicated that these three diseases
were microbially discrete entities, we examined the taxo-
nomic features that contributed to class separation. LAP
exhibited significantly lower species richness (as mea-
sured by the ACE and Chao 1 indices) than the other
groups (p < 0.05, Dunn’s test, Fig. 3a), and the three

groups also demonstrated significant differences in beta
diversity. While all 3 diseases were dominated by gram-
negative anaerobic bacteria, (representing 56.8%, 62.5%,
and 47.9% of the abundance in CP, GAP, and LAP, re-
spectively (Fig. 3b)), the abundances of these groups
were significantly greater in GAP when compared to
LAP (p = 0.03, Wilcoxon nonparametric test). By con-
trast, gram-positive anaerobic bacteria were significantly
higher in CP when compared to either GAP or LAP (p <
0.04, Wilcoxon).

Interestingly, 349 out of 416 species were identified in
all the three diseases, and only 28 species were unique
to any one of the three diseases. Collectively, the unique
species constituted less than 0.03% of the abundance in
each group. Each disease condition had core taxa that
constitute more than 50% of the identified taxa in the
condition (Fig. 3¢ (i—iii)). When core taxa of each condi-
tion were compared, most species were present in the
cores of all 3 conditions (Fig. 3¢ (iv)). 138 OTUs were
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misclassification rates of each variable are shown within each panel

found to be significantly differentially abundant between
any two disease states (p < 0.05, FDR-adjusted Wald test
— Fig. 3d and Supplementary Table 1). Using similarity
percentages (SIMPER) analysis, we identified OTUs that
explained 70% or more of the class separation. Several
OTUs which significantly contributed to the separation
were also common core taxa, demonstrating that the
diseases differ in the ratios of their predominant shared
taxa. One hundred and seven OTUs were significant
contributors to the separation between GAP and LAP;
of these, 65 were part of the common core species of
GAP and 63 formed the common core of LAP (Fig. 3d,
supplementary Table 1). Similarly, 50 species, 39 of
which were members of the core microbiomes of GAP
and CP, contributed to the separation between GAP and
CP. The separation between CP and GAP was driven by
Aggregatibacter actinomycetemcomitans, Fusobacterium
nucleatum, Treponema socranskii, and several members
of the genera Actinomyces, Campylobacter, Prevotella,
and Capnocytophaga. The separation between LAP and
GAP was mainly driven through Porphyromonas gingiva-
lis and members of the genera Neisseria and
Actinomyces.

Since inter-bacterial interactions play a large role in
influencing microbial assemblages, we used graph theo-
retics to assess connectivity between species. The

underlying rationale for this analysis is that taxa with the
strongest connections demonstrate superior adaptation
to their niche. As a corollary, diseases that present simi-
lar microenvironments will demonstrate greater co-
dependency between member species than diseases that
are different. The network topography is summarized in
Supplemental Table 2. While GAP and LAP demon-
strated robust hubs with 3568 and 2114 edges, CP pre-
sented a sparse topography, with only 489 connections,
attesting to its phylogenetically idiosyncratic presenta-
tion (Fig. 4). Zi-Pi plots of both CP and LAP demon-
strated expansive nodes with several putative keystone
species in the network topography, while the node distri-
bution in GAP was equitable (preventing us from creat-
ing a Zi-Pi plot) and did not demonstrate any candidate
keystone species. Together, the data suggest that patients
with GAP and LAP have a more homogeneous subgingi-
val microenvironment than those with CP, which may
explain the taxonomic heterogeneity observed in CP.
Based on the clinical observation that 35% of untreated
cases of LAP progress to GAP [41], we hypothesize that
loss of the influential key players found in LAP creates a
state of flux that, when observed cross-sectionally, gives
rise to the observation that GAP is a distinct disease
phenotype. This theory is further supported by observa-
tions that individuals with GAP demonstrate low serum
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antibody response to the microbial constituents, leading
to its continuous periodontal destruction [40]. This is
unlike the other two phenotypes which can self-arrest
with time.

The LAP microbiome is functionally distinguishable from
CP and GAP

Since the three disease phenotypes demonstrated several
taxa in common, we tested the hypothesis that there
would be significant functional overlap in their respect-
ive associated microbiomes using the SEED ontology to
annotate genes and the KEGG database for pathway
identification. A greater degree of class separation was

evident based on functional capabilities than on taxo-
nomic profiles (p < 0.0001, PERMANOVA of Bray-
Curtis Dissimilarity, Fig. 5a). 20.61% of the LAP meta-
genome (1278/6200 genes) was unique, in that, these
genes were not present in either GAP or CP (Fig. 5b and
Supplemental Table 3). Twenty percent of these unique
genes did not have functional role assignments, pointing
to gaps in our knowledge of the microbiome of localized
aggressive periodontitis. Forty percent of unique genes
encoded enzymes for anaerobic degradation of aromatic
compounds, methanogenesis, lysine and acetyl CoA fer-
mentation, and anaerobic respiratory reductases. Twenty
percent of the unique genes coded for gram-negative cell
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structures and 5% for gram-negative phages. 27.96%
(2037/7286) of the LAP metagenome differed signifi-
cantly from that of GAP (p < 0.05, FDR-adjusted Wald
test, DESeq2). The LAP microbiome demonstrated
greater capacity for inositol catabolism, and Lipid A,
lipopolysaccharide, and peptidoglycan biosynthesis when
compared to GAP (p < 0.05, FDR-adjusted Wald test,
DESeq2). Additionally, the LAP biome demonstrated a
4-fold to 144-fold greater enrichment of genes encoding
c-type cytochrome and molybdenum cofactor biosyn-
thesis, iron-sulfur clusters, formate dehydrogenase, and
oxidative stress response. 27.5% (2019/7340) of the LAP
metagenome differed from CP. This was attributable to
a higher representation of genes encoding acetyl CoA,
lactate, mixed-acid and lysine fermentation, methano-
genesis, anaerobic respiratory reductases, dehydroge-
nases, dehydratases and anaerobic toluene, and
ethylbenzene degradation. Also overrepresented in the
LAP metagenome were membrane transport functions
(type 11, IIL, IV, V, and VI secretions systems and ABC
transporters), and functions related to quorum sensing

and biofilm formation (Autoinducer-2 transport and
processing, biofilm adhesins, and histidine kinase
Sensors).

The GAP microbiome — a functional chimera

Pairwise dissimilarity analysis revealed that the GAP
metagenome was intermediate between CP and LAP (p
= 0.91, Dunn’s multiple comparisons test on Bray-Curtis
distances between GAP-CP and GAP-LAP). GAP shared
77% of its metagenome with CP and 64% of its metagen-
ome with LAP. To reduce bias induced by sparse data,
we next used core genes in each group to compute these
distances. Not surprisingly, we observed a lower similar-
ity within the common core metagenomes, but a more
balanced difference, with 56% of genes shared by CP and
GAP, and 55.1% by GAP and LAP. Since severe attach-
ment loss in young adults in the presence of clinical in-
flammation and local factors could represent either
early-onset chronic periodontitis, a generalized form of
the molar-incisor phenotype, or true de novo aggressive
periodontitis [41], we examined clustering of the GAP
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samples alone. NMDS did not reveal significant separ-
ation between the 17 samples, suggesting that this
chimeric effect cannot be readily attributed to
heterogenous diseases.

Fourteen percent of the core genes shared by LAP and
GAP encoded as yet unknown functions (Supplemental
Table 4). Among the characterized genes, the predomin-
ant shared functionalities were related to an anaerobic
lifestyle. These included genes encoding heme- and
hemin-dependent respiration, dehydrogenases, electron
donors and acceptors other than oxygen (namely, ni-
trate, sulfate, hydrogen, and ferric iron), and fermenta-
tion. Other shared functions included polyamine
metabolism, flagellar biosynthesis, and gram-negative
cell wall components (including peptidoglycan biosyn-
thesis), response to oxidative and osmotic stress, resist-
ance to antibiotics and toxic compounds, phages, and
conjugative transposons. The differences in the micro-
biomes of LAP and GAP were attributable to lower
abundances of membrane transport functions (type II,
III, IV, V VI, and ABC transporters), quorum sensing
and biofilm formation in and higher levels of sporulation
and dormancy, phages and transposable elements in
GAP. Pathways involved in biofilm stability were also
lower in GAP in comparison to LAP, and even lower in
CP when compared to GAP.

The functional roles of 19% of the genes shared by CP
and GAP were unknown. Both CP and GAP demon-
strated a collective capacity for metabolism of amino
acid, organic compounds, alcohols, and glycogen. The
other shared functionalities included capsule and cell
wall synthesis, response to oxidative and osmotic stress,
and resistance to antibiotics and toxic compounds,
phages, and conjugative transposons. Flagellar compo-
nents and proteins associated with flagella biosynthesis
and assembly machinery are also exclusively enriched in
GAP as compared to CP, as were potent inflammatory
triggers such as lipopolysaccharides and peptidoglycans.
Other abundant functions of GAP include dormancy
and sporulation, invasion and intracellular resistance,
iron acquisition and siderophores, and multidrug antibi-
otics efflux pumps.

Discussion

Culture-based approaches to characterizing the subgin-
gival microbiome spawned a slew of studies on individ-
ual bacteria, their responses to environmental shifts, and
their roles in disease causation as independent operators
[42-46]. However, cultivation independent methods
have revealed that polymicrobial diseases are caused by
the collective actions and interactions of the microbiome
[47, 48], and that the “invisible” members of a microbial
community have important contributions to these inter-
actions [49, 50]. When we used a top-down approach to
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map the genomic content of and the biological pathways
encoded by the microbiomes associated with chronic, lo-
calized, and generalized aggressive periodontitis, a sur-
prising picture of the three phenotypes emerged.

Healthy microbiomes demonstrated significantly lower
beta-dispersion than disease, similar to what has been
reported in the gut microbiome [51]. This effect has
been called the Anna Karenina principle and suggests
that healthy microbiomes operate under stricter host
control than do diseased ones. Subjects with periodon-
titis were carefully selected for clinical homogeneity: all
sampled sites demonstrated similar attachment loss,
pocket depths, and periodontal inflammation. Therefore,
the variance in the microbiome could not be explained
by disease severity. This dispersion was more apparent
in taxonomy than in the functional profiles, corroborat-
ing our earlier finding that the microbiome associated
with periodontitis is taxonomically heterogenous but
functionally congruent [20]. This was also corroborated
by identifying a set of putative periodontal pathogens
and perturbed functions common to all three diseases,
suggesting that certain genes and taxa are broadly asso-
ciated with the disease process. This is not surprising,
since it has long been recognized that periodontitis is a
microbially heterogenous disease [52], this observation
was largely based on examination of selected species or
meta-taxonomic cross-sectional studies. However, by
overlaying robust clinical metrics on the genomic con-
tent of the subgingival microbiome, we were able to
identify that not all clinical phenotypes of periodontitis
are equally heterogenous and that the heterogeneity does
not extend to microbial functions. We realize, as we say
this, that this is a cross-sectional study, and therefore, it
is not designed to identify patterns in microbial commu-
nity dynamics. Our findings serve to further reinforce
the critical need for adequately powered longitudinal
studies that combine granular clinical metadata with
open-ended explorations of gene expression patterns
and protein-protein networks, and rigorous and im-
proved modeling of stochastic events in microbiome
assembly.

Another observation was that most functions which
discriminated between health and disease were signifi-
cantly more abundant in disease, suggesting that the dis-
ease environment is associated with expanded
functionality. Our study reveals that particular functional
capability is required for life in the anaerobic, pro-
oxidant, heme-rich environment of a pathologically
deepened subgingival sulcus. For example, lipopolysac-
charide biosynthesis, iron transport, stress response, fer-
mentation, and metabolism of secondary amino acids
were uniformly enriched in all three diseases when com-
pared to health, even though some of them were more
abundant in one of the three disease phenotypes.
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We also found that species demonstrating a fitness for
this environment are different in each individual,
highlighting challenges associated with developing
species-based biomarkers or vaccines for periodontitis.
For example, flagellar proteins, potent inflammatory trig-
gers, mapped to a variety of organisms (e.g., species be-
longing to the genera Treponema, Selenomonas,
Pseudomonas, and Campylobacter), while genes encod-
ing dormancy and sporulation, invasion and intracellular
resistance, iron acquisition and siderophores, multidrug
antibiotics efflux pumps were assigned to several species
within the genera Aggregatibacter, Porphyromonas, Ato-
pobium, and Prevotella, among others.

Integrating data from the three most common pheno-
types of periodontitis allowed for identification of
phenotype-specific indicators, elucidating their potential
role in disease causation. Disease-specific indicators were
more readily evident in the LAP microbiome than GAP
or CP. When we examined the unique and overrepre-
sented suite of genes in LAP, a picture emerged of a
community with greater fitness for an anaerobic, proteo-
Iytic lifestyle, and a higher capacity for virulence than
CP or GAP. For example, genes that encode the “acetate
switch”, permitting a transition from rapid growth to a
slower, acetate-scavenging lifestyle [53], as well as dehy-
drogenases, hydratases, and anaerobic reductases were
identified only in LAP. Anaerobic glycerol phosphate-3-
hydrogenase genes, which play a critical role in utilizing
alternate nutritional sources [54] were consistently
higher in LAP when compared to the other two. Genes
encoding c-type cytochrome and molybdenum cofactor
biosynthesis, iron-sulfur clusters, and formate dehydro-
genase were also overrepresented in this cohort. Molyb-
denum cofactor is essential in bacterial respiration and
energy conversion, especially in those species that do
not have appreciable plasticity in their metabolic and re-
spiratory pathways [55]. Molybdenum metabolism is also
tightly connected to iron-sulfur cluster synthesis [56].
Formate is not only an important byproduct of anaer-
obic respiration, it is also a substrate for many sulfate re-
ducing bacteria, for example, Campylobacter and
Prevotella [57]. Its synthesis is mediated by formate de-
hydrogenase, an enzyme that contains molybdenum co-
factor and iron-sulfur clusters. C-type cytochromes
regulate several key pathogenic processes, notably heme
synthesis, oxidative stress response, nitrosative stress re-
sponse, and siderophore production [58]. This small set
of genes that were unique to LAP may provide insights
into disease etiology and development of LAP-specific
microbial biomarkers and deserve further investigation.

On the other hand, the microbiome of GAP shared
important taxonomic and functional features with both
LAP and CP. This “chimera”-like appearance might, in
part, explain the clinical observation that 35% of
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untreated cases of LAP progress to GAP [41]. Further-
more, the absence of the putative keystone species in
GAP could indicate an ecosystem in a state of flux,
which can explain the poor immune response from the
patients, and the lack of the ability of the disease to self-
arrest [59]. While the absence of clustering within the
GAP samples argues against this, it is possible that our
small sample size precluded a statistically significant
clustering. Our observations lead us to question whether
GAP is indeed a unique disease or represents, for some
individuals at least, a “halfway house” between LAP and
CP.

We noticed progressively greater beta-dispersion and
the concomitantly smaller common core microbiomes
when moving from LAP to GAP to CP, pointing to
greater personalization of the disease-associated micro-
biome in older individuals with CP (CP average age in
this cohort 58 + 2 years old). Two possible explanations
present themselves: one is that the microbiome naturally
shifts with increasing age; and the age of the microbiome
when dysbiosis sets in could determine the disease-
associated profile. The other is that personalization oc-
curs due to the chronicity of the disease, following the
Anna Karenina principle (AKP).

We also noted an attenuation of virulence-related
functionalities and stress response from LAP to GAP to
CP as evidenced by 4- to 144-fold lower levels of gram-
negative cell wall components (including LPS and Lipid
A) and fermentation, and of genes in the glutathione
pathway in GAP when compared to LAP and in CP
when compared to GAP. This serves to explain how the
microbiome mediates the differential periodontal de-
struction observed in LAP, GAP, and CP. Virulence
genes play an important role in the creation of a dysbio-
tic ecosystem, since they allow the species expressing
them to overcome the colonization resistance offered by
the health-compatible indigenous species. However,
virulence comes at an extreme fitness cost, and there-
fore, bacteria benefit by staying avirulent unless environ-
mental cues or competition dictate it. Our data suggests
that attenuation of virulence potential might be a factor
contributing to chronicity of the disease. This might ex-
plain the random burst model of disease progression
[60], where an increase in community virulence precedes
bursts of inflammation and loss of tooth-supporting
structures.

Conclusions

In summary, a comprehensive metagenomic analysis of
the subgingival microbiomes in different disease pheno-
types reveals broad patterns of shift in microbial func-
tions that span all diseases. Many of these functions
facilitate life in an oxygen-poor, protein- and heme-rich,
pro-oxidant environment, as well as providing an
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enhanced capacity for attachment and biofilm formation.
However, beta-dispersion metrics demonstrate that no
two individuals with disease are alike, especially older in-
dividuals with chronic disease phenotype. Therapies fo-
cused on microbial modulation through mechanical,
chemical, or other means will have to take into account
patient-specific parameters for efficacy. Importantly, we
observe that generalized aggressive periodontitis shares
significant functional features with both localized aggres-
sive periodontitis and chronic periodontitis, suggesting
either attenuation of an aggressive disease or an early-
onset chronic disease. We therefore question whether
this is a separate disease entity, or an artifact induced by
cross-sectional study designs. The present investigation
also uncovers disease-specific indicators with varying
discriminant abilities for each phenotype. These can not
only serve as potential biomarkers for molecular identifi-
cation of clinical phenotypes, but also clarify the role of
the microbiome in disease pathogenesis.
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